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Abstract

Contentionscheduling(Cooper& Shallice2000) is a well-
known actionselectionmechanismin cognitive science. It
can accountfor normal action sequencingof daily routine
actions in humansas well as for various errors exhibited
by impaired humansubjects. In this paper, we examine
the potential of contentionschedulingas an action selec-
tion mechanismfor artificial agents,in particularrobots.We
first introducetheAPOCarchitectureframework in orderto
summarize–inan"architecture-neutral"specification–theba-
sic propertiesof the contentionschedulingmodel. Thenwe
analyzevariousaspectsof contentionschedulingthat may
causeproblemsin thecontext of thedesignof artificial agents
andsuggestmodificationsthatmaybeableto overcomethe
difficulties,concludingthatthecontentionschedulingmodel,
as it stands,is not yet an appriopriatecandidatefor action
selctionin artificial agents.

Intr oduction
Much work in the fields of autonomousagentsandrobots
hasfocussedontheproblemof how to selecttheright action
for anagentat theright time. This so-called“action selec-
tion problem”(Tyrrell 1993)hasbeenaddressedby different
researchersin variouscontexts,depending,for example,on
whetherthe investigationfocussedon naturalagents(e.g.,
(Lorenz1981))or artificial agents(e.g.,(Maes1989)).Var-
ious solutionshave beenproposedin the past,which can
bedistinguishedalongseveraldimensions,e.g.,whetherthe
action selectionmechanismis competitive or cooperative
(e.g., (Arkin 1998)),or whetherit is centralized or decen-
tralized (for anoverview of differentmechanisms,andapre-
liminary taxonomy, see(Pirjanian1999)).Furthermore,ex-
plicit action-selectionmechanismscouldbeincorporatedas
separatecomponentsinto an agentarchitecture,(e.g.,vot-
ing schemesasin DAMN (Rosenblatt1997)).Alternatively,
actionselectioncanbeachievedimplicitly by placingcon-
straintson thearrangement,connectivity andinteractionsof
partsof thearchitecture(e.g.,(Brooks1986)).

Not all of thesemechanisms,however, areequallywell-
suitedfor any task. While (motor) schemaand subsump-
tion styleaction-selectionhave provento work well for rel-
atively simple robotic agents,it is not clear, for example,
how they would generalizebeyond low-level motor con-
trol (e.g., to complex action sequencesthat may be real-
ized in a large numberof possiblephysicaltrajectoriesof

a manipulator). There are various attemptsin behavior-
basedroboticsto extendreactive architecturesandproduce
“hybrid systems”that integrateaction planninginto reac-
tive controlmechanismsto improveandgeneralizethesys-
tem's motorcontrol (e.g.,(Arkin & Ali 1994)). In particu-
lar, a three-layeredcompetitive model of action-selection,
the contention scheduling model originally introducedby
NormanandShallice(Norman& Shallice1980)to model
humanactionselectionandrecentlyelaboratedby Cooper
andShallice(Cooper& Shallice2000),seemsa promising
candidatefor actionselectionin naturalagents.Cooperand
Shallicedescribeafully implementedcontentionscheduling
model togetherwith computersimulationexperimentsin-
tendedto capturetheactionselectionmechanismsemployed
by humansin daily routineactionssuchas“makingcoffee”.
Dependingonvariousparametersettings,themodelexhibits
both behavioral patternsof normalhumansand actionse-
quencingerrorsthat aretypical of patientswith a rangeof
neurologicalimpairments.Theresultssuggestthatfor cases
suchastheonesstudiedcontentionschedulingcanexplain
humanbehavior, andhenceseemstobearobustmodelof ac-
tion sequencingfor complex actionsequences(to theextent
thathumansperformroutineactionswell). It is, therefore,
reasonableto askhow contentionschedulingwould fareas
anactionselectionmechanismfor complex, roboticagents.

In this paper, we examine the contentionscheduling
modelproposedin (Cooper& Shallice2000)with respect
to its applicabilityto autonomousrobots.We first introduce
a generalframework architecturecalledAPOC,which will
allow usto discussvariousaspectsof contentionscheduling
andcomparethemto otherarchitectures.After asubsequent
brief review of themainstructureof thecontentionschedul-
ing model,we analyzetheactionselectionmechanismpro-
posedby contentionschedulingin greaterdetail andargue
thatcontentionschedulingin its presentform maynotbean
appropriateway of structuringanddesigningarchitectures
for autonomous,roboticagents.

APOC - A Framework Ar chitecture
Why an Ar chitecture Framework?

Analyzing differentaction selectionmechanisms,or more
generally, architectures,and comparingthem can be diffi-
cult, for onesincedifferentauthorstendto introducetermi-



nologicalidiosyncrasies.In the bestcase,this may leadto
insignificant� misunderstandings,in the worst it will result
in fundamentalmisconceptions.The term “reactive” as in
“reactive architecture”is a caseof thematter, where“reac-
tive” canmeananything from “stateless”,to “f ast, timely,
response”,to “non-representational”or “non-deliberative”.
It shouldbeclearthatmuchtheoreticalweighthingesonthe
exactreadingof “reactive” giventheabovedifferences.

Anotherdifficulty in comparingarchitecturesstemsfrom
thefactthatauthorsoftencannotagreeonacommonvocab-
ulary, despitethefactthat theremaybestriking similarities
betweenwhat term � signifiesin architecture� andwhat
term � signifiesin architecture� . In sucha case,it would
beadvantageousif � and � couldbeviewedasbelonging
to a category � of components,sub-architecturesor archi-
tectures,and � and � couldbereplacedby a moregeneral
term � referringto instancesof � .

An architectureframework that suppliescommoncate-
gories� (of architecturalfeatures)andterms� to talk about
themcanovercomebothproblems.Hence,we will first in-
troducea commonframework that allows us to talk about
variousarrangementsof componentsandtheir interactions
in architectures.

The Framework Components
The APOC architectureframework consistsof heteroge-
neouscomputationalcomponentscalled“nodes”,whichcan
have any of the following four kindsof links amongthem:
(1) Activation,(2) Priority, (3) Observer, and(4) Component
links (hencethe name“APOC”). All four links can have
a time parameterassociatedwith themthat determinesthe
time it takesto passinformationthroughthelink.

Eachnodehasa numericalactivationanda priority. The
formeris a measureof theoveralldesirabilityfor theaction
associatedwith thenode,regardlessof whethertheactionis
performeddirectly in theenvironmentor whetherit is only
internal to the agent. The latter is usedto determinewho
getsthe control over a nodethat is part of a collectionof
nodes(seethe componentlink below). If the activationof
a nodeexceedsa given threshold,the nodeis “active” and
can/will performits action.

The classof architecturesthat fall underthis framework
canall be seento be directedmulti-graphswith respectto
thearrangementandconnectivity of their components.The
nodescould,for example,implementbehaviors(understood
in thesenseof behavior-basedroboticistslike (Arkin 1998)
and(Brooks1986)),direct motor actions(suchasforward
movement),or actionsand processesinternal to the agent
(e.g., reactive processessuchas adjustmentof control pa-
rameters,or deliberativeprocessessuchasplanning).

The Activation Link The first type of link is an activa-
tion passinglink, suchasthoseusedby (Tyrrell 1993)and
(Maes1989).Eachnodecanhave any numberof incoming
andoutgoingactivation links. The valueson incomingac-
tivation links determinethe activation of eachnode. How
theseactivationlink valuesarecombinedis a decisionto be
madeon a caseby casebasis.For typical connectionistnet-
works, for example,the incomingvalueswill bemultiplied

by weightsandsummedup.

The Priority Link The secondtype of link is a prior-
ity link. The purposeof a priority link is to allow a node
higherup in the hierarchyto changethe priority of nodes
furtherdown andthusbiasthesystemtowardsexecutingthe
actionsassociatedwith thosenodesundercertaincircum-
stances(e.g., if a global alarmmechanismis active, asde-
scribedby Sloman(Sloman& Logan1998)).

The Observer Link The third type of link, the observer
link, allows nodesto supervisethe execution of another
nodes. An observingnodewill automaticallybe informed
aboutany changes(of state)thatoccurin theobservednode
(for example, whetheran action associatedwith a node
wasinterruptedbecausethenode'sactivationdroppedbelow
threshold).Observer links remove thenecessityof explicit
communicationfor informationupdate.

The ComponentLink Finally, thefourth typeof link is a
componentlink (in thesenseindicatedin thegraphsdrawn
by ethologists,e.g., (Lorenz1981)). It connectsmoreab-
stractor generalprocessesor behaviors with their consti-
tuting subprocessesor sub-behaviors. An active node �
canactivateor deactivateactionsof nodesconnectedto it
throughcomponentlinks, even if their activation is below
activationthresholdaslongasthepriority of thecomponent
nodesis lowerthanthepriority of � (activating/deactivating
an alreadyactive/inactive componentnodewill not change
anything). Optionally, anodemaypassonparameterswhen
activatingcomponentnodes(e.g.,a speedmaybepassedto
a“moveforward” node).

Competitive Clustersand Winner-Takes-It-All
Arbitration
Theabove four links provide a very generalframework, in
whichseveralactionselectionmechanismsandbehavior ar-
bitrationschemescanbeanalyzed.“Competitive clusters”,
for example,whicharesetsof nodesin whichonly thenode
with thehighestactivationcanexecuteits associatedaction,
canstraightforwardlybe implementedusingan“arbitration
node” with O-links andC-links to all nodesof the cluster:
thearbitrationnodeis activeall thetimeandits correspond-
ing action implementsthe “winner-takes-it-all” arbitration
mechanismof a competitive cluster, where,via C-links, (1)
theactionassociatedwith thecurrentlyactive nodeis inter-
ruptedassoonasanothernodehasa higheractivationlevel,
and(2) theactionof thatnodesis initiated.

SubsumptionAr chitecturesor Priority-Based
Arbitration
Similarly, subsumption-stylebehavior arbitrationcanbeim-
plementedvia P- and C-links, wherethe priorities of the
nodescorrespondto the layer in the subsumptionarchitec-
tureandP-linksfrom upperlevel nodesto lower level nodes
will ensurethat highernodes(with higherpriorities) have
precedenceover lowernodes.TheC-linksareusedto either
passparametersto lowernodes(the“inhibition andsuppres-
sion links” in subsumptionarchitectures)or to deactivate
nodes(the“resetandsuppressionlinks”).



Componentsand Links in APOC
Similar� to thesubsumptionparadigm,theAPOCframework
per se doesnot definefunctional specificationsfor nodes.
In contrastto the subsumptiondesignmethodology, how-
ever, wherebasiccomponentsare“augmentedfinite states
machines”,APOCdoesnot specifyimplementationproper-
ties of basiccomponentseither, except for allowing them
(1) to have anactivationvalueanda priority, and(2) to be
connectedby any of the four links to other components.1

Hence,actionsandprocessesassociatedwith nodescouldbe
realizedasAFSMs(asin subsumptionarchitectures),JAVA
programs,condition-actionrules,fuzzyrules,etc.andnodes
may implementdirect motor actions,motor schemas,per-
ceptualor memoryprocesses,reasoningmethods,etc. Fur-
thermore,noparticulararrangementof nodesis specifiedas
this will essentiallydependon thecomponentsemployedat
therespectivenodesin thearchitecture.

A Brief Overview of Contention Scheduling
BasicStructure
Thecontentionschedulingscheme,asa mechanismfor ac-
tion selection,formsthemiddlelayerin a threelayerarchi-
tecture,in whichthebottomlayeris responsiblefor carrying
out“actions”andthetoplayerconsistsof asupervisorysys-
temthatmonitorstheprogressandpossiblycorrectsthepro-
cessesin thelayersbelow. Themiddlelayer, is itself divided
into threeparts:a schemanetwork, anobjectnetwork anda
resourcenetwork, eachof which is hierarchicallylayered.

The SchemaNetwork The schemanetwork consistsof
goaldirectedschemasandgoals. Eachschemais madeup
of a setof severalpartially orderedgoals,all of which have
to besatisfiedbeforetheoverall goalof theschemais con-
sideredto be achieved. Eachgoal, in turn is composedof
one or more schemas,any one of which may be usedto
achieve the goal. A numericactivation is associatedwith
eachschema.This activationvariesover time asa resultof
several influencesthat areexertedon the schema.It is the
activationof eachschemathatultimatelyleadsto theselec-
tion of anaction.If theactivationof aschemais greaterthan
agiventhreshold,thentheschemais allowedto passactiva-
tion down to its componentschemas(top-down influence).
Othertypesof influencein contentionschedulingcomefrom
theenvironment,from the schemaitself, lateralfrom other
schemas,and from randomnoise,all of which contribute
to theactivationof a schema.Theenvironmentalinfluence
actsasa setof triggeringconditions- a schemais only al-
lowedto beactive if thecurrentconditionsallow its action
to proceed.An additionalrequirementfor schemaactivation
is thatits goalhasnot beenachievedprior to thetime when
it becomeseligible for activation.

The bottom of the hierarchy is composedof basic
schemas,whichcorrespondto simpleactions,suchas“pick-
up-object”. In the caseof the basicschemas,an activation
thatis greaterthanthethresholdleadsto theexecutionof the

1Componentswith no activationvalueareautomaticallytaken
to beactive all thetime. Componentswith no priority aretakento
have0 priority.

associatedaction.Completionof thisactionleadsto thesat-
isfactionof thegoal immediatelysuperiorto theschemain
theschema/goalhierarchy. Thegoalsfor eachhigher-level
schemaarestoredaspartof a list in the respective schema
andchecked-off aseachgoalis achieved.

In relationto theAPOCframework,ageneraldescription
of theschemanetwork is obtainedthroughthedecisionsbe-
low:

1. APOC nodesare divided into two categories: schemas
and goals. Goals are boolean nodes that indicate
achieved/unachievedstatus.Schemasaresetsof actions
thatleadto theachievementof goals.

2. Within eachbasicnoderepresentinga schema,A-links
from the environment form a special class of inputs.
Theselinks passa non-zeroactivation to theschemabe-
fore it canbecomeactive.

3. Eachgoalnodehasanactivationthresholdof zero.Since
in contentionschedulingnodesdo not have activations,
this allows a goal nodeto simply passthe activation re-
ceivedthroughA-links to its componentschemas.

4. Only A- andO-linksareusedin thenetwork,asthey most
closelyparallelthelinks describedin contentionschedul-
ing. TheA-link performsby definitionthefunctionof ac-
tivationpassingdescribedin contentionscheduling,while
O-links provide a convenient mechanismfor signaling
that a conditionhasbeenachieved. As a result of this
implementationdecision,the priority of eachbasicunit
doesnotaffectcomputation.

5. Thestructureof thearchitecturewith respectto A-links is
hierarchical,i.e. no activationloopscanbepresentin the
schemanetwork.

6. Thebasicnodesrepresentingschemasin thebottomlayer
of theA-link hierarchyimplementbasicactions.

7. Uponcompletionof its actionaschemanodesendsasig-
nal to thecorrespondinggoalnodevia anO-link, causing
thegoalto switchstatefrom unachievedto achieved.

It is worth noting that in contentionschedulingsub-
schemasarenot treatedassubcomponents.Instead,there-
lationamongschemasis governedthroughlateralinhibitory
links. Thefollowingscenariois thereforefeasiblein thecon-
tentionschedulingframework.

A high level schemais active andpassesactivationdown
to its subschemas.However, at the motor-schemalevel, a
schemaunrelatedto the high level schemais highly acti-
vatedby theenvironmentandis thereforewins thecompe-
tition at themotor-schemalevel andbeginsexecuting.This
activation is a possibleexplanationfor a numberof errors
exhibited by peoplein daily activities. In orderto support
this typeof behavior, C-links arenot usedin theAPOCde-
scriptionof contentionscheduling.Theuseof C-links leads
to directactivationof sub-behaviors,andwould thuselimi-
nateacharacteristicof thecontentionschedulingscheme.

The Object Network Another subsystemof contention
schedulingis theobjectnetwork. Thisnetwork parallelsthe
schemanetwork in many respects.Eachobjecthasan as-
sociatedactivationvalueusedin determiningenvironmental



influenceon schemasand in decidingwhich object to use
to achie	 ve a taskwhenmorethanoneapplicableobject is
available.A differentactivationvalueis storedfor eachpos-
sibleuseof theobject.In theobjectnetwork, activationsare
affectedby lateral influence,self influence,influencefrom
schemasandrandomnoise. The lateral,self, and schema
influencesaresummarizedin two assumptions:

The influenceof a schema's activation on that of an
object representation(for a particularfunction) is de-
pendenton the extent to which the object representa-
tion is employed,servingthatfunction,in thetriggering
conditionsof theschema.(PA 10, (Cooper& Shallice
2000)p.312)
Object representationscompetewithin functionaldo-
mains. This competitionis effectedby a lateral influ-
enceontheactivationsof competingobjectrepresenta-
tions,andaself influenceonall objectrepresentations.
(PA11, (Cooper& Shallice2000)p.312)

TheAPOCdescriptionof theobjectnetwork is evenmore
concisethanthatof theschemanetwork. It consistsof the
itemsbelow:

1. Basicnodesarenodeswhoserelevant informationcon-
sistsof a setof numericvaluesdenotingtheactivationof
the object representedby the nodewith respectto each
possibleuseof thatobject.

2. Only A- andO-linksareusedin thenetwork. As a result,
thepriority of eachbasicunit doesnotaffectcomputation.

TheResourceNetwork Theresourcenetwork andtheob-
ject network serve similar functions.Thesameway actions
requireobjectsin the environmentto which to be applied,
they alsorequireeffectorsin orderto be completed.A re-
sourceandaschemainfluenceeachotherif theresourcecan
beutilized by theschema.Whenan actionis executedthe
mostactive appropriateresourcesareallocatedto it. Basic
level schemasspecifyrestrictionson objectsandresources
to whichthey maybeapplied;objectsandresourcestakethe
role of argumentswhich arefilled in for eachbasicschema
asit becomesactive in accordanceto the specifiedrestric-
tions.

Thedescriptionof theschemanetwork in APOCis anal-
ogousto thatof theobjectnetwork.

BasicParameters
In contentionschedulingtheactivationof thevariouscom-
ponentsis governedby thefollowing severalparameters:

1. rest level activation: the activation of a schemawithout
input

2. persistence (decay function): thefunctionthatgovernsthe
returnof schemaactivationsto a rest level after the net
inputbecomeszero

3. random noise: a randomvalueaddedat every updateto
the activation to help breakties if nodeshave the same
activationlevel

4. the balance parameters self:lateral, internal:external,
and competitive:non-competitive: specifytheproportions

of totalactivationfromvarioussources(self-excitationvs.
later inhibition, internalcontribution vs. externalcontri-
bution,competitivecontributionvs. non-competitivecon-
tributions)

5. activation threshold: the numberwhich, whenexceeded
by a schemaactivation,allows theschemato beeligible
to executeits associatedactionsor actionsequence

By definition, rest level activation, persistence,
competitive:non-competitive ratio, and self:lateral ra-
tio arethesamein all threenetworks.

A Critical Analysisof Contention Scheduling
asAction SelectionMechanismfor Complex

Robotic Agents
In this sectionwe analyzesomeof the problemsthat may
appearin theconstructionof complex roboticagentsusing
the contentionschedulingscheme. First we discussthree
generalproblemclasses:(1) problemsarisingfrom interrup-
tions andfailuresof schemas,(2) problemsresultingfrom
modificationsof thearchitecture,and(3) problemsthat re-
sult of interactionswith the environment. Then we focus
on implementation-specificissuesin thedesignof complex
agents.It shouldbenotedthatsomeof theseproblems(such
as interrupthandling)arecommonto AI plannersandnot
necessarilyrestrictedto contentionscheduling

Thr eeGeneralProblemAr easof Contention
Scheduling
Contentionschedulingas action selectionmechanismhas
variousstrengths,includingtheability to usedifferentmeth-
odsfor the accomplishmentof the samegoal. The poten-
tial of CS as illustratedby Normanand Shallice through
their coffee making example,however, is given in a very
restricted,simplecontext, in which the amountof activity
interferenceof differentschemasis small. By looking at a
larger, morerealisticsystems,several issuescometo light,
whichwewill discussin thissection.

Interrupted Actions and Failur esof Actions to Complete
A coreassumptionof contentionschedulingstatesthatinflu-
enceson a schemaactivationcomefrom five sources:top-
down influence,environmentalinfluence,self influence,lat-
eralinfluence,andrandomnoise.Thisassumptionexcludes
bottom-upfeedbackfrom componentschemasto their su-
perordinateschema.Suchfeedback,however, maybevery
practical,if not requiredto beableto copewith interrupted
actionsand/or failure of actionsto completeat the basic
schemalevel.

First note that while a basicschemanodewhoseaction
hasa directeffect on the environmentcanuseproperlydi-
rectedenvironmentalqueuesto infer the failure andor in-
terruptionof its associatedaction,nodesfurther up in the
schemanetwork canat bestreceive informationaboutthe
failure from the supervisorylayer (in terms of excitation
and/orinhibition of theiractivation!). Thismechanismis by
itself bothslow andproneto failure. Considertheexample
in Figure1 (takenfrom NormanandShallice).



Sugar into Coffee

Hold Close Transfer Empty Spoon

Prepare Instant Coffee

Add Sugar
From Packet From Bowl From Carton

Add Coffee
From Jar

Add Coffee
From Packet

Add Sugar

Pick Up

Coffee

Add Milk

Put Down Tear Unscrew Screw Pour Dip Spoon Empty Spoon

Grinds into CoffeeMilk into Coffee

Discard Open Dip Spoon

Figure1: Coffeemakingexample

Two problemsconnectedto potentialfailuresof actions
canbeseenfrom thisstructure.First,the“Close” goalis un-
connectedto any othernode,hencerecovery if the“Screw”
action fails (i.e., the goal is marked “achieved” regardless
of whetherthe lid is really on afterfinishingtheaction,for
example)dependson the successof operationsfurther re-
moved from the actionitself. Hence,the likelihoodof not
detectingthe failureof the “Screw” action(e.g.,by thesu-
pervisorysystem)is increased.Thesecondproblemarises
whena“Pour” actionfails(e.g.,becausethemilk is spilled).
Suchafailurewould,underthecurrentdesign,allow therest
of thecoffeepreparationprocessto proceedeventhoughthe
overallgoalis no longerfeasible.

Furthermore,someactionsmayrequirea certaintime in-
terval for completion(becausetheir effects are otherwise
meaninglessor inappropriate,e.g.,stirringthecoffeefor two
hours).However, thereseemsto beno mechanism(evenat
thelevelof simple,motorschemas)in contentionscheduling
thatoverseesandpossiblyfacilitatesthesuccessfulcomple-
tion of actionsandcancorrectfailuresby interrupting,reini-
tiating, or abortingthesameor otheractions(exceptpossi-
bly for the supervisorysystem,but thenthe way in which
thissystemcaninterveneneedsto bespecified).

As mentionedabove, interruptionsof basicactionsmay
poseanotherproblemfor contentionscheduling.While the
unorderlystatethe systemmay be in after a basicaction
has beeninterruptedis considereda virtue of contention
schedulingqua model of humanaction selection,suchan
undefinedstateis not necessarilya desirablefeaturefor ar-
tificial agents(e.g., if the agentis in control of an aircraft,
wherefailuresof basicmaneuverscanhavedevastatingcon-
sequencesif not counteredquickly andappropriately).

Finally, anotherproblemcausedby interruptionsmaybe
connectedto “peripheralassumption3”:

“ Whena schema's statechangesfrom selectedto un-
selected,all subgoalson the schema's subgoallist are
marked asunachieved. ((Cooper& Shallice2000)p.
310)

If a high level schemalike “makecoffee” losesits activa-
tion andgetsdeselected,thenall its goalswill bemarkedas
unachieved,including,for example,alreadyachievedgoals
like “add sugar”. When the schemagetsactivatedagain,
it will causesugarto bepouredin themugagain,although
sugaris alreadyin themug(assumingthiscannotbedirectly
observed).Again,while thismaybeappropriatefor amodel
of humanactionselection,its seemsthat agentsshouldbe
able to remembercompletedactions,not only becauseit
reducesoverhead,but alsobecauseit canprevent undesir-
ableresultsthatmayresultfrom performingthesameaction
twiceor moretimes.

Learning New Actions Contentionschedulingdoesnot
dealper se with modificationsof any of the threesubnet-
works (e.g., the object, resource,and schemanetworks).
However, humans(as well as complex artificial agents)
need to be able to learn new complex actions, i.e., ac-
tion sequences(in addition to learningthe low level mo-
tor control that may be requiredfor somehigher level ac-
tion, e.g., graspinga mug). What is unclearthen is how
sucha hierarchycould be learnedandhow an existing hi-
erarchyof schemascould be modified or augmented. It
seemsthat addingnew nodesto the schemanetwork, for
example,would impact the relative times it takes to acti-
vatetherespectiveschemas(e.g.,by addinganotherschema
to a group of alreadycompetingschemas,lateral inhibi-
tion will bestrongeron for theschemasthanit waswithout
the addedschema;but this meansthat it could take longer
for schemasto reachactivation threshold). The only way
to get aroundthis problemwould be to changethe global
“competitive:non-competitive” parameter. But thenit is not
clearexactlyhow it shouldbeadjusted.

Furtherproblemsareconnectedto questionsof whethera
new schemacanbe executedin parallel. Supposethe sys-
temonly learnsonewayof performingthehigh-level action
associatedwith ahigh-level schemaS,whichputsSin com-
petition with otherschemas,sincethey all sharethe same
low-level action. Uponencounteringalternatives,however,



Swouldnothaveto bein competitionwith otherschemasif
these
 alternative low-level actionscanbeperformedin par-
allel. Yet,it is notclearhow theschemanetwork wouldhave
to berestructuredin this case.Similar problemsariseif the
resourceor objectnetworksneedto bemodified.

Finally, variationsin accomplishinga taskmayposean-
otherproblem,giventhatcontentionschedulingintrinsically
reliesonafixedbreak-down of actionsinto sequenceswith-
out allowing to “parameterize”individual actions.Thepro-
cessof coffee preparation,for example,is not always ex-
actly the same. The amountof addedsugarandmilk, the
strengthand temperatureof the coffee, etc. may all vary
(e.g., dependingon mood, time of the day, etc.). With-
out thepossibility to parameterizelow-level actions,differ-
ent schema-treeswould have to be added,e.g., for “mak-
ing strongcoffee”, making“coffeewith milk”, etc. and,of
course,changeswould perpetuateup theschemahierarchy
(e.g.,up the “make breakfast” hierarchy).In addition,new
inputswouldhavetobeallowedto theschemanetwork (e.g.,
inputsfrom a “mood” system)to beableto selectmeaning-
fully amongthedifferentalternatives.

Interactions with the Envir onment Oneof thestrengths
of contentionschedulingis its ability to integrateGibsonean
affordances(Gibson1979)with actionselection,i.e., what-
everobjectis presentin theenvironmentandperceived,will
feedactivation to the schemathat representsan action in-
volving this object. However, theremaybe problemswith
suchadirectcouplingof perceptionandactionin thatanac-
tion could be triggeredby merepresenceof an abundance
of instancesof oneandthe sameobjecttype without there
beingany additionalreasonasto why theactionshouldbe
perform(e.g.,supposeyouareonaparkinglot andperceive
hundredsof cars,thentheaffordanceof “driving acar” may
be so strongas to make you actuallydrive it without any
furtherreason).

Anotherproblemwith perceivedobjectsis connectedto
the above-mentionedissueof variationsin routineactions:
someobjectsor toolscanbeswitchedfor othersif they agree
with respectto thefunctionalityrequiredfor anaction. For
example,it would be possibleto usea tablespoonor the
tip of akitchenknife to scoopsugarin the“coffeemaking”-
task,if noteaspoonwerepresentbutoneor bothof theother
objectswere.However, whatactionanobjectaffordsneeds
to beexplicitly codedin theschemanetwork. Hence,there
areproblemsof generalizationandof scaling,asit is almost
impossibleto addall thepotentialapplications(i.e., “causal
functions”)of evensimpleobjectsthatmayberelevantto a
givenactionsequence.

Finally, theredoesnot seemto be any provision in con-
tentionschedulingto preventa low level schemafrom being
active (e.g.,becauseof environmentalstimulation)even if
its sourceschemais not, which could lead to interference
amongvariousactions.

DesignIssuesfor ComplexRobotic Systems

While any of the previously mentionedissuesmay present
a problemfor the(complex) artificial (andpossiblynatural)
agents,in this sectionwe will focusin particularon prob-

lemsthatmayarisein thecontext of designingcomplex ar-
tificial agents.

ComplexGoals Oneissuein thedesignof complex agents
is the representationof overall goalsof the agent. In con-
tentionscheduling,goalsarebrokendown into subgoalsthat
arespecificto eachschema,which eachkeeptrackof their
own goallist. Theauthors

“ assume that, within contention scheduling, a
schema'sgoalsare“tickedoff” asthey areachievedby
thesystem.((Cooper& Shallice2000)p. 309)

In many instancesthis is anefficient way of dealingwith
complex goal achievement. Yet, if the numberof goalsof
a schemais not fixed or given in advance,this approach
could lead to severe implementationand scalability prob-
lems. Considera robotequippedwith sonarsensors,which
is supposedto mapa room. It doesnot have any prior in-
formationaboutthe layout,nor canit obtain(beinglimited
by the natureof its sensors)any generalinformationabout
theroom(suchasthenumberof walls). Figure2 depictsthe
schema-goalstructure.

Forsuchanagent,it isnotclearhow acontentionschedul-
ing action selectionschemecould be effectively imple-
mented,ascontentionschedulingrequiresthatall subgoals
of a schemabe achievedbeforea complex schemacanac-
complishits action.

Basically, therearetwo possibleimplementationswithin
thecontentionschedulingparadigmfor dealingwith a vari-
able number of subgoals. The first, adding a different
schemafor eachpossiblenumberof goals,doesnot seem
feasible(it could lead to an explosion of the numberof
schemasbeyond what is practically feasible). The second
involvesimplementingtheprocessof mappingtheroomas
a processthatcontinuesuntil a conditionis satisfied.How-
ever, thecontentionschedulingarchitecturecannotdealwell
with perpetualconditionsor goalsthatconsistin maintain-
ing a particularstate(possiblyuntil an interruptionis en-
countered,suchas “maintaining the distanceto the car in
front of you on thehighway”). Theproblemlies in theway
goalsarerepresentedandchecked for achievement,which
doesnotwork easilyfor perpetualor ongoinggoals.Rather,
suchgoalsandtheirassociatedactionswouldhaveto berep-
resentedoutsidethe schemanetwork. But thenseparating
actionsequencesthatcanbecompletedin a timely manner
from sequencesthat are in somesenserepetitive becomes
an issue,which leadsto all kinds of questionsabouthow
longer-termgoalsshouldberepresented,etc.

A relatedissueis that of moreabstractschemas,which
may have goals that are either not well-defined or that
changewith time. A systemcould,for example,noticethat
attemptsto scoopcoffee out of a containerrepeatedlyfail
andstartexperimentingwith differentmethodsof gettingthe
coffeeout (e.g.,turningthecontainerupsidedown), andde-
cidethatsincethis methodworksbetterin generalto useit
from now on,wheretheamountof coffeeis now determined
in termsof pouring time andpouringangleinsteadof the
numberof scoops.
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Figure2: Mapmakingexample

Reflexes Fast,reflex-like motoractions,triggeredby var-
ious environmentalconditions,are of great importancein
robotic agents(e.g., to prevent damage,improve perfor-
manceof subsequentactions,etc.). Hence,an action se-
lection schemeneedsto be able to incorporatesuchreflex
mechanismsthat caninterruptongoingbehaviors, perform
whateveractionis necessary, andreturncontrolto theinter-
ruptedbehavior.

In contentionscheduling,interruptionsof actions can
only take place when a schema's activation drops below
the predeterminedactivation threshold(e.g., becausean-
otherschema's activation is rising). Hence,reflexeswould
haveto usethisactivationpassingmechanismto obtaincon-
trol to executetheir associatedactions. For example,they
couldbeimplementedasbottomlevelactionschemaswhose
only activationcomesfrom theenvironment.However, they
wouldhaveto bein competitionwith every low-level action
schemathatdealswith thesameeffectorsasthereflex, since
they needto beableto interruptit if necessary. This raises
a questionabouttheinhibitory influence:sinceinhibition is
thesameeverywherein thenetwork, it maynot bepossible
for thereflex schemeto becomeexcitedabovethethreshold
level for activation fastenoughif therearetoo many other
schemasin competitionwith it. Yet, for it to bea reflex and
serve that function, timely activationhasto be guaranteed,
especiallyin real-world domainsin whichroboticagentsop-
erate.

Furthermore,onceaschemais interruptedby areflex, it is
not clearwhetherthatschemawill becomeactive againand
cancontinueits actiononcethereflex stops.For one,other
schemasmaybecomeactive,andit mayalsonotbepossible
to continuetheaction. For example,interruptinga pouring
action (of sugarinto the mug) may lead to a statewhere
thesystemdoesnot know how muchsugarhasbeenadded
to the coffee. If the right sugarcontentof the coffee is of
greatimportance,thebestbet for thesystemis thento start
over again. However, thereis no mechanismin contention
schedulingto recognizefailuresandinterruptionsthatcould
providethiskind of feedback.

Discussion
Contentionschedulingis a very powerful action selection
mechanism.It hasgreatbiological plausibility asa model
of humanroutineactionselectionandexecutionandseems

to have greatpotentialfor applicationsin artificial agents.2

Somehaveevenargued(e.g.,(Glasspool2000))thatthecon-
tentionschedulingmodelandotheraction-selectionmecha-
nismsfrom artificial intelligenceandrobotics(e.g., (Maes
1989)) are converging, hencepointing to successof such
a three-layeredarchitecturefor action-selection.We have,
however, discussedseveral issuesof contentionthat may
causeproblemswith sucha three-layeredarchitectureif ap-
plied to artificial agents,in particular, roboticagents.

Thefirst setof potentialproblemsinvolvedinterruptedac-
tionsandfailureof actionsto complete,whicharepartlydue
to theuni-directionalflow of informationin thearchitecture.
Extendingthearchitectureto includeafeedbackmechanism
from componentschemasto their parentschemaswouldal-
low for theconstructionof a localizedfailure/interrupthan-
dling mechanism.The feedbackcouldbe implementedus-
ing eitherA- or O-links, andwould compriseinformation
abouttheexecutionstatusof thesubschemathat theparent
schemacanuseto determinein caseof interruptsor failures
whichactionto performnext. It is straightforwardto extend
thecurrentmodelby suchamechanism.

Furthermore,given that a parameterpassingmechanism
is alreadyimplemented,which is usedto selectappropriate
resourcesto applyto objectsfor a givenschema(e.g.,“use
theright handtopickupthemug”), thismechanismcouldbe
easilygeneralizedto allow otherparametersto bepassedto
schemas.Thatway parentschemascouldspecifyvariations
in the executionof their componentschemas,thussolving
thevariationproblem.

The problemsrelatedto goal representations,however,
are more difficult to remedy, as they involve the lists of
goalsthateachschemaneededto determinethecompletion
of its activity. As it stands,this mechanismfor checking
goalachievementcannotbeeasilymodifiedto overcomethe
problemsmentionedabove. Rather, it would be betterto
implementa differentmechanism,which signalsthe com-
pletionof theactionassociatedwith a schemaif a seriesof
conditionsaremet,whichdonotnecessarilyhaveto besub-
schemagoals. For example,the mapmakingschemacan

2(J. Garforth & McHale 2001) implemented contention
schedulingin a robotic agent. Unfortunately, the architectureis
notspecifiedsufficiently andtheresultsof theexperimentsarenot
reportedin enoughdetail to be ableto assessthe successof this
application.



requirethatat theendof themappingprocesstheagentbe
within� a tolerableerror from the point whereit startedthe
process.As long asthatconditionis not satisfied,the“fol-
low wall” subschemais keptactive.

A secondproblemrelatedto goalrepresentationandgoal
handlinginvolvespersistentgoals.With persistentgoals,the
aim is to maintainoneor moreconditionsover a (possibly
long) periodof time. Considerthe taskof driving alonga
highway. Oneof thegoalsthatmake up that taskis thatof
maintaininga relatively constantspeed- assuminganormal
flow of traffic. This goal caninvolve pressingthe acceler-
ator pedal(on an upward incline) or the breakpedal(on a
downwardincline). It is alsoa persistentgoal,asit involves
themaintenanceof a condition,ratherthantheachievement
of one.

Achievementof suchgoalsshouldhencebemeasuredin
termsof thepresenceorabsenceof theconditionsthey main-
tain. Suchgoalscouldbebetterrealizedin animplementa-
tion, in which they cansignalfailure (e.g.,throughtheuse
of O-links) to the schemaimmediatelysuperiorin the hi-
erarchy. Theexecutionof thatschemawould thenproceed
normallyaslong asthenecessaryconditionsfor thepersis-
tentgoalsaremet.

Interactionbetweenthe environment and a contention
scheduling-basedarchitecturehasalsobeenshown to have
severalpotentialproblems,suchasexcessiveexcitationof a
schema(by virtueof “affordances”)in theabsenceof anac-
tivesuperschema.A possiblesolutionwouldbetoallow un-
selectedschemasto exert a negative influenceon their suc-
cessorsin thearchitecture,thusmakingit moredifficult for
themto becomeactiveby environmentalconditionsalone.

In sum,webelievethatcontentionschedulingis averyin-
terestingcandidateasactionselectionschemefor complex
agents. However, in its presentform thereare several is-
sues,crucial to the properfunctioningof artificial agents,
that arenot addressedwell or addressedat all by the con-
tentionschedulingarchitecture.It maybepossibleto extend
thecontentionschedulingmodelin waysthatwe indicated
abovetoovercomesomeof thesedifficulties,andwearecur-
rently in theprocessof implementingsuchanextensionon
a robotto testits viability andeffectiveness.We expectour
resultsto conformthe theoreticalanalysisabove, in which
caseextendedversionsof contentionschedulingmayprove
applicablein robots. As it stands,however, we take con-
tentionschedulingto bemoreof a theoreticalmodelof ac-
tion selectionthana practicaldesignthatcanbeeasilyand
reliablyappliedin artificial agents.
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