
APOC - a Framework for Complex Agents

Virgil Andronache Matthias Scheutz
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
e-mail:{vandrona,mscheutz}@cse.nd.edu

Abstract

In this paper we use the APOC–an agent architecture frame-
work intended for the analysis and implementation of com-
plex agent architectures–to investigate mechanisms of run-
time architecture modification and resource management that
allow for the specification of simple architectures which can
develop into complex architectures at run time. After a brief
overview of APOC, we show how a particular way of con-
necting components in APOC can be used to model vari-
ous kinds of growing structures and, furthermore, how these
structures can form modules to achieve higher level function-
ality. We also define a preliminary notion of “level of ab-
straction” for an APOC architecture and present a simple al-
gorithm that can automatically assess the level of abstraction
of APOC components in the architecture.

Introduction
Research in complex agents has produced a wide variety
of architectures. These architectures range from competi-
tive (e.g., subsumption) to cooperative (e.g., schema-based)
and from strictly hierarchical (e.g., contention scheduling
[Cooper & Shallice2000]) to virtually no hierarchy (e.g., the
agent network architecture [Maes1989]. This paper presents
APOC - an architecture framework for the development of
complex agent architectures. APOC can be used as a com-
mon framework to implement, analyze, and compare com-
monly used architectures, such as subsumption and SOAR.
It also provides mechanisms for run-time architecture mod-
ification and resource management that allow for specifica-
tions of simple architectures which can develop into com-
plex architectures at run time. We then explore ways of iden-
tifying and extracting functionality from the developed ar-
chitectures. This framework can thus be used to investigate
topics such as composition of modules to achieve high level
functionality or the advantages of one top-down decompo-
sition method over another. An example of the analysis ca-
pabilities provided by APOC can be seen in [Andronache &
Scheutz2002].

The Architecture
APOC is an architecture framework which provides one ba-
sic component type and a set of basic mechanisms for con-
necting basic and derived components to allow for the spec-
ification of complex agent architectures. An APOC archi-

tecture consists of (possibly heterogeneous) computational
components called “nodes”, which can have any of the fol-
lowing four kinds of links among them: (1)Activation, (2)
Priority, (3) Observer, and (4)Component links (hence the
name “APOC”).

An APOC node is defined as a tuple1:
< priority,activation, instde f ault, instmax, linksin, linksout,

maintenance,action>, where

• priority is the numeric priority of the node,

• activationis the numeric activation of the node,

• instde f ault is the number of instances of the node which are
instantiated automatically by the system.instde f ault≥ 0

• instmax is the maximum number of instances of the node
which can exist simultaneously in the system.instmax≥
instde f ault andinstmax≤ 0.

• linksin are incoming links from other nodes

• linksout are links going out to other nodes in the architec-
ture

• maintenanceis an ongoing computation used for updating
the state of the node (e.g. priority calculation)

• actionis a computation that is relevant to the system as a
whole and is executed only if certain conditions are satis-
fied (e.g., it could consist of a series of motor commands).

The APOC Links
The A-Link The first type of link, the A-link, is an acti-
vation passing link. Activations are the most general means
through which a node becomes active. A-links are defined
as:

(Vs,Ve,act, ,t,op), where
Vs is the component controlling the link,
Ve is the component acted upon by the link,
act is a unit of information passed through the link,
t is the time needed for information to traverse the link,

and
op is an operation performed onact in the link

Activations are determined by the values passed via in-
coming activation links. How these activation link values are

1APOC nodes are an elaboration of ”behavioral nodes” of
[Scheutz2001]

used to compute the final activation of a node is a decision
to be made on a case by case basis (e.g. as in [Maes1989]).
In most cases the simple and straightforward addition of in-
coming values will be the best way to determine the activa-
tion of a node.

The P-Link The second type of link is a priority link (P-
link). P-links are defines as:

(Vs,Ve, pri,c,t, [S]), where
Vs is the component controlling the link,
Ve is the component acted upon by the link, and
pri is the numerical value passed through the link,pri ∈

[0,1]
c is the activation cost per unit change in priority inVe
t is the time needed for information to traverse the link,

and
S is a signal sent toVe. This signal can be an interrupt,

which in turn can be either a reset or a suspend, or a directive
to begin executing the action associated withVe.

Unlike activation values, which are used in a combina-
tory fashion to determine an “overall best” action, priorities
are used to bias the system towards performing an action fa-
vored by one subsystem (or functional unit), e.g., if a global
alarm mechanism is active, as described by Sloman [Sloman
& Logan1998].

The O-Link The observer link (O-link) is another link
supported by the architecture and is defined as follows:

(Vs,Ve,t, i1[, i2, ..., in]),n≥ 1,n∈ N where
Vs is the observer component,
Ve is the observed component,
i1 is information mandatorily passed through the link from

Ve to Vs,
t is the time needed for information to traverse the link,

and
i2, ..., in are optional pieces of information passed through

the link fromVe to Vs

The purpose of O-links is to provide a means of commu-
nication among the nodes in the architecture graph. Through
an O-link a component supervises the execution of another
component and is automatically informed any time a change
occurs in the quantified entities being recorded by the ob-
served component. Examples of these entities are speed, po-
sition, hunger level, etc.

The C-Link The C-link (component link) is used to in-
stantiate nodes at run-time. It is defined as a 3- or 4- tuple:

(Vs,Ve,t, [S]), where
Vs is the controlling component of the link,
Ve is a component or group of components which are used

in achieving the action ofVs,
t is the delay between the time the C-link is ‘triggered’

and the timeV−e is instantiated, and
S is a signal sent toVe, usually triggerring the action of

the component.

Since C-links need to determine resource availability at
instantiation time, they play an important part in resource

allocation and arbitration. If A-links or P-links are used
in conjunction with a C-link, activation and priority based
mechanisms can be used to trigger the action of the newly
instantiated node.

Link configuration for a set of instances of a particular
type can be specified in a recursive manner. Overall, APOC
provides the functionality necessary to specify any link pat-
tern. The following link behaviors are examples of the spec-
ifications that could be given to links “accompanying” C-
links in the APOC framework

• Connect to all instances to which the C-link connnects

• Connect to a single instance of the instances to which the
C-link connects.

• Connect to some of the instances to which the C-link con-
nects. It should be noted that for this case, link behavior
needs to be specified in quite some detail, as the over-
all configuration may change on both the addition and re-
moval of an instance from the run-time machine.

Three basic examples of APOC link configurations and
their uses are presented in the next section.

Building architectures
In APOC, architectures are specified in terms of type rela-
tionships among components, i.e, APOC nodes, which pro-
vides a direct way of specifying abstract structures and mod-
ules. Tokens of these types are then instantiated in the run-
ning virtual machine. In the following, we will present sev-
eral examples of how modifiable architectures can be speci-
fied in APOC using the mechanisms provided by C-links.

Fully connected layered neural networks
This is the basic, non-resource-conflicting example of run-
time node instantiation.

C C C

(1,2)

C C

T1 T2

T3

I1 I2 I1 I2

I3

I1 I2

I4 I3

(1,1) (1,1)

I3

Figure 1: Type diagram, initial instantiation, state afterfirst
request, final state

In Figure 1, T1, T2, and T3 represent three node types,
with types T1 and T2 utilizing the action performed by type
T3. The numbers in parentheses in the type diagram indicate
instde f ault and instmax for each of the three types. Nodes I1
and I2 are instances of types T1 and T2 respectively, while
nodes I3 and I4 are instances of type T3. When the archi-
tecture is first instantiated, nodes I1, I2, and I3 are instanti-
ated, since all three types haveinstde f ault set to 1. When the
first explicit request for execution comes from I1 or I2 (in
this case, I2), that node is connected to the existing instance
(I3). The next request results in the instantiation of I4, with
the requesting node, I1, using I4 to perform its operation.

Another use of C-links results in self-replicating units, as
can be seen in Figure 2.

C

C(1,3)

C
T1

I1

I2

C

Figure 2: Type diagram, final state

Perhaps more interesting, however, are applications that
involve combinations of links, such as those in Figure 3.

P−link

O−link

C−link

A−link
C

A C

T1

T2

T3

. . .

. . .

I1

I2 I2 I2 I2

I3 I3 I3 I3

1 2 99

1 2 99 100

100

(1,1)

(1,100)

(1,100)

Figure 3: Type diagram, final state

In Figure 3, an instance of type T1 can create 100 in-
stances of type T2. Similarly, instances of type T2 can cre-
ate 100 instances of type T3. With the proper link behavior
specification, a run-time structure like the one represented
by the final state can be obtained. What this amounts to
is the possibility of “growing” such structures (e.g. a lay-
ered network that will eventually develop a fully connected
layer).

The scenarios in Figures 2 and 3 are both dynamic and re-
versible, i.e. the structures are created and can be destroyed
at run-time. It is also possible to specify C-link behaviors
which produce permanent structures. APOC nodes have the
capability of instantiating other APOC nodes through the C-
link, as well as making all the necessary connections. In
most circumstances, the instantiating nodes also use the C-
link to delete the instantiated structure. However, it is also an
option to delete the instantiating C-link and allow the newly
instantiated nodes to function independently (e.g., perform-
ing a specialized function such as recognizing a specific
stimulus).

ART networks
Structures which can perform a categorization of their inputs
are useful in a variety of applications, e.g. computer vision.
In this section we show how APOC mechanisms can be used
to grow an ART network. Figure 4 provides the basic struc-
ture needed for its development.

The correspondence of the nodes in Figure 4 to the ART
network described by Carpenter and Grossberg [Carpenter

P−link

O−link

C−link

A−link
(1,50)

(1,100)

T1

T2

R

E

(1,1)

G

(1,2)

(1,1)

Figure 4: Sensory processing example

& Grossberg1988] is as follows:

• E represents the external inputs, in this case coming from
a sensory node

• G represents gain control.

• T1 represents the node type for nodes in the input layer

• T2 represents the node type for nodes in the category rep-
resentation layer, and

• R represents the reset of short term memory

The relation of the type-level links to the run-time ma-
chine depends on the behavior of each C-link. With the
proper C-link definitions (e.g., C-links to instances of type
T1 copy over all links from the parent node), the final struc-
ture is the one of Figure 5, which mirrors the example pre-
sented in [Carpenter & Grossberg1988]. In the figure, the
actual link structure for incoming links to theT1 andT2
groups is determined by the how the behavior of the C-links
in the type-structure is defined. In this case, it would be ap-
propriate to have connections to each of the nodes in those
groups. However, since any link structure can be obtained in
APOC, the links are represented in a more abstract manner.

One advantage provided by the APOC framework is that
the number of categories can be made to vary according to
the resources which the system is able to allocate to the pro-
cess. For example, the network could start with 10 nodes
of typeT1 and vary that number up to the maximum of 50
according to environmental circumstances.

P−link

O−link

C−link

A−link

g2

rt1t1

t2t2

t1

t2

g1 12m

12n

e

Figure 5: Sensory processing example - final architectural
state

In the above example, the external inputs are defined by a
single unit,E. However, it is reasonable to generalize upon

the example presented and consider the possibility of sub-
jecting the external inputs to resource constraints. This can
be done with relative ease in APOC given the broad defini-
tion given to APOC nodes. Since each APOC node can be
broken down to a minimal complexity,E can be viewed as
being composed of several units, each of which takes care
of one environmental unit. The quantity of information used
for categorization can then be modified dynamically based
on resource constraints and/or environmental complexity.
The resulting instantiated architecture is shown in Figure6.

P−link

O−link

C−link

A−link
g2

rt1t1

t2t2

t1

t2

g1 12m

12n

e e
nm−1e1

Figure 6: Sensory processing example - final architectural
state

Incremental, resource constrained planning
Another situation where APOC architecture development
capabilities can be successfully used involves planned se-
quences of actions. Consider the example in Figures 7 and
8, where a physical agent has a choice of three different ac-
tions: “move right”, “move left”, and “move straight”. The
agent’s goal is to move from its current location at pointA
to a pointB, say. To support the planning process, the agent
has an environment simulation module, in which plan ac-
tions can be simulated instead having to carry them out in
the real world.

P−link

O−link

C−link

A−linkP

R L S

(1,100)

(0,100) (0,100) (0,100)

Environment Simulation Module

Figure 7: Planning example - specification

Figure 7 contains a four node assembly which defines the
type relationships in the architecture:

• NodeP represents a planning type

• NodeR represents a type which simulates a right turn in
the environment simulation module

• NodeL represents a type which simulates a left turn in the
environment simulation module

• NodeSepresents a type which simulates a finite forward
move in the environment simulation module

The component links in the figure indicate that nodes of
typeP can instantiate nodes of typesR,L, andS. Conversely,
nodes of typesR,L, andS can instantiate nodes of typeP.
The implication of this circular C-link structure is that nodes
of typeP can instantiate nodes for all actions which are cur-
rently feasible.

In the example of Figure 7 above, the run-time system
changes are described below.

The P-node checks for completion of the system-wide
goal (e.g., reachingB). If the goal has not been reached, the
P-node makes a decision on which of theL−,R−, andS-
nodes should be instantiated and adds the necessary incom-
ing activation links from the “environment simulation mod-
ule”. Each instantiated node receives activation inputs from
an environment simulator and computes its activation level.
TheP-node then uses the information gathered through the
O-links to decide which node is most likely to lead to goal
completion and therefore which node will carry out its ac-
tion (a process similar to the arbitration found in contention
scheduling [Cooper & Shallice2000]). The winner then gets
to instantiate another P-node, and the process continues until
the goal is completed.

It should be noted that the run-time evolution of the sys-
tem is dependent on the internal computations of the nodes
and the environmental input. With a different definition of
P-nodes, the system could be used to explore the state space
in a limited depth first search manner with backtracking. For
example, the R-node always instantiates aP-node first. This,
in turn, instantiates another set of the three nodes, where the
R-node instantiates aP-node, etc. Here too, eachP-node
checks whether the goal is satisfied, continuing the recur-
sive instantiation process until the depth limit (i.e., themax-
imum number of nodes of typeP that can be instantiated)
is reached. If the goal is not reached, theP-node finish its
processing, hence, its parentalR-node will terminate as well,
and theP-node that instantiated the terminatedR-node will
continue with the instantiation of theS-node, and later pos-
sible theL-node until a path to the goal is found.

C-link behavior already provides a benefit in resource al-
location, in that anL-type node would not be instantiated if
the agent finds itself next to a wall on its left side. Addi-
tionally, once the action associated with a particular stepin
the planning process is executed, C-links allow the releasing
of those resources associated with branches in the planning
tree which were not followed.

If actions, such as “turn right” are known not to fail, it is
beneficial to remove all nodes of the graph once the phys-
ical agent has performed the actions associated with those
nodes. If on the other hand, actions are susceptible to fail-
ure, keeping the nodes along the execution path in use (up to
the resource limitations of the system) can lead to additional
advantages. For example, if an action fails, the backtrack-
ing process only involves allowing the node one C-link up
from the failing node to re-execute its action (e.g., if a “turn
right” fails, the planner may delete theRnode and try to find
an alternate path by either moving forward or turning left).

Another advantage relates to the system’s knowledge of
the world. Planning processes usually create plans for sev-
eral steps in advance of the related physical execution. In
the physical world, conditions are changeable. Consider, for
example, the case where pointB is the known location of
a resource the agent needs to obtain. If, at the conclusion
of the physical actions the resource is not found (either be-
cause its location has changed or the planning process was
erroneous), it is now easy, to retrace the last few steps that
the agent has performed, until the state of the environment
matches the expected state of the planning process - perhaps
even returning to pointA. With a system like the one in
Figure 8, this retrace can easily be done by following the
C-links backwards through the graph.

P−link

O−link

C−link

A−link

Environment Simulation Module

P

R L S

P

R L S

R

R

P

P

L S

L

Figure 8: Planning example - sample instantiation

In Figure 8 the first three steps of a planning planning
process developed from the structure of Figure 7. The figure
illustrates two instances in which nodes were left uninstan-
tiated.

Use Case Map example
By allowing the architecture to be specified at various levels
of abstraction, the APOC architecture specification can be
as abstract as to be a direct mapping from aUse Case Map
(UCM) description of the system. This allows the analysis of
top-down decomposition models such as [Buhret al.1998].

Use case maps are defined through six types of com-
ponents: paths, waiting places (for stimuli or events, de-
noted with circles in UCM diagrams), timers (waiting places
with an upper bound on waiting time; denoted with “clock
faces”), bars (markers for ends of paths, as well as begin-
nings and ends of concurrent paths), basic paths (paths start-
ing at a waiting place and ending at a bar) and directions.
For a direct (though not necessarily most efficient) mapping
from UCMs to APOC, each waiting place, timer, and bar is
mapped to a separate APOC node.

The two examples in Figures 9 and 10, taken from [Buhr
et al.1998] illustrate how such mappings may be performed.
The UCM diagram is a generic example, but it can be ap-
plied to the following scenario of action selection:

• The left waiting place represents inputs from external
stimuli

• The left bar represents computation based on the internal
state of the agent

• The right waiting place synchronizes the data based on
internal state with data coming from a higher level planner

• The right bar represents the end of computation where all
three pieces of data have been gathered and an action has
been selected for the agent

It should be noted that the APOC links depicted are, with
two exceptions, generic links, the actual type depending on
the specific system depicted. It should be noted that the con-
version has been done in a manner which illustrates the cor-
respondence that can be drawn between UCM and APOC
component, and not in the most concise manner allowable
by APOC (e.g. theb nodes could be combined with C-links
into a single B(2,3) type node).

black box
whole system

external
inputs

(1,1) (1,1)

(1,1)

(1,1)

(1,1)

w b

b w

1

21

2

s

generic link

Figure 9: Black box UCM example

Figure 9 illustrates a high-level UCM description and re-
quires an abstract APOC node to represent the entire system.
Figure 10 illustrates how a more detailed map can be ported
to APOC.

Cellular automata simulation
For cellular automata, we start be defining the basic entities
in the APOC framework. A cellular automaton is an array
of identically programmed automata which interact with one
another [Wolfram1984]. Each cell is defined by

• state - a variable that takes a different separate for each
cell. Cell state can be easily implemented as part of the
maintenancesection of an APOC node.

• neighborhood - the set of cells that it interacts with. The
neighborhood of a cell can be described in terms of those
cells to which it is connected via C-links.

• program - the set of rules that defined how its state
changes in response to its current state, and that of its
neighbours. This is easily implementable in theaction
section of an APOC node.

external
inputs

(1,1) (1,1)
W S

S

1

3

2

S
1

(1,1)
1

(1,1)

W2

(1,1)

(0,1)B

(1,1)

W

B3

3

2

(1,1)

B

generic link

C−link

(1,1)

higher level
inputs

Figure 10: White box UCM example

Consider the simple example of the game of life as illus-
trated in Figure 11, with the following rules:

1. A living cell with only 0 or 1 living neighbours dies from
isolation.

2. A living cell with 4 or more living neighbours dies from
overcrowding.

3. A dead cell with exactly 3 living neighbours becomes
alive.

4. All other cells remain unchanged.

Figure 11: Game of life example

The APOC implementation of cellular automata requires
each cell to keep track of its overall position in the system in
the form of an integer coordinate pair. With that provision,
the implementation is made as follows:

P−link

O−link

C−link

A−link
L

L

L L

1

2

4 5

(1,10)

(1,10)

(1,10)

(1,10)(1,10)

L (5,50)

3L

Figure 12: Game of life - sample APOC initial configuration

• Specify an initial configuration through the type config-
uration, as seen in Figure fig:life-init. The left side in-
dicates the most concise method of specifying the game.
For that specification to be feasible, typeL has to contain
the initial configuration of the system. The node arrange-
ment on the right is specified according to the life exam-
ple above for ease of understanding. All nodes in the type
specification are identical with the exception of the loca-
tion, which is specified for each instance that is produced
during the development of the system. It should be noted
that the specification on the left is rather more general, as
the resource restriction is a general one. This implies that
the 50 units could be instantiated by a single cell and its
descendants if permitted by the configuration, as opposed
to the 10 instances per “type” indicated in the right side
configuration.

• At instantiation, each node attempts to instantiate a
“dead” cell at the eight positions around it. This simply
means that a cell of coordinates(x,y), attempts to instan-
tiate cells which are given coordinates(x− i,y− j), with
i ∈ [−1,0,1], j ∈ [−1,0,1] andi and j not simultaneously
0. If a cell with those coordinates already exists, the node
simply connects to it through a C-link, as illustrated in
13.2.

P−link

O−link

C−link

A−link
a

0,2

a 1,1

a
−1,0 a0,0 a

0,1

Figure 13: Game of life - APOC configuration

• Each cell checks the number of incoming C-links and
changes its incoming C-links and changes its status ac-
cording to the rules described above. A ’dying’ cell
deletes all its outgoing links.

• Finally, a dead cell with no incoming C-links deletes it-
self.

With the set-up described above, a dynamic game-of-life
system whose size need not be limited at design time is
easily implementedvia APOC constructs. The system de-
scribed above will have the live-cell configuration shown in
Figure 14 after one iteration.

The basic concepts described in this section can be ex-
tended to other cellular automata problems.

2For the sake of readibility, only C-links are shown in Figures
13 and 14. In the actual system, each link is accompanied by an
O-link

P−link

O−link

C−link

A−link

a
0,2

a 1,1

a
−1,0 a0,0 a

0,1

0,−1
a

a
−1,1

Figure 14: Game of life - Live-cell configuration configura-
tion

Architecture analysis
As mentioned in previous sections, APOC architectures can
be specified at high levels of abstraction. This allows the
designer to provide only “limits” for the development of the
architecture (e.g. resource limitations, or limiting a particu-
lar type to using A-links), but not the particular architectural
layout. The possibility thus arises that useful functionalca-
pacities which were not present in the original architecture
develop through interaction with the environment.

For many agents, prolonged environmental interaction
can lead to the development of complex systems, perform-
ing specialized functions geared towards the survival of the
agent. In such circumstances, gaining an understanding of
the role various components play in the architecture be-
comes an extremely difficult task in the absence of special-
ized architecture analysis tools. It is in this context thatwe
provide in this section a first look at the process of analyzing
these self-developing architectures. The following section
introduces an algorithm for basic architecture analysis.

Hierarchies in non-hierarchical architectures
Architectures defined in APOC often do not have explicit hi-
erarchies defined at design time. However, C-links impose a
degree of structure on these architectures. It is this structure
that can be exploited in order to analyze the architectures
with a view towards the complexity of the computation per-
formed in theactionsection of each node.

Hierarchy Identification Even though APOC architec-
tures are specified at the level of types of instances, thus
hiding to a certain degree the underlying structure, certain
relations can be distinguished among type-level components
connectedvia C-links. These relations can be broken down
to two different classes:

• C-link connection from a complex type to a simpler type
(e.g., a type that achieves part of the goal of the more
complex type)

• C-link connection between two related types of similar
complexity (e.g., as seen in the planner example above)

The above breakdown can be used to identify substruc-
tures as defined by the network of C-links within an archi-
tecture by following outgoing C-links from the type-level
description of the architecture. Two possibilities arise:the

chain (graph) of links eventually ends in a type with no out-
going C-links, or the original type is encountered a second
time. With this in mind, we introduce the following defini-
tion:

Definition 1. Theabstraction level of a node, n, in the run-
time architecture is defined as the maximum number of con-
secutive C-links that can be followed out of n until either:

• A node with no outgoing C-links is encountered

• Node n is reached again without repeating any C-links
along the way

Following this definition, the algorithm for determining
the abstraction level of a node,n, takes two arguments: the
directed graphG = (V,E), whereV is the set of type nodes
andE is the set of C-links, and noden and returns the level
of abstraction of noden.

FIND-ABSTRACTION-LEVEL(G,n)
path length← 0
for each vertex u∈ V[G]

if u has no outgoing C-links
do path lengthu← FLSP(n,u,G)3

if path lengthu > path length
path length← path lengthu

path lengthn← FLSP(n,n,G)
if path lengthn > path length

path length← path lengthn

returnpath length

In the algorithm above, FIND-LONGEST-SIMPLE-
PATH is a modified shortest path algorithm [Cormen, Leis-
erson, & Rivest1990] and returns only the length, in number
of links, of the longest simple path betweenn andu. In the
next section we look at how abstraction level information ap-
plies to some the examples presented in this paper and what
that information could tell us about the system if no prior
knowledge of the system existed.

Uses of hierarchical information

In this section we consider how the abstraction level con-
cept applies to some of the examples presented earlier in
the paper and we investigate the type of information that
abstraction levels can provide to an observer without prior
knowledge of the systems.

Neural networks In Figure 3, there are only three nodes
arranged in a strict hierarchy with respect to C-links. Apply-
ing the abstraction level algorithm gives nodeT1 an abstrac-
tion level of 1, nodeT2 an abstraction level of 1, and node
T3 an abstraction level of 0. In this case the implications of
the respective abstraction level numbers are clear: nodeT1
represents either the most “abstract” type in the system, or
the level at which external inputs enter the system; nodeT2
represents an intermediate layer; nodeT3 represents either
the basic action or the output layer of the system.

3FLSP denotes FIND-LONGEST-SIMPLE-PATH

Planning In Figure 7, there are four nodes, each of which
has an abstraction level of 2. The implications here are that:

• There is an interdependence between nodeP on one hand
and theL,R, andSnodes on the other.

• All four nodes have some capability of processing envi-
ronmental/internal information. This processing may lead
to the instantiation of a new node

• All four nodes have the ability to terminate the action of
the system

Cellular automata simulation The cellular automata il-
lustrates one possible problem with the abstraction level
analysis. If the analysis is performed on the left side of Fig-
ure 12, it seems that there is one type, which is self sufficient.
It receives information from the environment, processes it,
and makes a decision based on that processing. However, if
the analysis is performed on the more detailed original spec-
ification, different levels of abstraction are obtained foreach
node. This is an example of the type of situation for which
a more refined notion of “level of abstraction” than the one
provided above is required to be able to extract automati-
cally the functional organization of an APOC architecture.
Nevertheless, the previous examples show that with a no-
tion as simple as the one defined valuable information can
be already extracted from the C-link architecture.

Discussion
The APOC architecture framework discussed in this paper is
still very much in the development stages. However, as the
above examples with the current version of APOC indicate,
there can be great utility to an architecture framework that
allows one to cast at different levels of abstraction several
prima facieunrelated formalisms (such as neural networks,
cellular automata, and planning algorithms). Not only is it
possible to compare the functionality of these different for-
malisms in a unified framework, but it is is also possible
to assess the resource requirements of these formalisms at
the architecture level. Furthermore, a framework like APOC
can provide the basis for the definition of algorithms that can
automatically extract information about substructures (such
as modules) and their functional organization from architec-
ture descriptions. This is particularly interesting for virtual
machines that have undergone a learning or adaptation pro-
cess, which modified their original architecture in such a
way that functional components of their current architecture
are not easily identifiable (e.g., neural networks after learn-
ing and/or growing processes).

It is also worth mentioning that APOC is not limited to ar-
chitectures of single agents or to agent architectures, forthat
matter. Rather, it is possible to define multi-agent systems
at the level of indiviual perceptions and actions in terms of
the APOC framework: each individual agent is modelled by
an APOC node, which in turn has O-links (modelling the
perceptions of the agent) and A-links (modelling the actions
of the agent). To model procreation in biological systems,
C-links can be used to allow agents to instantiate copies of
themselves. In general, APOC could be used to model both
centralized and distributed control systems.

To support the implementation of agent architectures in
the APOC framework, we are currently developing a soft-
ware tool that will allow users to develop APOC architec-
tures in JAVA. Invidiual APOC nodes can be defined de-
pending on the task at hand, which can then be linked to-
gether with a graphical tool using any of the four link types.
The APOC development environment, furthermore, allows
users to instantiate architectures and monitor their states
over time as the virtual machine is running, i.e., to run sim-
ulations of control systems defined in APOC. Examples of
such simulations range from neural network simulations to
real-time robot control systems.4

References
Andronache, V., and Scheutz, M. 2002. Contention
scheduling: A viable action-selection mechanism for
robotics? In Conlon, S., ed.,Proceedings of the Thirteenth
Midwest Artificial Intelligence and Cognitive Science Con-
ference, MAICS 2002, 122–129. Chicago, Illinois: AAAI
Press.
Buhr, R. J. A.; Amyot, D.; Elammari, M.; Quesnel, D.;
Gray, T.; and Mankovski, S. 1998. High level, multi-
agent prototypes from a scenario-path notation: A feature-
interaction example. InProceedings of the 3rd Interna-
tional Conference on the Practical Applications of Agents
and Multi-Agent Systems (PAAM-98), 255–276.
Carpenter, G., and Grossberg, S. 1988. The art of adaptive
pattern recognition by a self-organizing neural network.
IEEE Computer77–88.
Cooper, R., and Shallice, T. 2000. Contention scheduling
and the control of routine activities.Cognitive Neuropsy-
chology17(4):297–338.
Cormen, T. T.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. Cambridge, MA: MIT Press.
Maes, P. 1989. How to do the right thing.Connection
Science Journal1:291–323.
Scheutz, M. 2001. Ethology and functionalism: Behavioral
descriptions as the link between physical and functional de-
scriptions.Evolution and Cognition7(2):164–171.
Sloman, A., and Logan, B. S. 1998. Architectures and tools
for human-like agents. In Ritter, F., and Young, R., eds.,
Proceedings of the 2nd European Conference on Cognitive
Modelling, 58–65. Nottingham, UK: Nottingham Univer-
sity Press.
Wolfram, S. 1984. Cellular automata as models of com-
plexity. Nature311:419–424.

4A beta-version of the software can be downloaded from
HTTP://WWW.CSE.ND.EDU/˜AIROLAB /APOC/.

