
Integrating Theory and Practice: The Agent Architecture Framework APOC
and its Development Environment ADE

Virgil Andronache Matthias Scheutz
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
e-mail: {vandrona,mscheutz}@cse.nd.edu

Abstract

In this paper we present the results of the combined de-
velopment of APOC and ADE, an architecture framework
for the analysis, comparison, and design of agent archi-
tectures and a distributed agent development environment
which implements APOC principles, respectively. We show
how the APOC framework relates to other architectures
and design methodologies and demonstrate how other ar-
chitectures and architectural components can be combined
in a single architecture through APOC. Next we describe
the ADE development environment and highlight the imple-
mentation of APOC principles. We show how ADE gives
users the freedom to seamlessly switch between single and
multiple computer environments, serial and parallel execu-
tion, and robotic and virtual agents. Finally, we illustrate
the features of ADE through a robotic agent example.

1. Introduction

The landscape of agent systems contains a variety of
toolkits and systems for the design of both distributed
multi-agent (e.g., JADE [5], RETSINA [20], AGENTBASE
[1], ZEUS [15], Mozart [21]) and single-agent sys-
tems (e.g, SimAgent [19], ARIA/Saphira/Colbert [10–12],
Player/Stage [7, 8]).

Multi-agent systems typically provide features such as
a distributed environment and communication protocols
agent designers. For example, JADE [5] provides a com-
munication language, a graphical user interface for control-
ling and monitoring agents, and a directory facilitator which
provides services needed to allow agents to contact one an-
other and communicate regardless of their locations in the
system.

Single-agent systems provide tools for architectural de-
sign of agents. For example, ARIA and Saphira [11], for in-
stance, provide system architecture capacities (a description
of the robot, including sensors and effectors) and a robot
control architecture (including predefined routines for such
tasks are gradient-based navigation and localization). Sim-
Agent [19], on the other hand, provides a set of libraries
with functionality for the design of “agents with complex
internal mechanisms.”

However, existing systems rarely interweave characteris-
tics of both single and multi-agent systems. Moreover, they
do not have as a foundation a theoretical framework which
will allow for the combination of components from differ-
ent architectures into a single system. As a result, poten-
tial symbiotic effects which emerge from the interaction of
components designed for different systems cannot be sys-
tematically explored.

In this context, we propose the ADE agent architecture
development environment. ADE provides a user-friendly
environment for the development of architectures for vir-
tual and robotic agents in single and multi-agent settings. It
is built according to the specifications of the APOC archi-
tecture framework [16,17] a general, universal agent frame-
work in which any agent architecture can be expressed and
defined. Like many multi-agent systems, ADE is a dis-
tributed environment. Founded on a general architecture
framework, the ADE development environment can run any
agent architecture, either by using an APOC translation of
that architecture or by embedding the entire architecture “as
is” into a single architectural component. Together these
two characteristics give ADE an automatic means of paral-
lelizing the computation in any architecture. We will illus-
trate potential uses of ADE through an example in which
components from two different types of architecture are
combined in a straightforward manner to create a new, hy-
brid system. The system achieves a goal which could not be
achieved independently by either single or multi-agent sys-



tems without the use of more complex components.
In the following, we first give an overview of the APOC

framework and illustrate the characteristics which lend flex-
ibility and robustness to ADE. Then we describe the user
interface and the supporting environment, highlighting the
implementation of APOC features in the development en-
vironment. Finally, an example of combining features from
two architectures within the APOC framework is illustrated
using a robotic application in ADE.

2. APOC

The idea of a unified theoretical framework for the im-
plementation, design, and analysis of complex agents is not
new. In this section we present the APOC framework and
relate it to existing work in agent architectures.

2.1. APOC Components and Links

APOC is an acronym for “Activating-Processing-
Observing-Components”, which summarizes the function-
ality on which the APOC agent architecture framework
is built: heterogeneous computational units called “compo-
nents” which can be connected via four link types (activa-
tion, observation, process control, and component) to define
an agent architecture. The components, links, and their in-
teractions are described in detail elsewhere [16, 17]. Below
we provide a brief description of their functionality.

In designing an architecture framework it was important
not to place any unnecessary restrictions on the structure of
the components which can be combined to form agent ar-
chitectures. Thus, APOC components are very general au-
tonomous control units that are capable of (1) updating their
own state, (2) influencing each other, and (3) controlling an
associated process. To this end, the state of a generic APOC
component was defined as consisting of: activation level,
priority level, associated process, instantiation number, up-
date function, inputs, and outputs.

Activation links (A-links) are the most general means
by which components can exchange information. An A-
link connects two APOC components and serves as a trans-
ducer. The information on the A-link can be transmitted
without change, or an operation can be performed on the
data as it passes through the link (e.g., numerical values
could be “scales” by a particular factor analogous to the
“weights” on connections in neural networks).

Priority links (P-link s) are an explicit means of allowing
components to control other components’ associated pro-
cesses. Two numeric pieces of data are passed through a
P-link: the priority level of the controlling component and
a signal (START, INTERRUPT, RESUME or NOOP). The con-
trolled component chooses from its incoming priority links
the signal associated with the highest incoming priority and,

if that priority is higher than its own, sends that signal to its
associated process.

Priorities and P-links can be used to implement many
types of control mechanisms, in particular, hierarchical
preemptive process control. In embodied agents, such as
robots, they could be used to implement emergency be-
haviors: the component with the associated emergency pro-
cess would have the highest priority in the network and
be connected to all the other components controlling the
agents behavior, which it could suppress (thus implement-
ing a “global alarm mechanism” as described by [18]).

Observer links (O-links) are intended to allow compo-
nents to observe other components’ inner states without af-
fecting them. They extract the data from the observed com-
ponent and send it to the observer. An example of O-link
use is allowing a vision control component observe the vi-
sual processing component for the features found in the cur-
rent image.

Component links (C-links) are used to instantiate and re-
move instances of APOC components at run-time (they are
the only type of component that can instantiate or termi-
nate an APOC component). They are also used to instan-
tiate the other link types between APOC components and
are themselves only instantiated by APOC components.

In the remainder of this section we show exemplify how
work in behavior-based architectures, cognitive architec-
tures, and general frameworks for architecture development
relates to the APOC framework. We present two examples
from each class and show how they relate to our framework.
For two architectures, the behavior-based Subsumption ar-
chitecture and the cognitive ACT-R architecture, we further-
more present direct translations into APOC.

2.2. Behavior-Based Architectures

2.2.1. Subsumption. The subsumption architecture [6] is
a layered system, in which individual layers work on indi-
vidual goals concurrently and asynchronously. Layers con-
sist of nodes, each node being the representation of a be-
havior. Each behavior is implemented as an augmented fi-
nite state machine (AFSM).

Subsumption architectures can be translated into the
APOC framework in a straightforward manner by defin-
ing their components, the augmented finite state ma-
chines(AFSM), as follows:

1. The state table is directly incorporated into the update
function of an APOC node.

2. Environmental/data inputs map onto A-links

3. Inhibitor connections, which block inputs to nodes,
use A-links and simple, specialized APOC nodes to
decide whether to pass on information or whether to
block it



4. Reset and suppressor connections, which substitute
values for node outputs, can be implemented via P-
links, coupled together with assigning nodes a prior-
ity proportional to the layer in which they are found.
Thus, nodes in higher levels can control the execution
of nodes lower in the layer hierarchy.

5. A-links are used for message passing.

2.2.2. GRL. [9]. GRL is a behavior-based architecture
which treats arbitration mechanisms as “higher-level func-
tions.” Thus, GRL allows for the combination of some arbi-
tration mechanisms in one architecture and moves closer to
a complete integration of architecture and arbitration mech-
anism. APOC completes the process by running the arbi-
tration mechanism in the form of specialized components
in the architecture.

2.3. Cognitive Architectures

2.3.1. ACT-R. For a description of ACT-R we chose the
recent description of version 5.0 by Anderson et.al. [3]. Its
description includes the brain regions which map unto each
functionality of the architecture. ACT-R uses interactions
between data (chunks) and condition action rules (produc-
tions) to simulate cognition. ACT-R uses two types of mem-
ories - declarative and production, and a goal stack. On each
update cycle, a single production is fired based solely on the
goal that is currently pursued. The architectural layout of
ACT-R is shown in Figure 1.

Execution (Thalamus)

Selection (Pallidum)

Matching (Striatum)

Intentional Module
(Temporal/Hippocampus)

Goal Buffer Retrieval Buffer

(not identified)
Declarative Module

(DLFPC) (VLPFC)

Visual Buffer Manual Buffer

(Motor/Cerebellum)
Visual Module
(Occipital/etc)

(Parietal) (Motor)

Manual Module

External World

Production
Module

Figure 1. The ACT-R architectural structure.

The main components of ACT-R are described below.

• A Perceptual − Motor System, which interacts with
the environment, receiving visual input and sending

commands to the effectors. Perceptual information el-
ements (chunks) are also created in this system.

• An Intentional Module, also known as a
Goal Module, which holds representations of in-
tentions and keeps track of them, so the behav-
iors serve the goal. Abstract and/or compound chunks
are created here.

• A Declarative (Memory) Module, which holds and re-
trieves records of chunks.

• A Procedural Module, which performs two main
functions: partial matching on the conditions to deter-
mine the rules which are eligible for execution, selec-
tion of one rule among those eligible for execution to
fire in the current cycle.

In the simplest translation, each of the above elements
can map to one APOC component. Chunks are also cre-
ated as APOC components, which, in the ADE environ-
ment leads to the creation of a distributed memory structure
among the participating computers on which the ACT-R ar-
chitecture is distributed. A distributed matching system can
then be implemented within an ACT-R architecture by cre-
ating a partial matcher on each machine. On each update
cycle, the partial matcher reports which objects on its host
match rule antecedents. The partial matches on each host
are reported to the partial matcher from the host on which
the rule resides, which then completes the matching pro-
cess.

Communication among various elements of the architec-
ture is made through a buffer associated with each element.
Each buffer contains one piece of data (a chunk) which is
accessible to the system at large. In APOC the buffer is
simply a field in each component and its value is commu-
nicated to other architectural elements through the use of
O-links.

The chunk retrieval process is activation based, with the
activation of a chunk given by Ai = Bi +∑ j W jS ji, where Bi
is the base level activation of the chunk, W j is the attentional
weighting of the elements that are part of the current goal,
and S ji are the strengths of association from the elements j
to chunk i. It should be noted that activation values map di-
rectly to the act element of APOC components . The base
level is given by Bi = ln(∑n

j=1 t j − d), where n is the num-
ber of times element i in memory has been accessed (prac-
ticed), t j is the time since the jth practice of item i and d
is a parameter estimated at 0.5. Retrieval time for chunks
is then given by Recognition time = I + Fe−Ai , with I and
F being experimentally determined time constants. The re-
trieval time of a chunk can be adjusted in APOC by vary-
ing the delay on the link going to the component represent-
ing that chunk.

2.3.2. SOAR. Unlike ACT-R, Soar [13] uses a single
memory to hold data and productions, with a working mem-



ory being the equivalent of the ACT-R goal stack. Soar al-
lows multiple rules to fire within the same cycle. A transla-
tion of Soar into APOC is also available [4].

2.4. Frameworks

2.4.1. RS. RS [14] proposed a model of computation
based on interaction among “concurrent computing agents”.
Agents in RS are instantiated schemas which are connected
through universal message passing links. APOC builds
upon RS by adding several capabilities, such as the op-
tion of performing the computation both synchronously and
asynchronously and the possibility of specifying a time de-
lay for each link.

2.4.2. RCS. RCS [2] is a design methodology which im-
poses no methodological constraints on the architecture de-
veloper. The universality of the RCS approach is a feature
also present in APOC. However, RCS being only a design
methodology, does not provide a structure within which
agent architectures can be developed. APOC provides a
definition of the components of an architecture (compu-
tational and communication elements), giving architecture
developers the basic building blocks for developing archi-
tectures, possibly designed according to the RCS method-
ology.

The generality of APOC illustrated by the above ex-
amples is inherited by its implementation in the ADE
development environment. ADE supports all the features
mentioned above in behavior-based architectures, cogni-
tive architectures, and system development frameworks.
Many other features are present in ADE either as a di-
rect result of its theoretical foundation, or by virtue of de-
sign/implementation decisions. We begin the description of
our approach to integrating theory and practice with a de-
scription of the APOC architecture framework. We present
the components and links of the framework and we show
how APOC can be used to express architectures in a uni-
fied way.

The two translations illustrate a straight-forward map-
ping between the structure of components in other architec-
tures and APOC components. Such translations are well-
suited for the development of APOC templates represent-
ing generic components of other architectures. Translations
of actual architectures into APOC are then reduced to a
“fill-in-the-blank” process. Libraries of components built in
various paradigms can thus be easily created by translating
components of working architectures to their APOC coun-
terparts. These libraries provide the opportunity of studying
the interplay among various architecture design methodolo-
gies by allowing components from different paradigms to be
used together. Several architectures have been implemented
where co-operative and competitive elements were success-

fully merged using ADE, the development environment de-
scribed in the next section.

3. ADE

In this section we will describe the functionality of the
Agent Development Environment. Features which are di-
rectly related to the APOC framework (e.g., implementa-
tion of components) will be identified and general features
(e.g., distributed computation) will be discussed. ADE will
be presented in two parts: the user interface, showing the
functionality available to the user, and the underlying sys-
tem, describing the set-up which forms the practical foun-
dation for the environment’s flexibility.

3.1. The ADE User Interface

The user interface of ADE is shown in Figure 2. The in-
terface is divided into two subspaces: an architecture view
and a virtual machine view. The architecture view describes
the relationship among components at the type level, i.e.,
what types (programs) can be present in the architecture,
which types can be connected through links and what types
of links can be part of those connections. The virtual ma-
chine view presents the instantiated version of the archi-
tecture: the instances of each type and the connections that
have been created. Components and links at the virtual ma-
chine level implement (with minor variations) the compo-
nents and links defined as part of the APOC framework.
We present the interface in three sections: general function-
ality, the functionality of the architecture view space, and
the functionality of the virtual machine space.

3.1.1. Architecture View In the architecture view, boxes
represent the types of components that can be present in
the run-time virtual machine (i.e., the instantiated archi-
tecture). Upon adding a type to an architecture, users are
prompted to specify a number of instances which are cre-
ated by default (possibly 0) and a maximum number of in-
stances which can be part of the architecture. ADE uses
a specialized class called APOCType to identify the types
of components which can be present in the running virtual
machine. A copy of this class is instantiated for each com-
ponent type. After instantiation, each copy keeps track of
the type it represents, the number of instances of that type
which exist in the running virtual machine and the max-
imum number of instances which can simultaneously be
present there. The Architecture space descriptions of vir-
tual machine components act as resource managers in the
system: they enforce the user-specified limits on the num-
ber of instances simultaneously present in the virtual ma-
chine and decide on what computer a new instance of that
type should be created (if ADE is run as a distributed plat-
form).



Links in ADE are created and configured through a link
creation tool. In architecture space, links between two types
indicate the potential of creating a link between instances
of those types. In the graphical interface, edges indicate (by
the direction of the arrow) the direction of the links in the
architecture. Link information can be obtained by clicking
on the arrow.

3.1.2. Virtual Machine View In the running virtual ma-
chine, boxes indicate actual computational components
present in the instantiated architecture. All components ex-
tend an APOCNode class, which provides them with: vari-
ables for activation level, priority level, and instantiation
number, an update function (modifiable by users), and vec-
tors for inputs and outputs. Since nodes in the APOC
framework do not necessarily have an associated process,
the APOCNode class does not provide a default associated
process.

Figure 2. The ADE interface: (a) top - the type-
level description and initial state of the run-
time virtual machine, (b) bottom - the final
state of the run-time virtual machine.

Edges represent instantiated APOC links. Multiple ar-
rows can be present along each edge, indicating each type of

instantiated link.ADE A-links are defined by a start node,
a destination node, a vector containing data being passed
through the link, an operator which is applied to the data,
and the time it takes for the data to advance one element
through the vector, referred to as the cycle time of the link.
The cycle time, together with the length of the vector de-
fine the link delay of the APOC A-link. Similar parallels
exist between each of the other three link types in APOC
and their ADE equivalents.

It can thus be seen that the ADE implementation of com-
ponents and links closely parallels their theoretical, APOC
counterparts.

Users can insert components directly into the running
virtual machine if the insertion operation does not violate
the architectural restriction on the number of components
which can be simultaneously present in the instantiated ar-
chitecture. If a violation is detected, the instantiation opera-
tion fails.

Links can also be inserted in the running virtual ma-
chines. If a link is not available in the description of the
architecture then the insertion operation fails.

3.2. The ADE Supporting Environment

The supporting environment provides the infrastructure
to distribute agent architectures and to operate virtual as
well as robotic agents. There are five servers in an ADE
system: registry, APOC, GUI, agent and utility. Each type
or ADE server will be briefly discussed below.

The Registry is a centralized resource manager for the sys-
tem. It keeps track of the available servers and the ser-
vices they provide. Therefore, each server which is part of
an ADE system contacts the registry in order to make its
services available to other system components. The initial
communication specifies several parameters, such as maxi-
mum number of client connections supported and names of
clients which are allowed to connect to the server. A client,
then, is an element of the system (a server or a separate pro-
gram such as an ADE computational component) which re-
quires the use of the facilities provided by a server (e.g.,
a robot motor control node requiring a connection to the
agent server in order to access the motors). A client requir-
ing the services of the server contacts the registry and re-
quests a connection. If a connection is possible, the registry
connects the client with the server and is no longer involved
in their transactions, thus avoiding the creation of a system-
wide bottleneck.

APOC servers are independent entities which serve as
hosts for components and links. Each APOC server has ca-
pabilities for creation and deletion of new components and
links. APOC servers control their locally instantiated com-
ponents and maintain connections to other APOC servers
as well as to all available GUI servers in the ADE system.



GUI servers are the interface of the ADE environment
(their functionality was described in Section 3.1). Each
GUI server maintains connections to all APOC servers in
the system in order to relay user commands (such as inser-
tion of a component) to APOC servers and to display new
components (created during the life-cycle of the architec-
ture).

Agent servers provide access to “bodies” of virtual or
robotic agents. In the case of robotic agents, this involves
establishing connections to the physical sensors and effec-
tors of the robot. For virtual agents, agent servers provide a
description of the body of the agent they represent and im-
plementations of its sensors and effectors.

Utility servers provide additional distributed services that
are not part of the agent architecture. They are used as an ad-
ditional tool to ease the incorporation of complex features
into ADE systems. Typically these servers implement com-
putationally expensive operations.

3.3. Dimensions of ADE Flexibility

In this section we exemplify the flexibility present in
the ADE environment by considering ADE. We show how
ADE can run as a single and multi-computer environment,
how it can function as a medium for serial and parallel ex-
ecution and how it can be used for the implementation of
virtual and robotic agents.

3.3.1. Single and Multiple Computer Environments.
The ADE system has facilities to run both as a single and
multi-computer system. Switching between the two modes
can be done easily through the GUI. In switching from a
multi-computer system to a single computer system, the
GUI shuts down APOC servers running on machines other
than the one on which the GUI is running. Switching from
a single-computer system to a distributed system simply re-
quires the GUI to go to through a normal start-up sequence
for the hosts users want added to the system.

3.3.2. Serial and Parallel Execution. ADE provides two
modes in which architectures can be run: a ”Synchronous”
mode and an ”Asynchronous” mode. In the “Synchronous”
mode, each node of the architecture updates once, then
waits for all other nodes to complete their computation be-
fore proceeding to the next computational cycle. In “Asyn-
chronous” mode, each node updates independently with an
execution thread associated with each node.

3.3.3. Robotic and Virtual Agents. Web-based agents
can be implemented in ADE using the JAVA URL class,
which allows the opening of web documents (see also Fig-
ure 2). “Embodied” virtual agents can also be developed
and tested by using an available simulator which is run as a

utility server in the system. Body descriptions in the simu-
lator can be configured to provide the same access methods
as those available on an actual robot.

Robotic agents can be developed by running
agent servers which provide access to the sensors and
effectors of the robot. The same control code can be ex-
ecuted on both the robotic and virtual agents, allowing
a seamless transition between the two realms and pro-
viding a simulated testing environment for robot control
code.

The robotic agent example provided in the next section
gives additional details on facilities provided by ADE.

3.4. ADE Example

In this section we present an example of combining two
architecture design mechanisms within a single agent while
re-using computational components. Some of the facilities
provided by ADE to agent developers in order to ease opti-
mization of their designs are also illustrated.

The robot was given a target localization task, in which
a target (i.e., “orange ball”) has to be located in an envi-
ronment with obstacles (e.g., an office space with boxes,
chairs, etc.). A typical situation encountered by the robot
during this task is shown in Figure 3.

Figure 3. Typical situation for the robotic
agent: the path towards its target is ob-
structed, although the target is still in sight.

In the situation of Figure 3, the opening between the two
obstacles is not wide enough for the robot to pass through.
Therefore, the robot needs to go around one of the obstacles
in order to reach its goal. As a result, the robot also needs to
be able to handle situations where it loses sight of the ball
for a certain period of time.



Supervisory Node

Competitive Arbiter Cooperative Decision Maker

Sonar Processor Vision ProcessorSonar Processor. . .

Motors

On/off signal On/off signal
Vision
Information

Directional vectorDirectional Vector

Motor Commands

Figure 4. ADE architecture for robotic exper-
iment: (a) top - schematic of the ADE archi-
tecture for the robotic experiment, (b) center
- virtual machine view with components and
links, (c) bottom - view with hidden links and
added labels.

The robot architecture used for the experiment is pre-
sented in Figure 4(b) (the run-time virtual machine side
of the toolkit is shown).1. A schematic of the architectural
components and their interactions is shown in Figure 4(a).

1 Transparent to the user, components in the virtual machine execute on
several hosts which were part of the ADE system. Thus, if ADE is run
in multi-computer mode, users do not have to make explicit arrange-
ments to distribute computation

Figure 5. (a) Control panel for dynamic color
range adjustment (top) and (b) control panel
for dynamic adjustment of PID controller pa-
rameters (bottom)

Information about the contents of the architecture can be
added to the GUI. Thus, Figure 4(c) shows the same archi-
tecture, with labels placed next to each component. It should
also be noted that in this image the links have been hidden
so that the labels can be properly read.

The Supervisor uses visual information from the
VisionSensor to determine if the robot is stuck in a sit-
uation where it is not making progress towards achiev-
ing its goal. In this experiment, the determination of
progress was made using the perceived size of the ball:
progress is not made if the maximum perceived size of
the ball does not increase over a preset period of time. If
such a determination is made, the Supervisor switches off
CooperativeDecision and turns on CompetitiveDecision.
Unlike CooperativeDecision, which combines all the di-
rectional information from the SonarProcessing nodes to
produce an overall directional vector, CompetitiveDecision
uses a competitive selection mechanism, discarding all but
the most relevant information for its task, in this case,
wall following. Upon regaining sight of the target, the
Supervisor shuts off CompetitiveDecision and reactivates
CooperativeDecision. Once the robot has reached the ball,



its task is complete.
The process of identifying and fine-tuning the colors

identified as potential ball matches was aided by the ease
of adding visual interfaces to ADE components.

Figure 5(a) shows the panel which was added to the vi-
sion server and which was used to configure the parame-
ters for blob detection. The panel displays three images: the
unmodified camera picture (top), the results of performing
blob detection on that image with the parameters set on the
sliders (middle), and the results of performing motion de-
tection on the original image.

Camera control was performed through the use of 2 PID
controllers - one for horizontal movement and one for verti-
cal movement. A similar calibration process was performed
on the parameters of each controller, using another graphi-
cal tool (Figure 5(b)), which allowed us to change parame-
ters as the architecture was running.

4. Conclusion

In this paper we have presented the universal architec-
ture framework APOC and its development environment,
ADE. We have illustrated the generality of the framework
with regard to behavior-based architectures, cognitive archi-
tectures, and other frameworks and we introduced the pos-
sibility of combining components from different architec-
tures to produce new and useful behaviors in agents.

Then we described the APOC development environ-
ment, ADE, and highlighted the relation between imple-
mentation and theoretical framework. Desirable features,
both derived from APOC properties (e.g., universality) and
design decisions (e.g., use as both a single-computer and
multi-computer environment) were presented, and a practi-
cal example of ADE functionality was given. Work is cur-
rently in progress on integrating the ACT-R cognitive archi-
tecture with a behavior-based system.

References

[1] Agentbase. http://www.sics.se/˜market/toolkit/.

[2] J. S. Albus. A reference model architecture for intelligent
systems design. In P. J. Antsaklis and K. M. Passino, edi-
tors, An Introduction to Intelligent and Autonomous Control,
pages 57–64, Boston, MA, 1992. Kluwer Academic Publish-
ers.

[3] J. R. Anderson, D. Bothell, B. M. D., and C. Lebiere. An in-
tegrated theory of the mind. To appear in Psychological Re-
view.

[4] V. Andronache and M. Scheutz. Ade - an architecture de-
velopment environment for virtual and robotic agents. To
appear in the International Journal of Artificial Intelligence
Tools.

[5] F. Bellifemine, A. Poggi, G. Rimassa, and P. Turci. An
object-oriented framework to realize agent systems. In Pro-
ceedings of WOA 2000 Workshop, pages 52–57, Parma, May
2000.

[6] R. A. Brooks. A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1):14–
23, 1986.

[7] B. G. et al. Most valuable player: A robot device server for
distributed control. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages
1226–1231, Wailea, Hawaii, October 2001.

[8] B. G. et al. The player/stage project: Tools for multi-robot
and distributed sensor systems. In Proceedings of the 11th
International Conference on Advanced Robotics, pages 317–
323, Coimbra, Portugal, June 2003.

[9] I. Horswill. Functional programming of behavior-based sys-
tems. Autonomous Robots, (9):83–93, 2000.

[10] K. Konolige. Colbert: A language for reactive control in
saphira. In Proceedings of the German Conference on Ar-
tificial Intelligence, pages 31–52, Freiburg, Germany, 1997.

[11] K. Konolige. Saphira robot control architecture. Technical
report, SRI International, Menlo Park, CA, April 2002.

[12] K. Konolige, K. L. Myers, E. H. Ruspini, and A. Saffiotti.
The Saphira architecture: A design for autonomy. Journal
of experimental & theoretical artificial intelligence: JETAI,
9(1):215–235, 1997.

[13] J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: An
architecture for general intelligence. Artificial Intelligence,
33:1–64, 1987.

[14] D. M. Lyons and M. A. Arbib. A formal model of com-
putation for sensory-based robotics. IEEE Transactions on
Robotics and Automation, 5(3):280–293, June 1989.

[15] H. Nwana, D. Ndumu, L. Lee, and J. Collins. Zeus: A collab-
orative agents toolkit. In Proceedings of the 2nd UK Work-
shop on Foundations of Multi-Agent Systems, pages 45–52,
1997.

[16] M. Scheutz and V. Andronache. APOC - a framework for
complex agents. In Proceedings of the AAAI Spring Sympo-
sium. AAAI Press, 2003.

[17] M. Scheutz and V. Andronache. Growing agents - an in-
vestigation of architectural mechanisms for the specification
of “developing” agent architectures. In R. Weber, editor,
Proceedings of the 16th International FLAIRS Conference.
AAAI Press, 2003.

[18] A. Sloman. Damasio, Descartes, alarms and meta-
management. In Proceedings International Conference on
Systems, Man, and Cybernetics (SMC98), San Diego, pages
2652–7. IEEE, 1998.

[19] A. Sloman and R. Poli. Sim agent: A toolkit for exploring
agent designs. In M. Wooldridge, J. Mueller, and M. Tambe,
editors, Intelligent Agents Vol II (ATAL-95), pages 392–407.
Springer-Verlag, 1996.

[20] K. Sycara et al. The retsina mas infrastructure. Autonomous
Agents and Multi-Agent Systems, 7(1):29–48, 2003.

[21] P. Van Roy and S. Haridi. Mozart: A programming sys-
tem for agent applications. In International Workshop on
Distributed and Internet Programming with Logic and Con-
straint Languages, 1999.


