Artificial Life Simulations:
Discovering and Developing Agent-Based Models

Matthias Scheutz
Human-Robot Interaction Laboratory
Cognitive Science Program and School of Informatics
Indiana University
Bloomington, IN 47406, USA
mscheutz@indiana.edu

Introduction
Agent-based simulations have become increasingly important over the recent past
in a wide variety of fields, ranging from the simulation of complex physical
systems, to the modeling of different kinds of biological and social systems, to
various applications in game theory and artificial intelligence. They have been
used, for example, to model bacterial chemotaxis signaling pathways (e.g., Le
Novre & Shimizu, 2001; Andrews & Bray, 2004), population ecology (e.g.,
Railsback et al., 2002; Anderson, 2002; Grimm, 1999), social, economic, and
political systems (e.g., Conte, 2002; Schermerhorn & Scheutz, 2003), software
engineering (e.g., Gao, Madey, & Freeh, 2005), neural networks (e.g., Schoenharl
& Madey, 2004), business and commerce (e.g., Bonabeau, 2002) and many other
areas. In particular, in artificial life (Alife) research, simulation environments are a
critical tool for advancing knowledge and understanding of the mechanisms and
principles that govern the emergence or evolution of life or like-like processes.

While artificial life and agent-based simulation environments have found
most applications in research, their utility is not limited to the research domain.
Rather, simulation environments can also be a useful instructional tool for students
helping them to understand the mechanisms and principles at work in complex
systems. For example, by being able to watch the dynamics of a system unfold
graphically on the computer screen, students will be able to better understand the
analytical relationships expressed in dynamics systems equations that govern the
temporal evolution of the system. And by being able to modify parameters or even
rules that define the behavior of simulated entities, students will be able to explore
the space of possible designs and principles in an active manner.

We believe that the computational capacity of modern-day computers
provides a unique resource for students and teachers alike that not only facilitates
the process of learning relationships in existing systems, but also allows students as
part of their discovery process to define new models via interactions with the
simulation environment (e.g., Russ, 1997).

In this chapter, we present our SimWorld agent-based artificial life
simulation environment (e.g., Scheutz, Schermerhorn, Connaughton, & Dingler,
2006) and demonstrate how it can be used as a tool to allow students to discover
and develop models of real-world systems. Specifically, we report the results from
a student project where the goal was to develop an agent-based model of the

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

mailto:mscheutz@indiana.edu

phonotactic behavior of female frogs in a swamp when they are listening to the
calls of male frogs and move towards them. We start with a brief high-level
overview of the SimWorld environment and its various components, including a
description of the programming paradigms that it affords and the standard
interfaces it provides for including external open-source software components
(e.g., external physics engines such as ODE (www.ode.org) or graphical
visualization tools such as OGRE (www.ogre3d.org). We then introduce the
particular example of modeling “female choice” in treefrogs and show how
SimWorld was used to discover and develop a model. In particular, we show the
steps involved in defining and running a simulation model, pointing to the support
SimWorld provides for each of these steps. This also includes how simulation
output can be analyzed and visualized with open-source tools outside of SimWorld
such as R (www.r-project.org) or Scilab (www.scilab.org). Finally, we provide a
summary of other agent-based modeling toolkits that are freely available,
indicating the degree to which they are suitable for instructional purposes and
comparing them to SimWorld.

The SimWorld environment
SimWorld is an agent-based artificial life simulation environment built on top of
the SimAgent agent toolkit (Sloman, 1999), a general-purpose agent toolkit based
on the Poplog programming environment with a built-in OPS5-style rule
interpreter poprulebase . SimWorld can run in one of two main modes: (1) the
“GUI mode”, which provides a 2D interactive graphical user interface that displays
the simulated entities in their simulated environment and allows users to inspect
and manipulate simulated entities; and (2) the “batch mode”, a non-interactive
mode that can be used to run larger-scale experiments (e.g., simulations that
attempt to evolve a particular trait of an agent).

SimWorld provides support for various different kinds of entities, such as
simple reactive and more complex deliberative agents. These agents can operate in
2D or 3D environments, ranging from simple, grid-based environments (as used
for many agent-based simulations where the exact spatial metric does not matter)
to complex spatial environments, where distances and spatial extension are
accurately modeled. New environments with different topological and metric
properties can easily be defined and new agent models can be added by simply
“extending” any of the base agents, which is a straightforward process within the
object-oriented design of SimWorld (demonstrated in the next section).

Different from many other simulation environments, SimWorld provides
extensive support for periodic or event-driven data collection. It is possible to
record variables or parameters in the whole simulation environment (including
SimWorld system parameters) via a simple specification language (see Step 2 in
the next Section).

SimWorld has been used successfully in several diverse research projects
over the last six years, ranging from the study of the utility of affect for agent
control (e.g., Scheutz & Schermerhorn, 2002, to various evolutionary

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

http://www.scilab.org/
http://www.r-project.org/
http://www.ogre3d.org/
http://www.ode.org/

investigations (e.g., Scheutz & Schermerhorn, 2005), to the study of conflict
resolution strategies (e.g., Scheutz & Schermerhorn, 2004), and others (e.g.,
biologically plausible models of frog behaviors, Scheutz, Madey, & Boyd, 2005,
foraging in hives with limited resources, Schermerhorn & Scheutz, 2005, or UAV
swarms, Scheutz, Schermerhorn, & Bauer, 2005). It has also been used as an
instructional tool in various courses at the University of Notre Dame, for
example, to study multi-agent systems (in CSE 471/571 Artificial Intelligence)
and in undergraduate design and research projects (e.g., to study the biologically
inspired multi-agent foraging tasks, in CSE 499R Undergraduate Research).

Interfacing external components

SimWorld is an open environment that allows for the integration of external
software components. Support for such “external plug-ins” (e.g., to link in external
simulation and visualization components such as external physics and graphics
engines) is provided via an open “plug-in architecture”. We briefly mention two
engines that have been connected to SimWorld : the Open Dynamics Engine
(ODE), a physics engine used to provide efficient collision and friction detection as
well as realistic rigid-body motion, and the Object-Oriented Graphics Rendering
Engine (OGRE), a three-dimensional graphics rendering package. The integration
of external engines is achieved via segments of shared memory (together with
inter-process synchronization mechanisms) that allow SimWorld and external
engines to share basic agent features. In the case of a physics engine, for example,
the information passed to the engine at each cycle are force vectors representing
the forces generated by the agent’s controller (via its body); the physics engine
then simply returns the updated position and orientation of the agent based on the
newly generated force and all other forces that apply. For a graphics engine,
location and orientation of each agent (plus additional information about the
appearance of the agent, etc.) are shared (see Figure 2 for a comparison of
SimWorld and OGRE visualization). Both physics and graphics engines can be
included at the same time, and moreover, designers can selectively choose which
agent to update and render via the external engines (thus allowing for non-physical
information gathering agents that might not need to be displayed).

Parallelization of SimWorld

Automatic parallelization of agent-based simulations is one of the main features
that distinguishes SimWorld from all other available simulation environments. Is
is based on a novel algorithm that distributes simulations over a set of available
hosts (Scheutz & Schermerhorn, 2006). In order to parallelize SimWorld
simulations, the JAVA-based SWAGES experimentation environment is required,
which manages groups of host computers that can be used for parallelization.
SWAGES monitors all hosts and automatically distributes a given simulation in
the best possible way based on host availability.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

1000 T T T T T

8O0 - 1

&00 | B

400 |- .

200

Parformanca (Avarage Time fo Completion (sac)

0 1 1 1 1] A
1 2 4 & 16

Maodas

Figure 1: Average time to completion for 1, 2, 4, 8, and 16 nodes for a swarm task ,
where agents must find and gather at the nearest checkpoint as quickly as possible.
(Small) error bars denote confidence intervals for a= 0. 05.

In SWAGES ’s parallelization scheme, simulation entities are divided into
groups to be simulated on separate hosts. Each host executes a SimWorld instance
in which all static and lowcost entities (i.e., those whose updates are less expensive
than the overhead of parallelizing them) are duplicated, and more complex entities
are divided among the different hosts.

The parallelization algorithm can either run in lock-step mode (i.e.,
updating all parallel simulations one cycle at a time), or in asynchronous mode
where individual simulations update independently for as many cycles as possible
until information from other simulations is needed. The asynchronous algorithm
utilizes spatial information available about the “sphere of influence” of entities
in spatial agent-based models such as SWARMS, ANTS, and many others, where
entities can affect their environment only within a given range.

The time-savings of the algorithm for one example SWARM simulation
are shown in Figure 1 (see Scheutz & Schermerhorn, 2006 for details). Briefly, the
agents in this simulation must gather at the nearest “checkpoint” in the
environment as quickly as possible, with each agent executing a basic reactive
architecture that causes the agent to move directly to the nearest detected
checkpoint, and wander randomly when none is detected. These results
demonstrate the performance of the asynchronous parallelization algorithm for
cases where good splits of agents can be computed (e.g., because different groups

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

of swarms are located far apart, so that they cannot influence each other). The
results reported are averages over 20 simulation runs of 100 cycles each. Each of
the 20 initial conditions was simulated using 1, 2, 4, 8, and 16 nodes in a dedicated
Linux cluster of dual 2.4GHz Xeons with 1IGB RAM. The times reported include
all overhead of starting and finishing SWAGES, as well as distributing the
simulations when more than one node is used (for details of the algorithm and
experiments, see Scheutz & Schermerhorn, 2006).

Current FP5: 114.428

Figure 2: Simple reactive ant-like agents on their hunt for food in OGRE and in the
simple 2D SimWorld GUI (brown circles with black dots) superimposed on the
upper right.

SWAGES works in homogeneous fixed clusters (e.g., Beowulf clusters)
and heterogeneous ad-hoc clusters (e.g., individual workstations that can only be
used if nobody is logged in) alike. Moreover, it requires no setup procedures on the
host participating in simulation experiments (other than the standardly installed
secure shell tools for secure, remote login and file transfer) and will run
on all operating systems that support the JAVA virtual machine and the Poplog
environment (for SimWorld).

Using SimWorld to discover and develop agent-based models
We will now demonstrate in some detail how SimWorld can be and has been used
by students to explore the space of possible designs, which in turn leads to the

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

discovery and development of agent-based models that illustrates principles found
in natural systems. The particular example presented here is from a student project
jointly supervised by the author and one of his colleagues in biology. The goal of
the project was for the student to study an agent-based model of female choice in
treefrogs. We begin with a brief description of the biological background and then
go through the steps of the model development, including running larger-scale
simulations and analyzing the resultant data.

Biological background: female choice in treefrogs

It is often assumed in studies of mate choice that females “choose” a single mate
from a group of males based on some criteria. Female treefrogs, for example, show
phonotaxis toward calls of males with higher pulse numbers (e.g., Schwartz,
Buchanan, & Gerhardt, 2001; Schwartz, Huth, & Hutchin, 2004). Females are thus
assumed to make an active choice (Gibson & Langen, 1996), show a directional
bias (more pulses are better, Ryan & Keddyhector, 1992), and differentiate
between individual males up to a maximum of 5 (Gerhardt, 1991; Greenfield &
Rand, 2000). While there are several proposed rules for female sampling and
decision making (Jennions & Petrie, 1997; Valone, Nordell, Giraldeau, &
Templeton, 1996), the most prevalent theories for frogs suggest that females
choose either the “best” of the closest n= 1, ..., 5 (best-of-n theory, Janetos,
1980) or choose the first male they encounter whose quality is above a minimum
threshold for acceptance (min-threshold theory, Jennions & Petrie, 1997). While
these two strategies make different predictions in some cases, there is independent
evidence for each of them. The goal of the project was to test them based on real-
world data collected from frogs in the swamp on two consecutive nights.
Specifically, given the position of males in the swamp and their respective pulse
numbers , the question was which of the two strategies would lead to an average
faster mating time (i.e., the time that it takes females to find and mate with a male
partner). The hypothesis was that the best-of-n theory should lead to shorter
average paths from initial female positions to males, and thus lead to overall
shorter average mating times.

Step 1: Developing an agent model

In a first step, we need to define two new types of agents: male and female frogs.
Agents in SimWorld can be defined in any of the available programming
languages in Poplog (i.e., Pop11, Prolog, ML, Scheme, C-Lisp) or via condition-
action rules in poprulebase . Additional support for external function calls to code
written in other programming languages is provided via a C-function call interface
as well as JAVA socket serialization mechanisms that can serialize and de-serialize
Popl1 and JAVA objects, to the extent that they are similar in nature. Here, we
show how to extend the built-in agent model in the Pop11 programming language.
This is most easily accomplished by deriving a new class “treefrog” from the base
class for simulated entities “thing” and adding those properties of frogs that are
shared by male and female frogs (Figure 3). Then, two new classes for male and

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

female treefrogs can be derived from the frog class that contain only those
properties that are specific to male and female treefrogs.

define the base treefrog cl ass
define :class treefrog; is thing;

slot size == 4; ;7 size of the frog in cm

sl ot mating_range == 4; ;;; range within which frogs can nate
sl ot sound_range == 2000; 77, range within which frogs can hear
sl ot speed == 0; ;;; speed of novenent

slot simx == fal se; 77, X location in swanp

slot simy == fal se; ;55 y location in swanp

sl ot heading = random(360); ;;; direction in which frog faces
sl ot bodycolor == "green'; ;;; color of frog in GUJ

enddefi ne;

;5. defines a male treefrog
define :class male_treefrog; is treefrog;

sl ot cal | power = 0.00012447722025400753; ;;; 102 db at 25 cm

sl ot pul sepercal |l = gaussi an(10, MALESTDDEV); ;;; gaussian

slot territory_range = 70; ;;; extension of mate site
enddefi ne;

;5. defines a female treefrog
define :class fenale_treefrog; is treefrog;

sl ot call_speed == 1. 86; 77, the speed if noving towards nal e
sl ot matingmal esound == 0; ;;; call quality of mating partner
slot finalx == fal se; ;;; the x position at mating
slot finaly == fal se; ;;, the y position at mating

enddef i ne;

Figure 3: The object-oriented structure of agents in SimWorld: the “treefrog” class
that contains the properties shared by both male and female frogs, derived from the
base class “things” for all simulation agents in SimWorld; and derived classes for
male and female frogs.

In a next step, we need to define the behavior of these two new agents.
Female frogs sample the environment for calls from male frogs, evaluate calls
according to a particular strategy, and then decide in which direction to move. For
male frogs, we restrict ourselves to a subset of male behaviors, where male frogs
remain stationary throughout their calling period and simply call all the time with
their given initial call parameters (i.e., number of pulses per call and the given call
power). In comparison, male frogs in the real world change their calls based on
perceptions of other calls, move to different calling sites, stop calling altogether
and become so-called “satellites” or engage in aggressive encounters with other
male frogs (see Figure 4 for a screenshot from a more complex research
simulation, Scheutz & Boyd, in preparation).

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

" . SimWaorld 1.0 Beta - (c) by Matthias Scheutz — Zoom View

Calling males
competing for site

e_treafro

p female_treefrog

o fggele-treefroz2 pymale_tresfrog2 A

o male_treefrogl3 Females Iﬂﬂki“g

for males
Male lﬂﬂkiﬂg . - emale_treafrogd b
for site Intercepting =
satel lltﬂ* pmale_treefrog29
pala_tr
pmale_tresfrog2é pmala_tresfrogld

o L= 22 Non-calling
--....Nd_)' & WAL ErabragE. satellites
Male and Female_treefrogs

female
about to mate

ry mal E'_.t resfrog?

Figure 4: Screenshot from a more detailed simulation of male behavior in
treefrogs.

Hence, there are functions that need to be implemented for both kinds of
agent: (1) how to determine the female perceptions at each time, and (2) how to
update bodily states based on those perceptions (including the execution of
actions). In SimWorld , there are function templates that can be filled in:

define :method simrun_agent(femal e:femal e_treefrog,entities);
define :method simrun_agent(nale:male_treefrog,entities);

Here, “entities” is a list of entities that the female/male could potentially perceive.
Thus, implementations of the “sim run agent” method will typically check whether
an entity is within some sensory range (e.g., the “sound range” given in the frog
class), and if so, compute what exactly is perceived of that entity (e.g., the call rate
of a calling male). In the case of the females, the perceptions are simply the male
call characteristics, in the case of males there are no perceptions. Moreover,
another function template needs to be filled in that determines how agents react to
their perceptions (e.g., by changing bodily parameters and/or initiating motion):

define :method update_body(nal e: mal e_treefrog);
define :method update_body(fenale:fenale_treefrog);

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

For males, only the call action needs to be performed, but no internal
states will change, while females update their position by moving in the direction
of the male the have chosen based on their evaluation strategy (i.e., best-of-n or
min-threshold) from all the males whose calls they could perceive. Specifically,
females using the best-of-n strategy compare the calls of the closest n males
they can perceive, select the best caller, and move it his direction, while females
using the minthreshold strategy move towards the closest male they can perceive,
whose call rate is above the minimum threshold (both n and threshold parameters
are set at the beginning of a simulation run).

Finally, an initialization template needs to be filled in which determines
how the simulation starts out:

define :method initialize(agent:treefrog, parents);
define :method initialize(obj:nest_site, parents);

This typically determines the initial position of an agent in the environment. In the
case of male frogs, they might be placed in particular locations (e.g., as determined
in field studies), while the females might be placed in random locations at the
border of the swarm.

Step 2: Running the model in GUI mode.

Once all the classes and their behaviors are defined, the simulation can be run in
SimWorld in GUI mode. This mode allows for the interactive modification of the
model (e.g., debugging) but also for the exploration of the model’s properties. For
example, it is possible to interact with the simulation via the command line (which
prints the current cycle number) and query the status of agents:

34 ? see femal e_treefrog5 headi ng

The above, for example, will print the heading of the agent with the name “female
treefrog5”.

Alternatively, right-clicking on the agent will also reveal an agent’s
internal state. If desired, the heading can be easily changed (e.g., to 25 degrees):

34 ? set femnl e_treefrog5 heading 25

Similarly, it is possible to define new agent types, add and remove agents
from a running simulation, and track and record the values of their slots (e.g., their
positions throughout a run). This greatly facilitates the development and debugging
of agent models.

To run a simulation, three parameter lists have to be specified (see Figure
5): (1) a list for setting up the simulation, (2) a list for defining entities, and (3) a
list for scheduling events.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

[/*** set up simulation environnent ***/
[initfile "frog2.p']
[conpi | ehere ' define checkend(objects, cycle);
female_list==nil and cycle > 1;
enddefine;’]
[quitif checkend]
[world WDTH 1500 HElI GHT 1500]
[world UNLI M TED]
[conpilehere '19.5 -> USEM NQUALITY; "]
]
[/*** set up entities ***/
[mal e_treefrog [startup [[[simXx -696] [simy -70]
[pul sepercall 17.6]1]111]
[male_treefrog [startup [[[simXx -525] [simy 670]
[pul sepercall 18.6]]1111]
[male_treefrog [startup [[[simXx -538] [simy 360]
[pul sepercall 20.7]1111]
[mal e_treefrog [startup [[[simXx -582] [simy 210]
[pul sepercall 15.1]1111
[male_treefrog [startup [[[simXx -540] [simy -75]
[pul sepercal |l 20.1]]1111]
[male_treefrog [startup [[[simXx -312] [simy 712]
[pul sepercall 21.6]]111]
[mal e_treefrog [startup [[[simXx -273] [simy 660]
[pul sepercall 17.9]1]1111]
[male_treefrog [startup [[[simXx -115] [simy -164]
[pul sepercall 19.3]1111]
[male_treefrog [startup [[[simXx 102] [simy -140]
[pul sepercall 20.3]1]111]
[mal e_treefrog [startup [[[simXx 150] [simy -702]
[pul sepercall 22.7]11111
[male_treefrog [startup [[[simXx 300] [simy -250]
[pul sepercall 25.8]1111]
[male_treefrog [startup [[[simXx 463] [simy 395]
[pul sepercall 17]]1111]
[mal e_treefrog [startup [[[simXx 593] [simy -75]
[pul sepercall 17.8]]111]
[male_treefrog [startup [[[simXx 683] [simy 517]
[pul sepercal |l 22.9]11111]
[male_treefrog [startup [[[simXx 640] [simy 405]
[pul sepercall 18.4]111]
[mal e_treefrog [startup [[[simXx 657] [simy 328]
[pul sepercall 23]]1111]
[femal e_treefrog [startup 5 []]
[record [at death [initialx][initialy][finalx][finaly]
[mati ngmal esound]]1]]

[/*** schedul e events ***/

]
]

Figure 5: The three-part setup of a simulation.

The first list contains information about which agent definition files to load
(“initfile”), whether to compile additional code (“compilehere”) that changes
default functionality (in this case, the simulation is supposed to end if no females

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

are left, so the function “checkend” is re-defined and used as argument for the
“quitif” keyword that defines termination conditions), and the extension of the
world (“UNLIMITED” following the specification of the limited 2D world in
terms of the “WIDTH” and “HEIGHT” means that agents can leave the area, but
that random initial placements of agents will be confined to it). Also note that
global simulation parameters can be set as part of the start-up (e.g., 19.5 is assigned
to the global variable “USEMINQUALITY”).

" _ simworld 1.0 Beta — (c) by Matthias Scheutz — World View

female_treefrog3
Female_tres
15.1
23
.female_treefrogl
18,4 ooz

»20.13 «19.13 wfemale_treefrozd

17,8

female_treefrogh L2001
18,6
22,8 179
AL
21,6

L Il

Figure 6: Initial configuration of environment...

The second list will both define all entity types to be used in the
simulation as well as how to set them up (via the “startup” keyword, followed by
entity parameters such as their position, or the initial call rate for male frogs). Note
that female frogs do not have an assigned position, hence SimWorld will generate
random positions within the specified 1500x1500 area. Furthermore, the “record”

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

keyword can be used to specify what information should be recorded for entities at
what time (e.g., the “at death” qualifier means that the listed agent variables should
be recorded for the agent before it is removed from the simulation—in the current
case of the frog simulation, we simply remove both male and female frog when
they are in the same location, i.e., when they start “mating”, as neither frog will be
able to mate with anybody else that night and we are only simulating one night at a
time). Since the information of where females mated and what the call rate of their
mating partner was is the information we need to be able to compare and evaluate
different partner selection strategy based on the length of the female’s trajectory to
her partner and the call rate of that partner (which is a measure of his “fitness”), we
need to record the initial and final positions for females as well as the call rate of
their male partners (this is particularly important in “batch mode”, where no
graphical simulation output is available, but only the various values recorded
throughout the simulation as specified via the “record” keyword).

The third list (left empty in Figure 5) is used to schedule events (e.g.,
adding new entities or changing entity properties at particular times).

Figure 6 shows the initial placement of male and female frogs on the first
night (numbers next to males depict their call rate). Figure 7 shows the situation for
females using the best-of- 3 strategy at a point when only one female (“female
treefrog1”) is left (all other females have already mated and were removed from
the simulation). As can be seen from the traces of the past trajectories, “female
treefrogl” originally moved towards the same male as chosen by “female
treefrogd4”, and when that male stopped calling (due to his mating with “female
treefrogd”), “female treefrogl” reevaluated her choice and picked the best of the
now closest three males. Unfortunately, another female (“female treefrog2”)
managed to mate with that male before her, so she was forced to reevaluate her
choice again (this time, however, she will be able to mate successfully with the
chosen male as there not contenders left).

In this particular case, the ability to compare the outcomes of simulations
visually is very helpful for gaining a quick understanding of the trade-offs between
different values for 7 in best-of-n : the smaller n , the lesser the competition among
females for males with high call rates, which in turn leads to shorter overall
trajectories, but also lower overall “fitness” of the mating males (as determined in
terms of their average call rate). Conversely, the higher n, the greater the
competition among females, which in turn leads to longer female trajectories (as
some females will moves towards males in vain as in the above case), but also
higher average fitness of the mating males. These kinds of insights can be quickly
obtained by watching the simulation unfold on the screen. At that point, particular
hypotheses can be formulated (e.g., whether best-of-n or min-threshold are better)
and tested in larger-scale simulations run in batch mode.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

X simworld 1.0 Beta — (c) by Matthias Scheutz — World View IBIEE

20,17

15,1

feEmale_treefrogl

12,4

ek 19.53
17.8
20,1

18.6

17,3

17
21.%

Figure 7: All females except for one have mated, female trajectories are shown in
light-blue ...

Step 3: Defining and running batch experiments

Running simulations in batch mode is a straightforward process, once all agents
have been defined and tested (in GUI mode). An additional list of simulation
parameters, this time not for SimWorld, but for the SWAGES environment that
schedules and supervises multiple simulations in batch mode, has to be defined
(see Figure 8).

The main difference between simulations in GUI mode and batch mode is
typically that the latter consist of a whole set of simulation runs (e.g., varying
initial conditions of agents such as their placement in the environment or internal
states to investigate the extent to which simulation outcomes depend on or are
sensitive to changes in initial states). There are several ways to specify sets of

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

simulations. For random variations of initial conditions only (for all those internal
states of agents, including their position in the environment, that are generated at
random) SWAGES provides the keyword “replicates” which specifies the number
of simulations that need to be repeated with different initial conditions (i.e., a
different “random seed” for the random number generator). It is also possible to
specify an initial seed for a whole experiment set (that way all simulations part

of that set will receive a unique random seed and thus be replicable). In the case of
the treefrog experiments, we run the simulation for 50 different initial conditions,
keeping the position and call rate of all males the same, while altering the initial
position and heading of all females (moreover, we specify an overall “ranseed” to
be able to reproduce the simulations later, e.g., to be able to watch some of them in
GUI mode).

[/*** swages setup ***/
[name 'minqual 1’ 'resultsdir’]/* where to store */
[user "airolab’] /* run as this user */
[priority 5] /* run at mediumpriority */
[ranseed 29187] /* same initial conditions */
[replicates 50] /* across all replicates */
[watch 120 30] /* supervise execution */
[email ’'mscheutz@se.nd.edu’] /* notify user when done */
[savestate "NO] /* don’t save sinulation state */
[copyimages '/tnp/'] /* tenmp space for simstate */
[copystats 'statsdir’'] /* where to store stats */

Figure 8: The additional setup of an experiment set in batch mode.

SWAGES also allows for the definition of “variates” (i.e., variables that
are systematically changed) as part of the SimWorld setup. Each variate gets
assigned the range and granularity of variation and based on that information
SWAGES will produce individual simulations for each combination of values
for all variates (e.g., if one female were supposed to be placed systematically in all
positions from (0,0) to (100,100) at a granularity of 10, then SWAGES would
produce 110 simulations that only differ with respect to the initial female position—
this significantly reduces the number of experiments that need to be specified by
users).

To allow for easy interaction, SWAGES provides a web-based interface
that can be used with any standard web browser. Through this interface, it is
possible to schedule and reschedule experiments, watch their progress, and inspect
the results. Different users can use the system in parallel, and the SWAGES
administrator can assign detailed privileges to each user (e.g., whether they can
schedule experiments and if so, how many, with what priority, etc.). This is
particularly useful for instructional settings where the instructor administers a set
of host computers that will be shared by students for model simulations. Figure 9
shows the interface depicting scheduled and running experiments.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

(5) SWAGES - Simworld Grid Experimentation System J1.0 Alpha - Mozilla L@
» D
SWAGES J1.0Alpha
Grid Experimentation Server
. -
experimentis, R =
SUbmit experimeni(s) Current Experiment(s) =
Dequeus experiment
+++ EXPERIMENT INFORMATION *+++
Iain menu Hame test
Status SCHEDULED
Start. time Thu Now 10 09:35:20 EST 2005
End time: not ended yet
Check int. (sec.} 30
Save state:(sec.) no
Watch time (sec.) 120
Priority: H
Parallel runs: 100
User airolab
Email:
Path to results: shome fairolab/experiments /test/test
Path to stats /home fairolah/experinents /test/test
Path to inages /home fairolab/tup
Clients finished:
tlients involved in the sxperiment
+++ CLIENT INFORMATION *+*
cliend IO cll
on host airolabd
Status STARTING
Completedoycles i
Start time Thu Now 10 09:35:20 EST 2005
Last contacted Thu Now 10 09:35:32 EST 2005
Simparams [[[statsfils, /home/airalab/tmp/test cll stats], [ranseed, -64810073], [initf
Spoplleval [1->checkMIGRATION,
Gpoplleval:
Seed -64810073
Mum. interrupts
Mo, migrations: 1]
Wum. watchdog int.: 0
Used hosts [airolabd]
+#+ CLIENT INFORMATION *++
Cliend ID cl2
on host airolabl
Status STARTING
Gompletedoycles:]
Start time: Thu Now 10 09:35.20 EST 2005
Last contacted Thu Now 10 09:35:33 EST 2005
Simparams [[[statsfile, /home/airolab/tmp/test_cl2 stats], [ranseed, 44586787], [initfi
Spoplleval: [1->checldIGRATION;
Cpopllewal:
Seed 44586787
Mum. interrupts:] I+
Kl il [»]
I 0 O [hpairoldh airolss nd ecy: D002 eurrent BT

Figure 9: A scheduled experiment set and simulations running concurrently on
several hosts.

Step 4: Analyzing the resultant data

Once the batch simulation experiments have finished, SWAGES will have
produced a set of statistics files that contain the information specified via the
“record” keywords (and some additional general information about the
experiments). SimWorld comes with a set of tools that allow for mining and
converting this data into various external format, e.g., export filters and scripts to
interface common open-source statistics, visualization, and scientific computing
software. Figure 10 shows the output of an automatically generated results file
containing the relevant experiment statistical data formatted for import into R, and
a (manually produced) batch file for R to perform basic ANOVA analyses.
Moreover, Figure 11 shows a comparison space of the performance of min-
threshold strategies based on male/female sex ratio and different minimum
thresholds compared to the best-of-n strategy for a fixed n (the space was produce

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

in Scilab based on experimental output from SimWorld formatted for import in
Scilab).

"Tvoe" |"Night" |"Run" |"Fem" |"Cvc" |"nitX" |"TnitY" |"FinX" |"FinY" |"PPC"
1 1 1 1 276 750 -491 300 -250 21.6

1 1 1 2 180 750 348 463 395 20.1

1 1 1 3 41 750 552 683 517 20.7

1 1 1 4 171 =750 -384 -696 -70 23.0

1 1 1 5 506 -750 -630 -115 -164 20.3

1 1 2 1 292 91 -750 300 -250 21.6

1 1 2 2 239 -750 646 =312 712 25.8

1 1 2 3 31 -750 -54 -696 -70 23.0
'rééd.table("frog.dat") ->all; # load data from"frog.dat’’

al | $Type = factor(al | $Type); # set factor strategy type

al | $Ni ght = factor(all $Night); # set factor for night

a = Inmall$Cycle ™ all $Night * all$Type); # create the nodel
sunmary(a); # print sunmary

anova(a); # run the ANOVA

b =Inmall $PPC ~ all $Night * all $Type); # create the nodel
sunmary(b); # print sunmary

anova(b); # run the ANOVA

Figure 10: R data file produced by SWAGES output filter and script in R to
analyze the data.

Clogest-5 {green) ws. Minthresh (blue) in Gaussian Envy. with Spread 4

5.0
M5
1.0
135
F o130
125
2.0
15
1.0
124

min threshald 72 pete. females

Figure 11: A performance space produced in Scilab (based on data generated by
SWAGES) comparing two agent kinds (green and blue) along several dimensions.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

In addition to tools for interfacing external statistics and visualization
software, SWAGES also provides basic built-in statistical analysis tools (e.g., for
performing simple significance tests), and libraries for data extraction and
combination (in various formats including HTML, TeX, and plain text) for typical
statistical operations that can be performed within the SWAGES web-interface.

The specific results for the frog experiments are shown in Figure 12
(generated from data imported into openoffice.org and from running the R script
shown in Figure10 on the experiment output data).

Time-to-mating Time-to-mating
o 290
2% m I
260 250 T
w755 - 220 L
S250 e
Sus &0
20 190
235 170
20 T 150 T
Night 1 Night 2 Best-of-3 Min-thresh=19.5
Night Strategy
Male quality Male quality
2 2185
1 pal]
419 2185 i
218 |] 18 I
= =2175 %
ey I 3o i
2215 22165
216
as 2155
214 215 T
Night 1 Night 2 Best-of-3 Min-thresh=19.5
Night Strategy
Time-to-mating Male qualitv
Df |F Pr(>F) Df |F Pr(>F)
Nights 1 1.50 0.22 1 1.13 0.29
Strategv 1 5.19 0.02 1 0.55 0.46
Night:Strateev 1 0.13 0.72 1 0.02 0.90

Figure 12: Results shown in graphs produced in openoffice.org based on the output
of the simulation and based on ANOVAs performed in R. The bold-face number is
statistically significant for a =. 05.

The top figures show “time-to-mating” broken down by nights and by strategy in
terms of the overall time it takes a female (on average) to find a mating partner.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

While there was no statistically significant difference between the two nights, the
best-of-3 strategy lead to a significantly shorter average time-to-mating (and thus a
shorter average trajectory) compared to the min-threshold=19.5 strategy. This
supports the initial hypothesis that best-of-n (for some n) can lead to shorter
trajectories (compared to the population average minimum threshold) by rejecting
the null hypothesis that there is no difference in trajectory length.

The lower figures compare the average male quality of the mating
partners broken down by night and strategy in terms of the male call rate. Here we
find no statistically significant difference, neither between the strategies nor
between nights. Hence, the data does not support the hypothesis that besz-of-3 leads
to a better average male fitness of the mating partner compared to the min-
threshold strategy for the population average (by not allowing us to reject the null
hypothesis that there is no difference in quality between the two strategies).
Finally, there is no statistically significant interaction between any of the factors
(see the ANOVAs in the table).

In sum, the simulation results confirmed one part of the initial hypothesis,
but failed to provide evidence for the other. Beyond that, we can now also use the
results of the simulations to make specific predictions, for example, that a slightly
higher minimum threshold (e.g., of 20.5) will likely lead to significantly higher
average mating partner fitness (as compared to best-of-3). This prediction can now
be tested experimentally in additional simulation experiments.

Discussion

The above four-step procedures demonstrates one way of how artificial life
simulations can be used to investigate interesting real-world phenomena in agent-
based environments. In an instructional setting, instructors will typically introduce
a particular problem in the domain to be studied (like the female mate choice in
treefrogs) and then ask students to think about rules that would govern agent
behavior in the given context (e.g., the decision-making process of frogs based on
the two strategies). In a next step, students will be asked to implement the rules and
experiment with them. This will typically require some familiarity with the
SimWorld environment, which we have addressed in the past by assigning the
tutorial included with SimWorld beforehand. The tutorial allows students to
become familiar with the poplog environment (e.g., the key commands, how to
load and start simulation, how to call up help files, etc.). In particular, it introduces
them via simple examples to the general operating principles of the SimWorld
environment, demonstrating simple agents and agent behaviors. As part of the
tutorial, students learn how to use the graphical user interface and how to
manipulate agents. At the end, they will have written simple rules modifying agent
behavior and thus be ready for the actual project.

Typically, steps 1 and 2 will take some time until students have mastered
the implementation (e.g., of rules for agents) and developed a model they are
satisfied with (in our CSE 471/571 course, we assigned as a group project the
development of rules for finding food that would allow agents to survive as long as

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

possible; the typical time frame for completing the setup was two weeks for groups
of three students).

For some instructional situations, steps 1 and 2 will be sufficient, while
for others, it might be useful to let students further investigate the model using
steps 3 and 4. It is also possible for instructors to use steps 3 and 4 to evaluate the
quality of the models produced by students. We have in the past, for example, used
batch simulations to let agents produced by different student teams compete
against each other in the same simulated world. The performance of these agents in
direct competition was then used as a measure of success and to assign grades to
student projects. Alternatively, student models could be compared to a standard
model produced by the instructor in very much the same way. Depending on the
instructional setting, therefore, SimWorld can be used by instructors to
demonstrate the behavior of complex systems (e.g., by showing the simulation in
class), or it can be used by students for assignments of varying complexity (e.g.,
using only step 2, i.e., to run simulations, or developing a model adding step 1, or
investigating overall relationships among agent behaviors adding steps 3 and 4—for
advanced projects several iterations through the four-step process might be
required). In each case, it is up to the instructor to decide how much of the model
infrastructure to provide (e.g., whether students get a whole agent model, or only
parts of it, or have to implement agents from scratch). Hence, SimWorld can be a
useful tool for students in different fields alike (e.g., biology students might largely
adapt pre-defined models according to different biological theories, while
computer science students might develop models of a particular given theory from
scratch). Either way students will be able to develop an understanding of the
dynamics of complex systems and might be able to discover principles and
emergent behaviors that they would not have been able to see otherwise.

Related Work
Many simulation environments for the study of agent-based or Alife models have
been proposed over the last decade. We distinguish between general agent toolkits
and specific modeling toolkits, i.e., agent-based modeling toolkits and Alife
toolkits , and will describe several examples of all three in the following.

General agent toolkits

General agent toolkits are intended as general purpose frameworks that provide
components for creating programs using “agents”. Typically, the notion of “agent”
is defined very broadly, referring to a computational structure that allows users to
create distributed systems in which their agents are merely representations of
resources in a program.

Mozart: The Mozart (Van Roy & Haridi, 1999) programming system implements
the programming language Oz, which allows users to specify computation,
concurrency, and distribution in a straightforward manner. Agents are programmed
in Oz, taking advantage of its lightweight thread system and transparent data flow

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

mechanism. Distribution is also transparent, allowing agents access to local and
remote resources with equal ease. Mozart uses tickets as global resource
identifiers. Resources (i.e., agents) make their services available by sharing tickets
with other agents. Agents in Mozart are allowed to dynamically add tickets as they
are needed, providing flexibility to the application writer.

Mozart’s transparent access to remote resources make it ideal for software
projects that wish to provide a unified abstraction of distributed devices. There are,
however, no abstractions provided for artificial life agents. As a general-purpose
toolkit, it has the flexibility to support such agents, but implementation would have
to begin largely from scratch.

Open Agent Architecture: The Open Agent Architecture (OAA) (Martin,
Cheyer, & Moran, 1999) system provides mechanisms for distributed integration of
heterogeneous applications. These mechanisms include facilitators, application
agents, meta-agents, and user interface agents. Facilitators are the primary
mechanism for allowing agents to cooperate. They coordinate communication

and provide global memory for agents. Complex systems are allowed to utilize
more than one facilitator. Application agents are service providers that may be
specifically written for OAA or legacy applications encapsulated by wrappers.
Meta-agents are domain-specific assistors for the facilitator. A meta-agent may
make use of knowledge of the application to provide services difficult or
impossible for the facilitator to provide. Finally, user interface agents provide
humans access to the system. When an agent connects to the system, it notifies the
facilitator and provides a list of the services it is willing to provide. The facilitator
can then process requests from other agents and direct them to the new agent when
appropriate.

OAA’s ability to integrate preexisting heterogeneous applications into the
agent framework makes it every flexible, even compared to other general agent
toolkits. However, it is exactly this flexibility that makes it a less than ideal
platform for instructional purposes — without substantial prior programming
and setup of the computational infrastructure (including simulation environments)
OAA is not suitable for educational projects.

Agent-based modeling toolkits

Different from general agent toolkits, agent-based modeling toolkits are developed
with being suitable for agent-based models in mind. Here, agents typically perform
as members of a population, thus providing a more traditional view of agents and
allowing users to create simulation environments for examining the behavior of
their agents. Typically, users can specify the details of the environment and agents
without having to attend to the details of running the simulation. The framework
manages updating the environment and agents and keeping track of relevant
information over time. This allows experimenters to quickly begin observation and
avoids duplication of effort.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Swarm: The Swarm toolkit (Minar, Burkhart, Langton, & Askenazi, 1996) was
designed as a platform for studying complex systems, including artificial life
simulations and simulated economies. In Swarm, agents are instantiated objects
(i.e., code and data) whose member functions define the agents’ actions. Groups of
agents are collected in swarms, which, in turn, can function as agents. So, for
example, Swarm can be used to model hierarchical systems in which an ecology is
represented by a swarm of organisms, which in turn are represented as a swarm of
organs, which in turn are represented by organelle objects. Users define a scheduler
for each swarm that defines what events occur during the function of the swarm.
Swarm provides measurement tools to observe agents’ activities during a
simulation. Swarm is a very powerful, yet flexible system onto which artificial

life projects map very well. Resources and costs are determined by the user as part
of the swarm definition. The object oriented programming model is easy to
understand and extend, and useful measurement tools are provided.

While Swarm’s generality is a major advantage for using it as an
instructional tool, it requires a fair amount of time to become familiar enough with
the environment to implement models, which might limit its use for less advanced
students.

Hive: Hive (Minar, Gray, Roup, Krikorian, & Maes, 1999) is a toolkit that allows
users to construct applications out of multiple networked agents. Cells, shadows,
and agents make up the Hive architecture. Cells function as hosts for shadows and
agents on the network. Communication is accomplished via cells, and manage
requests for local resources. Local resources are encapsulated by shadows. They
provide interfaces to hardware resources that can be invoked by agents. Unlike
shadows, agents are mobile—they can move from cell to cell, using shadows local
to those cells and moving on when a needed resource is not available locally.
Agents communicate with one another to accomplish complex tasks in a network
of cells.

Hive’s focus is on providing simple connectivity between distributed
agents in smart devices. Resources on remote devices are made available via a
powerful set of abstractions. However, as a teaching platform for simulating
biological agents, Hive is not a good choice given that any agent-based
simulation model will basically have to be developed from scratch.

RePast: The RePast toolkit (Collier, 2003) provides an discrete-event simulation
framework, borrowing many concepts from the Swarm toolkit. Different from
Swarm, RePast has been implemented in several programming languages and
environments and provides mechanisms for evolutionary computation. RePast is
object-oriented and uses a fully concurrent discrete event scheduler, which
supports both sequential and parallel discrete event operations. RePast also
provides several mechanisms for recording and displaying simulation data,
including various pre-defined 2D agent environments, which users can build on
and easily modify (interfaces exist to many different programming languages like

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

C, C#, Java, Python, and others). Notably, RePast also includes tools for social
modeling and has integrated support for geographical information systems (GIS).

While RePast is primarily a research platform, it has been used for
educational purposes as well. The support of different programming languages and
computing platforms together with the availability of models and its extensive
documentation will in many cases make up for the time required to learn the basics
of the toolkit.

Netlogo: NetLogo (Tisue &Wilensky, 2004) is an agent-based modeling
environment intended for the simulation of biological and social phenomena.
Agent behaviors can be programmed in a variant of the Logo programming
language, which was originally designed as a graphical programming language for
students with little to no programming experience. As such, Netlogo provides an
easy-to-use graphical interface that allows user to interact with simulations (e.g., to
inspect agents, or determine the behavior of an agent collective as it unfolds over
time). A unique feature particularly well-suited for the classroom is the included
HubNet tool, which allows students to control agents in a given simulation via
hand-held devices.

Netlogo is a very versatile, easy-to-use modeling tool that, different from
most other tools, has been targeted at educational settings, including undergraduate
and K12 settings (even though it has been been used for modeling research as
well). Moreover, due to its implementation in JAVA, it can run on different
computational platforms and models can be easily turned into web applets that can
then be put on web pages for demonstration purposes.

Artificial life toolkits

Similar to agent-based modeling toolkits, artificial life systems are more
specialized than general agent toolkits, also providing frameworks specifically
designed to allow experimentation with agent-based models. Different from agent-
based modeling toolkits, Alife toolkits often focus on evolutionary, biological
processes and thus typically provide additional built-in mechanisms for their
support, sometimes at the expense of being applicable to other agent-based
modeling domains.

Tierra: Tierra (Ray, 1994) system is an early example of an artificial life
environment. In Tierra, the organisms are programs whose sole purpose is to
reproduce. The system time-slices between them, and the processor represents the
only resource in the system. Tierra introduces mutations during reproduction,
allowing the genetic information (i.e., the program) to evolve over time. Some
mutations lead to program errors; when a program commits an error, it moves up
on the “reaper queue,” an ordering of processes scheduled to die. Other mutations,
however, allow the program to reproduce more efficiently, either by making their
instruction count smaller (thus allowing them to reproduce more often per time
slice) or by stealing resources (i.e., processor time) from other processes.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Tierra is an intriguing study of emergent behavior, especially when one
realizes that Ray wrote only one simple agent for it that mutated into a large
number of viable organisms. Tierra’s limited scope, however, limits its
applicability as instructional tool. Multiple-resource problems cannot be modeled
using Tierra, and the programming language used to create organisms (a simple
assembly language designed to be easily mutated) would be difficult to program to
use for other architectures.

Avida: Avida (Adami & Brown, 1994) is similar to Tierra. Agents are strings of
program instructions, and processor time is the only resource. Unlike Tierra, which
places agents in a flat “soup” of memory, Avida uses a grid structure to impose
locality effects on agents. Thus, for example, when agents reproduce, the offspring
are placed in an adjacent cell (in Tierra, they could be assigned memory from
anywhere in the soup). Avida also adds an element of user interaction: agents can
be rewarded (with additional processor time) for evolving user-specified tasks,
such as addition.

Avida’s reward mechanism allows it to evolve complex programs that
perform tasks specified by the user; this means that, in principle, Avida could be
used to solve pragmatic problems. However, it also inherits many of Tierra’s
limitations.

Evo: The Evo (Krumpus, 2001) framework is designed specifically to allow
researchers to experiment with evolution in artificial agents. Based on the Swarm
toolkit (described above), Evo adds mechanisms for genetic inheritance, agent
traits, and agent behavior. Agent traits are the unit of inheritance, and are
represented as floating point values. Users are allowed to specify whether a trait
is observable. Thus, a trait such as size could be observable by other agents and
could effect their behaviors. Agent behaviors are composed of instructions, senses,
and observations. Instructions are simple acts, such as “eat.” Senses allow agents to
determine characteristics of their surroundings, such as temperature. Observations
are traits of agents, as described above. The user specifies which instructions,
senses, and observations can be parts of behaviors. After that, the Evo system
randomly creates behaviors for the initial agents, and these are passed on during
reproduction. During reproduction, the traits of each parent are combined using a
crossover function that creates a new list of traits and a new list of behaviors for
the offspring. Mutation is also provided, and can operate on either traits or
behaviors. The rate of mutation is user-specifiable.

Evo is a sophisticated platform and a useful tool for exploring
evolutionary processes.

Xraptor: XRaptor (M ossinger, Polani, Spalt, & Uthmann, 1997) is a simulation
environment developed to allow experimentation with agent control systems. The
system provides an environment in which agents (flies and bats) forage for
resources (fruit and flies, respectively). The body mechanisms for both agent types

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

are provided, along with an interface to the control system. Users create control
systems, which are placed into bodies by the simulator during experimental runs.
Xraptor provides users with the flexibility of conducting experiments in either two-
dimensional or three-dimensional space.

XRaptor is a useful tool for students as it has been designed with focus on
education, providing a platform upon which students’ control systems can
compete. Moreover, new body types can be introduced for more varied
experiments.

Echo: Simulation of ecological systems is the primary focus of Echo (Forrest &
Jones, 1994). An Echo run consists of a world subdivided into a fixed number of
sites. Each site may contain several agents, as well as several resources. Agents
have a genome that determines which resources they can gather, as well as their
observable characteristics and internal traits. Agents may interact by trading
resources, mating, or fighting, depending on the two genotypes involved. Sexual
reproduction is supported, and uses a two-point crossover mechanism. Mutation
can alter the genotype at any locus, including toggling resource genes and altering
the strength of genes controlling external characteristics and internal traits.

Echo provides an environment in which to explore the potential for
complex patterns of resource exchange to emerge. Its evolutionary mechanisms
allow it to start with simple agents and observe as they evolve into cooperative (or
combative) agents. However, the genotype is limited, making it difficult to create
more sophisticated control systems. An interesting feature of Echo is the ability
to associate a “tax rate” with a site, essentially making some places more expensive
to occupy than others. A mechanism like this would be useful for exploring the
effects of movement in more difficult terrain. As with several other above
described modeling systems, Echo will have limited use in education beyond
ecological models.

Gecko: The Gecko (Booth, 1997) simulator is loosely based on Echo, described
above. It simulates a world composed of a number of sites, which contain agents
and resources. Unlike Echo, however, which treats agents essentially as points,
Gecko models agents with extent, making space an important component in agent
interactions. Agents are represented as spheres projected onto sites, and many of
their functions are influenced by their size. The sphere represents the area of
influence of the agent, rather than the physical size. In Gecko, interactions are
between agents whose spheres intersect. The size of the sphere is related to the
biomass of the agent. Thus, resource uptake is regulated by the size of the agent,
and the tax assessed is a function of the rate associated with the site multiplied by
the size of the agent.

Gecko is designed to allow experimenters to test hypotheses about the
interactions of individuals within an ecosystem. It has been used to simulate
ecosystems with insects and spiders (Booth, 1997) and colonies of bacteria (Kreft,

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Booth, & Wimpenny, 1998). Its treatment of spatial extension is an improvement
on Echo for observing interactions. Gecko, however, eliminates the evolutionary
mechanisms provided with Echo; it is intended as a simulator of existing static
populations, rather than evolving populations. Otherwise, it has the same
limitations as Echo apply for instruction.

Geb: Control system evolution is the target of the Geb (Channon & Damper,
1998a, 1998b) environment. Geb is a two-dimensional world in which agents may
reproduce, fight or move (including changing orientation to the left or right).
Reproduction is accomplished using a one-off crossover mechanism (i.e., the
crossover point in the second parent is always one off from the crossover point

in the first, leading to variation in genotype size) and random mutation. The
environment does not provide (nor require) resources. Fighting is the only cost
implemented in Geb; losing a fight is fatal.

Geb provides a nice platform for experimenting with open-ended
evolution of neural network control systems. The environment does not impose any
artificial constraints on fitness, allowing natural selection to take its own course.
However, the lack of any resource or cost structure beyond the fight mechanism
makes the results of a Geb simulation difficult to relate to the real world, and
thus limits its utility for instruction.

Sims’ 3D Agents: Sims (1994) created a contest environment in which artificial
three-dimensional agents compete for control of a shared resource. The
environment is an arena, and the resource is a block. Agents fight for control of the
block, where ’control’ is defined in terms of proximity and contact. Thus, the agent
closest to and in greatest contact with the block wins (roughly speaking). The
agents are three dimensional compositions of blocks, attached by various joint
types (e.g., twist, universal, rigid). Movement is accomplished by actuating joints.
Agents are selected for reproduction based on their performance in contests; agents
that perform well will have more offspring in the next generation. Random
mutation of the genotype ensures an evolving population.

One key feature of Sims’ environment is that it is physics-based, hence it
is useful for any model where physical forces and realism are critical, but it is
inappropriate for any other kind of non-physical model.

Tileworld: One problem facing agents that plan is the fact that the world can
change in mid-plan. Tileworld (Pollack & Ringuette, 1990) provides an
environment that models the dynamic nature of realistic environments to explore
the performance of various reasoning strategies. In Tileworld, agents are given
points for filling in holes with tiles that can be pushed around. Agents must
navigate an environment populated by obstacles that prevent tile movement and
other agents that are also trying to fill in holes. Furthermore, the environment is
unpredictable: new obstacles, tiles, and even holes can be generated at random
intervals.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Tileworld’s unpredictability makes the environment appropriate for
examining how different planning mechanisms perform. Agents must decide
between making fast decisions that lead to suboptimal solutions and prolonged
plans that may not map onto the world by the time they are implemented.
However, Tileworld is of limited use outside the planning domain.

Fishes: The artificial fishes developed by Terzopoulos, Tu, and Grzeszczuk
(1994) model the behavior of several species of fishes. Their design is based on
ethological studies, making them fairly accurate emulations of their targets. The
simulation is three-dimensional, and the physics of swimming are modeled as part
of the simulation. Fishes are modeled down to the level of muscles and fins, and
they are able to learn how to swim based on trial and error via feedback from the
environment. They also learn higher-level behaviors, such as predation, schooling,
and collision avoidance.

The physical simulation implemented for the fishes makes this project
very interesting. Each fish must learn how to use the tools it is given (i.e., muscles
and fins) to move around in the environment, subject to realistic biomechanic and
hydrodynamic principles. The range of application is thus restricted to models of
fish and their behaviors.

Not Fishes: Zaera, Cliff, and Bruten (1996) created a simulation in which they
attempted to evolve schooling behavior in artificial fish. Their simulation does not
include the detailed reproduction of reality achieved by Terzopoulos et al., but
instead focuses on mechanisms for evolving the neural net that control the agents’
behaviors. Reproduction occurs using both crossover and mutation to produce new
genotypes. Groups of clones are simulated in a three-dimensional environment and
monitored for emergent behaviors. The group succeeded in producing dispersal
and aggregation behaviors, but failed to evolve schooling behavior.

This simulation provides a mechanism for evolving control structures that
was able to produce simple group behaviors. As with Fishes, the range of
application in instructional settings is very limited.

PolyWorld: PolyWorld (Yaeger, 1994) is an ecological simulator that implements
agents using biologically inspired parameters (e.g., genetics, metabolism,
physiology). It is intended as a platform for studying biological problems such as
evolution and ethology. The evolutionary system includes a detailed genetic
description of the agents, with mutation and crossover applied at reproduction.
Physiology and metabolism are modeled in great detail, with different
characteristics and activities constraining resource capacity and use. Agents control
their actions using a neural network “brain” that has learning capability.

The mechanisms of physiology and metabolism implemented in
PolyWorld are a great step in the direction of a more realistic simulation of agents
and make Polyworld an interesting tool for modeling complex systems, yet also
restrict it to biological models.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Gaia: The Gaia project (Gracias, Pereira, Lima, & Rosa, 1997) is a two-
dimensional simulation that applies four principles to creating a realistic
environment: physical laws (e.g., for energy use), biological laws (e.g., for agent
interactions), a nervous system (i.e., a neural network control system), and genetic
inheritance and evolution. Multiple agent types compete in an environment
containing a single resource, food (in the form of plants and dead agents). Gaia
uses genetic mutation and crossover to produce variation in the population. Gaia’s
metabolic mechanism is of interest: costs are assessed based on movement and
thought. The physical laws determine the cost of movement, and the cost of
thinking is based on the size of the neural network control system. Other costs are
assessed based on agent actions (e.g., fighting and collisions).

Gaia is a good environment for the study of costs involved in ecological
models.

Discussion

The above toolkits all have their different individual strengths and weaknesses,
which make them to varying degrees suitable as instructional tools. As a rule of
thumb, general agent toolkits are the least useful and appropriate for educational
settings due to their generality and flexibility, which otherwise is a virtue — the
effort involved in setting up simulation environments with some basic agents will
likely outweigh the benefits of using them in most educational settings.

Agent-based modeling and Alife toolkits, on the other hand, already
provide a basic simulation infrastructure and allow users to focus on configuring it
according to their needs (this includes adapting the environment, setting up specific
agents, etc.). On the flip-side, pre-programmed environments can also limit users
in the way they can design simulations and specify agents, which is often limited to
the underlying programming language of a toolkit (e.g., C in Tierra (Ray, 2001),
C++ in Avida (Ofria & Wilke, 2004), and Java in Hive (Minar et al., 1999)). Some
require agent definitions in an interpreted meta-language (e.g., as in Mozart (Peter
Van Roy, 1999)). SimWorld provides many different ways of defining agents
(from any of the languages supported by Poplog, to external function calls via
libraries or sockets). Moreover, most agent-based modeling and Alife toolkits
come with built-in components for the simulation environments (e.g., simulation
and graphics engines, statistics packages, etc.), which, different from SimWorld ,
can typically not be replaced.

While many toolkits provide mechanisms for recording data and filters for
exporting the recorded data (e.g., Swarm, Hive, Repast), they do not reach the
flexibility of SWAGES where any simulation variable defined in SimWorld (all
slots of agents, global SimWorld variables, etc.) and all of the underlying Poplog
and OS variables (e.g., memory consumption or system time) can be recorded in
multiple ways, possibly performing operations on the data before recording it (e.g.,
as part of the recording process by virtue of dynamically compiled Pop11 functions
specified as part of the experiment start parameters). More importantly, other
environments do not provide easy mechanisms for defining, scheduling, and

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

running large-scale experiment sets, with mechanisms for fault-detection and
automatic recovery from errors, statistical analysis and data visualization, and
export filters for various open source software tools (all of which is supported in
SWAGES).

Finally, none of the above discussed toolkits supports the automatic
parallelization of agent-based simulations and dynamical distribution of
simulations over a set of heterogeneous, dynamically changing hosts like
SimWorld , even though this features will likely only be of importance in
larger projects where students need to run several simulations in batch mode.
Aside from the SimWorld /SWAGES environments, we believe that RePast and
NetLogo are the best candidates among the above described toolkits for
educational settings. Both toolkits provide a versatile, mature infrastructure that
can be quickly used by students and teachers alike without requiring much or any
prior experience (Netlogo more so than RePast), and both have already been used
extensively in educational settings.

Conclusion
In this chapter, we proposed agent-based artificial life simulations as tools for
students to discover and develop agent-based models. We presented a brief
overview of our agent-based SimWorld simulation. SimWorld allows users to
specify agent models in multiple programming languages (e.g., Pop11, Lisp, C,
Java) and provides a standard plug-in interface to link in external physics engines
and graphical visualization tools. Together with its SWAGES experimentation
environment, SimWorld provides a flexible, integrated platform for systematic,
large-scale agent-based Alife simulation experiments and support for automatic
parallelization of simulation models.

SimWorld and SWAGES have been successfully employed over the last
six years both in research and educational projects. Specifically, they have been
used repeatedly in our previous CSE 471/571 “Artificial Intelligence” course and
in several independent student research projects. We have described one such
project here that investigated two different female mate choice strategies in
treefrogs and demonstrated how students can go through a sequence of four steps,
starting with model development, model observation and refinement, large-scale
experimentation, and data analysis that closely mimics the research cycle in
computational modeling. The application of SimWorld in instructional
settings, however, is not limited to the four-step cycle, but also encompasses
classroom demonstrations and various kinds of exercises based on a subset of the
four steps. Hence, we intend this chapter to be only an illustration of one of many
possible ways, in which agent-based simulation environments can be employed in
instructional settings, and thus invite instructors and students alike to explore the
utility of agent-based simulations in their fields.

Finally, we would like to point out that both SimWorld and SWAGES
are freely available (for noncommercial purposes) at http://hrilab.cogs.indiana.edu
and encourage the reader to try them out.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

http://hriloab.cogs.indiana.edu/

Acknowledgements
The author would like to thank his colleague Sunny Boyd for introducing him to
the fascinating subject of female choice and frog phonotactic behavior, Jayme
O’Hara, the high school senior using SimWorld in her student project on female
choice, for providing valuable feedback about SimWorld, and Paul Schermerhorn
for providing some of the summaries for related modeling toolkits.

References
Adami, C., & Brown, C. T. (1994). Evolutionary learning in the 2D artificial life
system avida. In R. Brooks & P. Maes (Eds.), Proc. artificial life IV (p. 377-381).
MIT Press.
Anderson, J. J. (2002). An agent-based event driven foraging model. Natural
Resource Modeling,15 (1), 55-82.
Andrews, S. S., & Bray, D. (2004). Stochastic simulation of chemical reactions
with spatial resolution and single molecule detail. Physical Biology, 1 (137-151).
Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of Science , 99 ,
7280-7287.
Booth, G. (1997). Gecko: A continuous 2-d world for ecological modeling. 3 (3),
147-163.
Channon, A. D., & Damper, R. 1. (1998a). Evolving novel behaviors via natural
selection. In Proceedings of Artificial Life VI (pp. 384-388).
Channon, A. D., & Damper, R. I. (1998b). Perpetuating evolutionary emergence.
In Proceedings of SAB 98.
Collier, N. (2003). RePast: An extensible framework for agent simulation.
http://www.econ.iastate.edu/tesfatsi/RepastTutorial. Collier.pdf.
Conte, R. (2002). Agent-based modeling for understanding social intelligence.
Proceedings of the National Academy of Science, 99 , 7189-7190.
Forrest, S., & Jones, T. (1994). Modeling complex adaptive systems with echo. In
R.J. Stonier & X. H. Yu (Eds.), Complex systems: Mechanisms of adaptation (pp.
3-21). IOS Press.
Gao, Y., Madey, G., & Freeh, V. (2005). Modeling and simulation of the open
source software community. In Spring simulation multiconference: Agent-directed
simulation. San Diego.
Gerhardt, H. C. (1991). Female mate choice in treefrogs - static and dynamic
acoustic criteria. Animal Behaviour , 42 , 615-635.
Gibson, R. M., & Langen, T. A. (1996). How do animals choose their mates?
Trends in Ecology and Evolution , 11 (11), 468-470.
Gracias, N., Pereira, H., Lima, J. A., & Rosa, A. (1997). Gaia: An artificial life
environment for ecological systems simulation. In Proc. artificial life v.
Greenfield, M. D., & Rand, A. S. (2000). Frogs have rules: Selective attention
algorithms regulate chorusing in physalaemus pustulosus (Ieptodactylidae).
Ethology , 106 (4), 331-347.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Grimm, V. (1999). Ten years of individual-based modelling in ecology: what have
we learned and what could we learn in the future? Ecological Modelling, 115 (2-3),
129-148.

Janetos, A. C. (1980). Strategies of female mate choice - a theoretical-analysis.
Behavioral Ecology and Sociobiology, 7 (2), 107-112.

Jennions, M. D., & Petrie, M. (1997). Variation in mate choice and mating
preferences: A review of causes and consequences. Biological Reviews of the
Cambridge Philosophical Society, 72 (2), 283-327.

Kreft, J.-U., Booth, G., & Wimpenny, J. W. T. (1998). BacSim: A simulator for
individual-based modelling of bacterial colony growth. 144 , 3275-3287.
Krumpus, M. A. (2001). Overview of the Evo artificial life framework.
http://omicrongroup.org/evo/overview/html/overview.html.

Le Novre, N., & Shimizu, T. S. (2001). Stochsim: modelling of stochastic
biomolecular processes. Bioinformatics, 17, 575-576.

Martin, D., Cheyer, A., & Moran, D. (1999). The Open Agent Architecture: a
framework for building distributed software systems. Applied Artificial
Intelligence, 13 (1/2), 91-128.

Minar, N., Burkhart, R., Langton, C., & Askenazi, M. (1996). The Swarm
simulation system, a toolkit for building multi-agent simulations.
http://www.santafe.edu/projects/swarm/overview/overview.html.

Minar, N., Gray, M., Roup, O., Krikorian, R., & Maes, P. (1999). Hive: Distributed
agents for networking things. In First international symposium on agent systems
and applications (ASA’99)/third international symposium on mobile agents
(MA’99). Palm Springs, CA, USA.

M- ossinger, P., Polani, D., Spalt, R., & Uthmann, T. (1997). A virtual testbed for
analysis and design of sensorimotoric aspects of agent control. Simulation Practice
and Theory , 5 (7-8), 671-687.

Ofria, C., & Wilke, C. (2004). Avida: A software platform for research in
computational evolutionary biology. Journal of Artificial Life , 10 (2), 191-229.
Peter Van Roy, S. H. (1999). Mozart: A programming system for agent
applications. In International workshop on distributed and Internet programming
with logic and constraint languages.

Pollack, M., & Ringuette, M. (1990). Introducing the tileworld: experimentally
evaluating agent architectures. In Proceedings of the eighth national conference on
artificial intelligence.

Railsback, S. F., Harvey, B. C., Lamberson, R. H., Lee, D. E., Claasen, N. J., &
Yoshihara, S. (2002). Population-level analysis and validation of an individual-
based cutthroat trout model. Natural Resource Modeling, 15 (1), 83-110.

Ray, T. (2001). Overview of tierra at atr. In Techn. inf. 15, technologies for
software evolutionary systems.

Ray, T. S. (1994). An evolutionary approach to synthetic biology: Zen and the art
of creating life. In Artificial life (Vol. 1, pp. 195-226). MIT Press.

Russ, S. (1997). Empirical modelling: the computer as a modelling medium. The
Computer Bulletin, 39 (2), 20-22.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Ryan, M. J., & Keddyhector, A. (1992). Directional patterns of female mate choice
and the role of sensory biases. American Naturalist, 139, S4-S35.

Schermerhorn, P., & Scheutz, M. (2003). Implicit cooperation in conflict resolution
for simple agents. In Agent 2003.

Schermerhorn, P., & Scheutz, M. (2005). The effect of environmental structure on
the utility of communication in hive-based swarms. In Ieee swarm intelligence
symposium 2005.

Scheutz, M., & Boyd, S. (in preparation). Female choice revisited: Agent-based
models of phonotaxis in female treefrogs.

Scheutz, M., Madey, G., & Boyd, S. (2005). tMANS-the multi-scale agent-based
networked simulation for the study of multi-scale, multi-level biological and social
phenomena. In Proceedings of spring simulation multiconference (smc 05), agent-
directed simulation symposium.

Scheutz, M., & Schermerhorn, P. (2002). Steps towards a theory of possible
trajectories from reactive to deliberative control systems. In R. Standish (Ed.),
Proceedings of the 8th conference of artificial life. MIT Press.

Scheutz, M., & Schermerhorn, P. (2004). The more radical, the better:
Investigating the utility of aggression in the competition among different agent
kinds. In Proceedings of SAB 2004. MIT Press.

Scheutz, M., & Schermerhorn, P. (2005). Predicting population dynamics and
evolutionary trajectories based on performance evaluations in alife simulations. In
Proceedings of GECCO 2005.

Scheutz, M., & Schermerhorn, P. (2006). Adaptive algorithms for the dynamic
distribution and parallel execution of agent-based models. Journal of Parallel and
Distributed Computing, 66 (8), 1037-1051.

Scheutz, M., Schermerhorn, P., & Bauer, P. (2005). The utility of heterogeneous
swarms of simple UAVs with limited sensory capacity in detection and tracking
tasks. In IEEE Swarm Intelligence Symposium 2005.

Scheutz, M., Schermerhorn, P., Connaughton, R., & Dingler, A. (2006). Swages -
an extendable distributed experimentation system for large-scale agent-based alife
simulations. In Proceedings of Artifical Life X.

Schoenharl, T., & Madey, G. (2004). The agent based modeling approach to
simulating neural networks (Tech. Rep.). Working Paper, University of Notre
Dame.

Schwartz, J. J., Buchanan, B.W., & Gerhardt, H. C. (2001). Female mate choice in
the gray treefrog (hyla versicolor) in three experimental environments. Behavioral
Ecology and Sociobiology, 49 (6), 443-455.

Schwartz, J. J., Huth, K., & Hutchin, T. (2004). How long do females really listen?
assessment time for female mate choice in the grey treefrog, hyla versicolor.
Animal Behaviour, 68, 533-540.

Sims, K. (1994). Evolving 3d morphology and behavior by competition. In Proc.
artificial life IV.

Sloman, A. (1999). Sim agent help file.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

Terzopoulos, D., Tu, X., & Grzeszczuk, R. (1994). Artificial fishes: Autonomous
locomotion, perception, behavior, and learning in a simulated physical world. 1 (4),
327-351.

Tisue, S., & Wilensky, U. (2004). Netlogo: A simple environment for modeling
complexity. In International conference on complex systems. Boston.

Valone, T. J., Nordell, S. E., Giraldeau, L. A., & Templeton, J. J. (1996). The
empirical question of thresholds and mechanisms of mate choice. Evolutionary
Ecology , 10 (4), 447-455.

Van Roy, P., & Haridi, S. (1999). Mozart: A programming system for agent
applications. In International workshop on distributed and Internet programming
with logic and constraint languages.

Yaeger, L. (1994). Computational genetics, physiology, metabolism, neural
systems, learning, vision, and behavior or polyworld: Life in a new context. In
Proceedings of Artificial Life III.

Zaera, N., Cliff, D., & Bruten, J. (1996). (Not) evolving collective behaviours in
synthetic fish. In Proceedings of SAB 1996.

A.N. Other, B.N. Other (eds.), Title of Book, 00-00.
© 2005 Sense Publishers. All rights reserved.

	Introduction
	The SimWorld environment
	Interfacing external components
	Parallelization of SimWorld

	Using SimWorld to discover and develop agent-based models
	Biological background: female choice in treefrogs
	Step 1: Developing an agent model
	Step 2: Running the model in GUI mode.
	Step 3: Defining and running batch experiments
	Step 4: Analyzing the resultant data
	Discussion

	Related Work
	General agent toolkits
	Agent-based modeling toolkits
	Artificial life toolkits
	Discussion

	Conclusion
	Acknowledgements
	References

