
Growing Agents - An Investigation of Architectural Mechanisms for the
Specification of “Developing” Agent Architectures

Virgil Andronache Matthias Scheutz
University of Notre Dame

Notre Dame, IN 46556
e-mail: vandrona,mscheutz@nd.edu

Abstract

In this paper we investigate various aspects of “developing
agent architectures”, i.e., architectures that change over time
according to their specification, in the framework architec-
ture APOC. After a brief overview of APOC, we examine and
discuss several ways of specifying developing architectures,
and present examples of definitions of such architectures in
APOC (e.g., Grossberg’s ART networks). We conclude with
a brief discussion of the advantages of being able to specify
developing architectures within an architecture framework at
the level of the architecture itself.

Introduction
Architectures for intelligent agents typically do not define
(as part of the architecture specification) the limitations of
their components and how these components can change
over time (if they can change at all). For example, architec-
tures that include memory components usually do not spec-
ify how many items can be stored in memory, or whether
memory is extensible (and if so, to what extent). Yet, mak-
ing resource limitations and possible modifications of com-
ponents explicit as part of the architecture specification can
help in the design of agent architectures in many ways: for
one, it will allow designers to explicitly take into account the
limiting cases (e.g., where computational load or resource
consumption is high). It will also permit them to capture
some of the dynamics of instantiated components of the ar-
chitecture in the running virtual machine at the level of ar-
chitecture specification. But most importantly, it will allow
them to specify various kinds of development and learning
processes using architectural mechanisms instead of algo-
rithms or mechanisms external to the architecture specifica-
tion. That way learning and adaptation mechanisms, being
part of the architecture and as such being implemented in
certain components of the architecture, can be modified, ad-
justed, and generally altered in the same way that other parts
of an architecture can be modified.

In this paper, we present the architecture framework
APOC that provides architecture-level mechanisms to sup-
port investigations of architecture extension and modifica-
tion as part of the architecture description. Following a brief

Copyright c
�

2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

overview of the components of APOC, we will describe in
detail mechanisms in APOC that can be used to define devel-
oping agent architectures. We will demonstrate these mech-
anisms with several examples including a succinct specifi-
cation of the development of fully-connected feed-forward
neural networks in APOC. We conclude with a discussion
of developing architectures and their advantages for the de-
sign of complex agents.

The APOC Architecture Framework

Basic Components

APOC is an architecture framework which provides a va-
riety of capabilities for the specification of complex agent
architectures. It can be used to implement commonly used
architectures, such as subsumption and SOAR. The frame-
work also provides mechanisms for run-time architecture
modification and resource management that allow for spec-
ifications of simple architectures which can develop into
complex architectures at run time. The APOC architecture
framework consists of heterogeneous computational compo-
nents called “nodes”, which can have any of the following
four kinds of links among them: (1) Activation, (2) Priority,
(3) Observer, and (4) Component links (hence the name
“APOC”).

An APOC node is defined as a tuple :�
priority � activation � instde f ault � instmax � linksin � linksout �

maintenance � action � , where
� priority is the numeric priority of the node,
� activation is the numeric activation of the node,
� instde f ault is the number of instances of the node which are

instantiated automatically by the system. instde f ault � 0
� instmax is the maximum number of instances of the node

which can exist simultaneously in the system. instmax �
instde f ault and instmax � 0.

� linksin are incoming links from other nodes
� linksout are links going out to other nodes in the architec-

ture
� maintenance is an ongoing computation used for updating

the state of the node (e.g., priority calculation)

� action is a computation that is relevant to the system as a
whole and is executed only if certain conditions are satis-
fied (e.g., if could consist of a series of motor commands).

The APOC Links
The first type of link, the A-link, is an activation passing
link. Activations are the most general means through which
a node becomes active. Activations are determined by the
values passed via incoming activation links. How these acti-
vation link values are used to compute the final activation of
a node is a decision to be made on a case by case basis (e.g.,
as in [0]). In most cases the simple and straightforward ad-
dition of incoming values will be the best way to determine
the activation of a node.

The second type of link is a priority link (P-link). Unlike
activation values, which are used in a combinatory fashion
to determine an ’overall best’ action, priorities are used to
bias the system towards performing an action favored by one
subsystem (or functional unit), e.g., if a global alarm mech-
anism is active, as described by Sloman [0].

The observer link (O-link) is another link supported by the
architecture. The purpose of O-links is to provide a means of
communication among the nodes in the architecture graph.

The C-link (component link) is used to instantiate nodes
at run-time. Since it needs to determine resource availability
at instantiation time, C-links play an important part in re-
source allocation and arbitration. If A-links or P-links are
used in conjunction with a C-link, activation and priority
based mechanisms can be used to trigger the action of the
newly instantiated node.

Link Configuration
This section focuses on the specification of link behavior
in the run-time machine. Link configuration can be speci-
fied in a recursive manner for each individual link. In this
manner, any overall link configuration can be obtained in an
APOC-based architecture. Conceptually, APOC link behav-
ior is defined in terms of a basic two node unit as described
in Figures 1 and 2.

C C

T1 T2

T3

C C

I1 I2

temp

C C

I1 I2

temp

I3

C C

I1 I2

I3

Figure 1: Link management with accessown being false

Consider the case in Figure 1. Types T 1 and T 2 both
use type T 3 in their computation. They connect to T3 via
C-links, for instantiation purposes, and via one of the other
three types of link in order to influence the execution of T 3

instances. In the run-time machine, when I2 needs to cre-
ate an instance of type T 3, a temporary node, temp, is cre-
ated through the related C-link. The sole function of temp is
the management of A-, P-, and O-links. All type-level links
from T1 and T 2 to T3 now connect to temp.

The C-link which causes the instantiation of temp - and,
thereafter, of I3 - determines the access that other nodes
have to I3, by specifying the boolean parameter accessown.
If accessown is false, I3 is created for the exclusive use of I1.
Otherwise, the other nodes connected to temp are allowed
to connect to the new instance. The decision of connecting
to I3 is then made by each node individually and specified
through the accessuse parameter of the corresponding C-link.
The dynamic management of links when accessuse is true is
illustrated in Figure 2.

C C

T1 T2

T3

C C

I1 I2

temp

C C

I1 I2

temp

I3

C C

I1 I2

I3

Figure 2: Link management with accessown being true

In order to specify the link configuration for an arbitrary
number of incoming links, a new temp node is created for
each incoming link, as can be seen in Figure 3. In that figure,
the following parameters are set:

� For I1 - accessown � true, accessuse is not used; can be
either true or false

� For I2 - accessuse � f alse, accessown is not used; can be
either true or false

� For I3 - accessuse � true, accessown is not used; can be
either true or false

At the completion of this recursive process, any combina-
tion of links going to node I3 can be generated.

It should be noted that this process represents the theoret-
ical foundation behind APOC’s support of all possible link
structures. Practical implementations can deviate from this
strict modality of generating run-time links, as long as the
overall functionality is preserved.

The following link behaviors are examples of the specifi-
cations that could be given to links “accompanying” C-links
in the APOC framework

� Connect to all instances to which the C-link connects
� Connect to a single instance of the instances to which the

C-link connects.
� Connect to some of the instances to which the C-link con-

nects. It should be noted that for this case, link behavior

C C

I1 I2

temp

I3

C C

I1 I2

temp

I3

C

temp’

I1 I2

I4

C C C

I3

C C

I1 I2

temp

I3

C

temp’

I4

T1 T2

T4

C C C

T3

(1,1) (1,1)

(0,1)

(1,1)

Figure 3: Recursive link management

needs to be specified in quite some detail, as the over-
all configuration may change on both the addition and re-
moval of an instance from the run-time machine.

Two basic examples of APOC link configurations and
their uses are presented in the next section.

Building architectures
In APOC, architectures are specified in terms of type rela-
tionships among components, i.e, APOC nodes, which pro-
vides a direct way of specifying abstract structures and mod-
ules. Tokens of these types are then instantiated in the run-
ning virtual machine. The following is a sampling of the
possibilities exhibited by this mechanism.

This is the basic, non-resource-conflicting example of
run-time node instantiation.

C C C

(1,2)

C C

T1 T2

T3

I1 I2 I1 I2

I3

I1 I2

I4 I3

(1,1) (1,1)

I3

Figure 4: Type diagram, initial instantiation, state after first
request, final state

In Figure 4, T1, T2, and T3 represent three node types,

with types T1 and T2 utilizing the action performed by type
T3. The numbers in parentheses in the type diagram indicate
instde f ault and instmax for each of the three types. Nodes I1
and I2 are instances of types T1 and T2 respectively, while
nodes I3 and I4 are instances of type T3. When the archi-
tecture is first instantiated, nodes I1, I2, and I3 are instanti-
ated, since all three types have instde f ault set to 1. When the
first explicit request for execution comes from I1 or I2 (in
this case, I2), that node is connected to the existing instance
(I3). The next request results in the instantiation of I4, with
the requesting node, I1, using I4 to perform its operation.

Another use of C-links results in self-replicating units, as
can be seen in Figure 5.

C

C(1,3)

C
T1

I1

I2

C

Figure 5: Type diagram, final state

The scenario in Figure 5 is both dynamic and reversible,
i.e., the structures are created and can be destroyed at run-
time. It is also possible to specify C-link behaviors which
produce permanent structures.

Given the capabilities built into the APOC architecture via
C-links, various types of learning can be directly modeled at
the architecture level. For example, ART networks ([0])
could be developed during the life-time of an agent in a very
similar way to the neural network above.

Unfolding and Copying
The C-link can be viewed as having two different types of
functionality: duplicating and unfolding. Consider the situ-
ation in Figure 6.

The process shown in Figure 6 illustrates both uses of the
C-link. After the architecture is initialized, the C-link is used
to unfold the structure needed for executing instances of type
T1. In the second stage of the process, the link is used to
duplicate a node of type T 1. While functionally identical,
conceptually the two uses of the C-link give rise to different
run-time properties.

Since APOC operations are performed at the level of in-
dividual instances, duplication by itself would have limited
practical use. Little more than the creation of a set of in-
stances (e.g., a network of nodes) that could be used in vari-
ous places in the architecture could be achieved by duplica-
tion alone. Similarly, unfolding taken by itself could serve
for little more than improving resource use. However, used
in combination, the two C-link uses allow for the re-creation
of entire structures. This opens the door for the creation of
specialized structures, which can be ’plugged into’ the ar-
chitecture wherever appropriate. It also allows the system to
adapt to changing resources, for example by duplicating an
abstract system to speed up computation once the resources
become available.

I1
(1,3)

(0,4) (0,2) (0,5)

T1

T2 T3 T4

I1

I2 I3 I4

I1

I2 I3 I4

I1

I2 I3 I4

I1

I2 I3 I4

I1

Figure 6: Duplicating and unfolding

Consider for example the scenario in Figure 6 to represent
part of an agent, with node I1 receiving information (data,
activation, or priority) directly from the environment. In that
case, the duplication of the structure can be a direct result
of the agent’s interaction with its surroundings. Different
architectures can then develop from the same specification,
each being appropriate for the circumstances in which it was
developed. Figure 7 provides an example of the use such
developing structures could have in an agent. In this figure,
the network being grown is an ART network presented in
[0]. This example will be presented in more detail later on.

P−link

O−link

C−link

A−link
(1,50)

(1,100)

T1

T2

R

E

(1,1)

G

(1,2)

(1,1)

Figure 7: Sensory processing example

Examples
In this section we examine two cases in which the properties
of the APOC framework are applied to developing structures
that could be used in agents.

Fully Connected Feed-Forward Neural Network The
properties of the C-link were presented in a previous sec-
tion. Perhaps more interesting, however, are applications
that involve combinations of links, such as those in Figure
8.

In Figure 8, an instance of type T1 can create 100 in-
stances of type T2. Similarly, instances of type T2 can cre-

P−link

O−link

C−link

A−link
C

A C

T1

T2

T3

. . .

. . .

I1

I2 I2 I2 I2

I3 I3 I3 I3

1 2 99

1 2 99 100

100

(1,1)

(1,100)

(1,100)

Figure 8: Type diagram, final state

ate 100 instances of type T3. With the proper link behavior
specification, a run-time structure like the one represented
by the final state can be obtained. What this amounts to
is the possibility of “growing” such structures (e.g., a lay-
ered network that will eventually develop a fully connected
layer).

ART network development As previously mentioned,
APOC descriptions are made at the type-level. The corre-
spondence of the nodes in Figure 7 to the ART network de-
scribed by Carpenter and Grossberg is as follows:

� E represents the external inputs, in this case coming from
a sensory node

� G represents gain control.
� T1 represents the node type for nodes in the input layer
� T2 represents the node type for nodes in the category rep-

resentation layer, and
� R represents the reset of short term memory

The relation of the type-level links to the run-time ma-
chine depends on the behavior of each C-link. With the
proper C-link definitions (e.g., C-links to instances of type
T1 copy over all links from the parent node), the final struc-
ture is the one of Figure 9, which mirrors the example pre-
sented in [0]. In the figure, the actual link structure for in-
coming links to the T 1 and T 2 groups is determined by the
how the behavior of the C-links in the type-structure is de-
fined. In this case, it would be appropriate to have connec-
tions to each of the nodes in those groups. However, since
any link structure can be obtained in APOC, the links are
represented in a more abstract manner.

One advantage provided by the APOC framework is that
the number of categories can be made to vary according to
the resources which the system is able to allocate to the pro-
cess. For example, the network could start with 10 nodes
of type T 1 and vary that number up to the maximum of 50
according to environmental circumstances.

Having looked at some of the ways in which complex
agent architectures can be developed within the APOC
framework, we will now briefly consider APOC in the gen-
eral context of agent design.

Discussion
Agent architecture specification and instantiation are two
distinct processes. However, in practice, the distinction be-
tween the two is often obscured by the fact that each element

P−link

O−link

C−link

A−link

g2

rt1t1

t2t2

t1

t2

g1 12m

12n

e

Figure 9: Sensory processing example - final architectural
state

of the architecture specification (type) typically has exactly
one instance (token) in the run-time virtual machine. That
limitation of the architecture specification is removed in the
APOC framework through the explicit specification of the
maximum number of tokens that can be instantiated for each
type. This makes run-time node recruitment for specializa-
tion a feasible option for APOC based architectures. It also
gives agent designers the possibility of providing an agent
with a variety of adaptation mechanisms, while allowing the
agent to ‘choose’ which mechanisms are actually instanti-
ated. Overall, the type-token differentiation opens the door
to defining an entirely new class of ‘developing architec-
tures,’ as illustrated in the previous sections.

Another asset of the framework is the built-in resource
management mechanism. The type-level specification of the
system allows the user to specify the default and maximum
number of instances of each type that are going to be present
in the run-time machine. Thus, nodes in the run-time ma-
chine perform their own resource management, through out-
going C-links. This allows the system to automatically add
or delete nodes if changes occur in the available resources.
The dynamic self-administration system, coupled with the
four links which define all APOC communication also al-
lows for the implementation of highly parallel systems at
the architecture level.

It is characteristic to APOC that architectures in APOC
can be specified at various levels of abstraction: an APOC
type can represent a neural network unit, or something as
abstract as a node performing a search operation (e.g., in
long term memory). Therefore, on one hand, APOC archi-
tecture specification can be viewed as a direct mapping from
a Use Code Map description of the system. This allows the
analysis of top-down decomposition models such as [0]. On
the other hand, a one-to-one correspondence can be made
between the description of an architecture and the nodes in-
stantiated in the run-time virtual machine, thus allowing the
user to have complete control over all instances of compo-
nents of the architecture at run time. User control can extend
to specifying, at the architecture level, any of the following:

� models of learning algorithms
� adaptation mechanisms and changes in these mechanisms
� self-replicating architectures
� self-organizing architectures

as well as several other properties of the architecture.

Conclusion
In this paper we started an investigation of architecture de-
velopment using the APOC architecture framework. Devel-
oping architectures provide new avenues for agent develop-
ment, as they allow for investigations of the relationships
between architecture specification and instantiation.

The characteristics which give the APOC framework its
flexibility (i.e, the explicit handling of type-token relation-
ships and C-links as means of dynamic control) were dis-
cussed and several examples of their application were pre-
sented. As a result of separating types from tokens, resource
limitations are intrinsically taken into account in APOC by
limiting the number of tokens which can be instantiated.
The type-token distinction (in conjunction with the use of
C-links) can be used in the development of complex struc-
tures in the run-time machine. Examples of applications of
APOC features included: generation of fully connected lay-
ers of neural networks, self-replication, and ART network
generation.

Future work with the APOC framework will include fur-
ther investigations of the interplay between C-links and the
other links in the framework, a generalization of the cur-
rent implementation to support all previously described fea-
tures of the C-link 1, and applying developing architectures
to software and embodied agents.

References
R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel,
T. Gray, and S. Mankovski. High level, multi-agent proto-
types from a scenario-path notation: A feature-interaction
example. In Proceedings of the 3rd International Confer-
ence on the Practical Applications of Agents and Multi-
Agent Systems (PAAM-98), pages 255–276, London, UK,
1998.
G.A. Carpenter and S. Grossberg. The art of adaptive pat-
tern recognition by a self-organizing neural network. IEEE
Computer, pages 77–88, March 1988.
S. Grossberg. Adaptive pattern classification and universal
recoding: I. parallel development and coding of neural fea-
ture detectors. Biological Cybernetics, pages 23:121–134,
1976.
P. Maes. How to do the right thing. Connection Science
Journal, 1:291–323, 1989.
A. Sloman and B.S. Logan. Architectures and tools for
human-like agents. In F. Ritter and R. M. Young, editors,
Proceedings of the 2nd European Conference on Cognitive
Modelling, pages 58–65, Nottingham, 1998. Nottingham
University Press.

1An APOC simulator is under development. Currently, A-, P-,
and O-links are fully implemented. A limited-functionality version
of the C-link is also available

