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Abstract

We present a real-time system for

motion detection and tracking for au-

tonomous robots with limited computa-

tional resources. The system uses an at-

tentional mechanism to combine color and

motion blob information, as well as pre-

diction mechanisms to improve the over-

all system performance. We demonstrate

the functionality of the system in several

test scenarios and also discuss solutions to

various problems that arise from the limi-

tations of the robotic platform.

Keywords: real-time adaptive tracking, au-
tonomous robot

1 Introduction

Fast and reliable processing of visual information
is critical for many applications of autonomous
robots. In particular, detection and tracking of
moving objects while the robot is moving is of
crucial interest to mobile platforms ranging from
robotic soccer players to unmanned ground vehi-
cles for military scenarios. While the detection
and tracking of moving objects is already a difficult
task, the problem is only exacerbated when compu-
tational resources are very restricted. Especially in
small autonomous robots with slow embedded com-
puters, where the processing speed of the CPU is
often traded for the longevity of the battery, stan-
dard algorithms for motion detection and tracking
are not applicable.

In this paper, we present a system for motion
detection and tracking that is especially target at
the severe resource limitations of small autonomous
robots. It uses an attentional mechanism to select
different methods and processing constraints from
several modules for the detection and prediction

of motion in a scene. We first discuss the over-
all system architecture and the motivation for the
design. Then we present the implementation and
report very promising results from several sets of
experiments with the system.

2 Background

A significant amount of research has been per-
formed for motion detection and surveillance. Still
image analysis results include a variety of ap-
proaches ranging from color analysis [6] to the use
of genetic algorithms [1]. The active blobs approach
relies on building 2-D mesh representations of sur-
faces. Deformation of a mesh via transforms to-
gether with texture mapping are then used to iden-
tify deformable objects [5]. Eigenspace approaches
[2] use training images and matrix decomposition
to create a database of feature images which are
used to identify detail of new pictures. An effi-
cient method for a rotating camera was presented
by Dellaert and Collins [4]. The algorithm relies on
differences between stored images of the surround-
ing area, taken at various angles.

Several of the algorithms mentioned above (e.g.,
[5]) are intended for off-line image analysis. As
such, they are not designed to function under
the type of computational power constraints im-
posed by an autonomous robotic agent. The al-
gorithms which are designed with a view towards
real-time applications (e.g., [4, 2]) require training
and may still prove too complex to run on sim-
ple, autonomous robots. Others that take resource-
constraints seriously (e.g., [3]), fail if colors cannot
be reliably detected.

What is needed is an online, real-time system
that can integrate different information to improve
detection and tracking performance despite limited
resources. In particular, we require that no assump-
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Figure 1: The system architecture

tions be made about the number or quality of
the color of an object nor about its uniqueness in
a scene. Nor should any restriction be imposed on
the lighting

conditions (e.g., to provide glare-free lighting).
Finally, no assumptions should be made about tem-
porary occlusions of the objects to be tracked by
other, possibly moving objects.

All these criteria together make it very hard,
if not impossible to show close-to-perfect perfor-
mance on high-performance systems, let alone on
low performance embedded systems. However, it is
possible to achieve a reasonable performance that
might be sufficient for many real-world applications.
In the following, we first describe the architecture
of our proposed system and then show the results
of the experimental validation of the design.

3 The System Architecture

The system consists of five major, concurrently ac-
tive modules: the color blob detection, the motion
blob detection, the blob tracking, the blob selection
and camera control, and the attentional subsystem
(see Figure 1). In the following, we will describe
the functionality of each modules as well as the
employed methods for reducing computational re-
source requirements.

3.1 Color Blob and Motion Blob De-

tection

Color and motion blob detection are the most ex-
pensive subsystems in terms of computational re-
sources (both in time and space): blob detection in
the whole image has a time requirement of O(width·

height) (where width and height are the dimen-
sions of the image). Each color is defined in terms
of three centroids for each dimensions in RGB space
and two threshold values for each centroid, respec-
tively. Any number of colors can be searched for
in one pass of the algorithm. Different from other
highly optimized blob detection systems (e.g., [3]),
any number of overlapping color regions can be de-
fined in RGB space and searched for, resulting in
overlapping blobs (this is too allow the system to
detect colors rather than having to supply them be-
fore hand). The time cost for a search for multiple
colors is linear in the number of different colors.
The algorithm checks each pixel whether it belongs
to one of the target colors and if so, either adds it to
the blob of the pixel to the left if the colors match,
or to the blob of the upper pixel if colors match. If
both the left and the upper pixel match but belong
to different blobs, then the two blobs are merged
right away. This step reduces the number of blobs
that need to be merged and thus improves the per-
formance of the algorithm.1 After all pixel have
been processed, centroids and bounding boxes are
computed, and blob filters are applied (e.g., blobs
below a minimal size are dropped). The algorithm
returns lists of color blobs ordered according to the
respective colors parameters.

Motion blob detection is based on the same al-
gorithm, except that pixels in two consecutive im-
ages are compared according to their difference along
all three dimensions (which are defined in terms of
“error intervals”). If a pixel in the current images
is not contained in the error intervals of the same
pixel in the previous image, it is added to a motion
blob. After processing all pixels, motion blobs are
merged in the same way as color blobs.

The JAVA implementation of the algorithm has
been further optimized in several ways to reduce
runtime resources. For example, all data structures
are pre-allocated (as “new” operations for class in-
stantiations in JAVA are expensive). Furthermore,
it is possible to invoke the algorithm with optional
parameters that define a rectangular area in the
image, to which the search of blobs should be con-
strained. Applying constraints is an important way
to increase the overall frame rate of the algorithm
(see the experiments below).

1Still, the flexibility of being able to search any number of
possibly overlapping color regions at the same time causes
a performance loss of a factor of 2 to 3 depending on the
application compared to the highly optimzed, yet less flexible
algorithm in [3].



3.2 The Attentional Subsystem

The purpose of the attentional system is to find par-
ticular objects in a scene and subsequently track
them as well as possible. Objects can be defined
in terms of multiple colors, size, and/or motion.
Whenever a new request for finding and tracking
an object is received by the attentional system, it
reconfigures the blob and motion detection systems
according to the new requirements. For example, a
request to the attentional system like “find a small
moving car and track it” will result in the follow-
ing configuration of the system: the motion tracker
will search the whole image for regions with move-
ment and return those blobs. The color blob detec-
tion will subsequently be called on those blobs for
a range of blue colors. For each blue object that
has been identified, a tracker will be instantiated
that will independently attempt to track the ob-
ject. A criterion can be set that will be used to
decide which blob to track if inconsistencies arise
(e.g., if two blobs move in different directions). The
attentional system receives information from each
tracker and, by applying the set criterion, assigns
one of them a higher priority than the rest. If the
camera moves, the attentional system compares the
overall number of pixels that are marked as mo-
tion pixels and discards an image if this number
is above a given threshold. This is a biologically
inspired method (performed by the human retina)
to determine whether the camera/robot is moving
or the objects are moving without requiring pro-
prioceptive feedback from the camera/robot mo-
tors. Without dismissing such images taken during
camera motion, the tracking mechanism will not
work properly, as trackers implicitly assume that
the camera has reached its final position when they
get blob information from the blob detecting sys-
tems. By suppressing the image from the camera,
the system’s integrity can be preserved.

3.3 The Motion Tracker

Motion trackers are instantiated for each matching
region that is found in the image (i.e., color blobs,
motion blobs, or combinations). Once instantiated,
they will attempt to track the blob defined by the
instantiation criteria (e.g., blue moving blob). If
the blob enters a critical region on the screen, then
the tracker sends a request to the camera control
system to move the camera. Similarly, whenever a
camera movement occurs, trackers are notified in
order to be able to update their state. If a tracker
has identified its blob in an image, it will attempt to
predict the blob’s location in the next image based
on the locations of the blob in the past two images.

The result of the prediction defines a constraint,
which is passed to the color and motion blob de-
tection systems in order to reduce processing time.
If a tracker loses its blob, it widens its constraints
and attempts to reidentify it in the current image.
It also notifies the attentional mechanism, which
ensures that wider regions in the images are con-
sidered for blob detection. If reidentification of the
blob is not possible, the tracker will wait for a pre-
determined number of images before it terminates
(at which time it will also notify the attentional
mechanisms).

3.4 The Blob Selection and Camera

Control

The blob selection and camera control module is
concerned with moving the camera fast enough to
keep the blob be designated by the attentional sys-
tem centered. The camera is controlled by two PID
controllers, whose gains have been experimentally
determined. Of particular importance for moving
objects are the non-zero ID components, which can
implement an inertia effect in the camera movement
that facilitates the tracking of moving objects (see
experiment 2 below).

4 Experimental Set-up

After presenting the details of the functional or-
ganization of the system architecture, we now de-
scribe the experimental setup to test the system
and verify its design. All experiments were con-
ducted with an ActivMedia Pioneer 2 robot with
a Sony Pan-Tilt-Zoom camera. The robot has an
onboard PC104 computer running RedHat Linux
8.0 with a 850 MHz Pentium III CPU and 128
MB of RAM, and a low-level motor control board
with its own embedded processor. Communica-
tion with the motor control board (sending com-
mands to the effectors and retrieving sensor in-
formation) was achieved using an asynchronously-
running server written in JAVA that wraps the low-
level controller commands. The tracking system
was connected to the JAVA server via JAVA RMI
(i.e., remote method invocation), which allows for
two different setups: the tracking system can either
run on the robot or on a remote host, in which case
it connects to the robot through a wireless ether-
net. The performance of the tracking system was
tested in both setups.

The architecture of the tracking system was de-
veloped and tested using the ADE Agent Develop-
ment Environment (under development in our lab).



Four ADE component types were used to imple-
ment the five tracking system components, where
motion and color blob detection where merged into
one ADE component for efficiency reasons.

4.1 Experiments

We ran three sets of experiments: (1) with a sta-
tionary camera on a stationary robot, (2) with a
moving camera on stationary robot, and (3) with
a moving camera on a moving robot. For each set
we considered two environments: one, in which the
tracked object was first never occluded, and one,
where the object to be tracked was visible in the
beginning, and subsequently occluded for short pe-
riods of time. We used several objects to test the
system, but will report only results from tracking
of a single, small blue toy car. This object was not
only more difficult to track because of its size than
the other objects we used (e.g., the kind of orange
soccer ball used in robo-soccer), but also because
its color was close to the color of the carpet in our
lab, so that it was often impossible to get a unique
color blob for the car.

4.1.1 Experiment Set 1: Stationary Cam-

era

In the first experiment, the car had a distinctive
blue color which facilitated its detection through
color blob image analysis. Blob information was
sent to a Tracker unit. The Tracker then iterated
through all blobs, using centroid, area, and bound-
ary information to determine which blob is most
likely to represent the car. Using color information
as the primary means for tracking led to very re-
liable tracking of the car in an environment with
several moving objects of different colors.

In our second experiment we added an obstacle
which occluded the car for half a second to a sec-
ond at a time. The obstacle was not wide enough to
fill the entire image captured by the camera. The
camera moved slightly past the beginning of the oc-
clusion and stopped with both ends of the obstacle
in view. Thus, when the car emerged on either side
- whether continuing its trajectory or reversing its
motion, the camera continued its tracking.

4.1.2 Experiment Set 2: Moving Camera

Here, we performed four sets of experiments: the
first two were identical to the stationary camera set.
However, motion detection was introduced here for
the first time into the system. Another new addi-
tion to the system was motion estimation: if the
car position was known for two iterations through

the control cycle, then an extrapolation was made
of the probable camera location. The search was
then initially limited to this area and, if that failed,
generalized to the entire image.

The third and fourth tests, described below,
tested the interplay between blob detection and
motion detection in tracking a moving object. A
PID controller was used to move the camera to the
best position for ball tracking. For best results in
our system, we have found that a P-gain of 0.26, a
I-gain of 0.2 and a D-gain around 0.2 allowed the
camera to track the car both in the unoccluded and
the occluded experiments.

For the first two experiments we moved the car
by holding it in one hand. In our third experi-
ment, we started the experiment in a similar man-
ner. However, at some point we closed the hand
around the car, continuing the motion. At that
point, the tracker could no longer rely on color in-
formation for tracking, relying instead on motion
information. In order to better recover the car
if/when it reappeared on the screen we kept infor-
mation about the size of the car. And compared
color blob sizes against the known size of the car.

A fourth experiment further tested the limits of
our system. As in the third experiment, at some
point the car was hidden in the hand. Here, how-
ever, the other hand was at this time also moved to
and fro in front of the camera. Tracking was sat-
isfactory, though sometimes, depending on thread
scheduling and how distinct the moving objects were
in the picture, the tracker would latch on to another
moving object and start following that (especially
if two moving objects came close enough to be iden-
tified as a single motion by the algorithm).

4.1.3 Experiment Set 3: Moving Camera +

Moving Robot

By adding motion to the robotic platform itself,
this became by far the most complex task of the sys-
tem, as the motion detection became far less useful
in limiting the areas which were searched for the
ball. However, the motion extrapolation proved to
be beneficial in this case, as the motion of the car as
it moved (in both a straight line and an a random
motion) was followed by the agent.

The additional load of computing motion and
controlling the robot wheels led the system to slower
response times, and more frequent loss of tracking
in the occlusion tests.

With the complete architecture in place, cycle
times were taken to evaluate the performance of
the architecture. Two measures were considered:
the time needed for visual processing and the time



Figure 2: Camera images and tracker information for stationary camera tracking: unprocessed image(top),
tracker information (bottom)

Figure 3: Camera images and tracker information for mobile camera tracking: unprocessed image(top),
tracker information (bottom). Two trackers are present in some images; the main blob is moving to the left

needed for one complete update of the architecture.
Visual processing averaged 121.65 ms per cycle with
a standard deviation of 231.94. Overall cycle times
averaged 146.94 ms, with a standard deviation of
103.07.

Three conclusions can be derived:

• Visual processing was responsible for most of
the CPU time used by the system (82.79%)

• Individual component processing times tend
to vary significantly due to the threaded na-
ture of the system

• The overall system variation in execution times
is much less than its component parts, since
most thread switches (with such exceptions as
the robot server updates) occur among com-
ponents of the architecture

5 Implementation Details and

Optimization Measures

In this section we present some of the ideas, op-
timizations, and heuristics used in our system in
order to maximize performance.

5.1 Threading and Parallelism

In autonomous agents, time is the critical resource:
it is essential that operations are performed effec-
tively and in a timely manner. An implicit conse-
quence of this is that threading and parallel execu-
tion should be used wherever possible.

5.1.1 Image capture

On the Pioneer 2 robots, the framegrabber uses
DMA to transfer images to memory. On an 850



MHz processor, using a 160 pixel by 120 pixel im-
age, each transfer takes roughly 0.1 seconds (hence
the highest possible framerate is 10 fps). It is there-
fore necessary that other processes execute in paral-
lel to the image capture. In JAVA, this translates to
image capture being performed in a separate thread
in the image server:

public void run() {
byte[] frame = null;
while (true) {
frame = frameGrabber.getFrame(quality);
synchronized(imageGuard) {

image = frame;
}
Thread.yield();

}
}

In the code above, the image is accessible to
the outside world and access to it is restricted in
order to prevent reads being performed during a
write. Also notable is the explicit Thread.yield()
call after each read. We have noticed that the JAVA
thread scheduler does not always preempt threads
in a timely fashion, leading to severe time lags in
camera movement when the yield is omitted.

5.1.2 Other threads

Robot sensory updates were run as an asynchronous
thread. Each architectural component was also run
as a thread, thus allowing the robot updates to in-
terweave with computation. All threads performed
a yield() at the end of their update cycles, provid-
ing a simple mechanism for concurrent updating.

The time to get a new image from the robot
using the framegrabber is approximately 100ms.
Therefore, the image analysis node should retrieve
images from the robot every tenth of a second. This
was again an opportunity for threaded execution:
in order to minimize both RMI calls and the time
spent waiting for images to arrive, a thread in the
image analysis node retrieves an image from the
robot, sleeps for the remainder of time to 100 mil-
liseconds from the start of the last access and starts
a new retrieval.

5.1.3 Image analysis

As mentioned in the Method section, in searching
for the car, motion detection was performed first,
with color detection only in the regions, where mo-
tion was detected. Limitations on the area on which
motion detection was performed were sometimes
imposed based on estimations of the car motion.
This estimate relied on knowing where the car was

as two previous points in time. The difference be-
tween them was computed and taken as an estimate
of how far the car may have moved since last seen.
A rectangular search region is created by starting at
the previously known location, adding the motion
estimate plus an error correction factor (for these
experiments 10%) and limiting the search to the
region defined by the previous point, the tip of the
motion estimate vector and horizontal and vertical
lines drawn through the two points. This estimate
amounts to allowing for the following types of mo-
tion for the car:

• Moving with a horizontal velocity component
between 0 and 110% of the estimate

• Moving with a vertical velocity component
between 0 and 110% of the estimate

For all but very fast and irregular motion pat-
terns, this estimate proved to be very useful in
maintaining a low turnaround time for image anal-
ysis.

In the following section we present the environ-
ment used for system development and some of the
features which facilitated its testing.

6 System Development

The development of the architecture for our system
was done in the ADE development environment.
ADE is a JAVA-based environment with facilities
for both single and multi-computer system devel-
opment. The JAVA base of the system facilitates
the use of graphical tools in the design, testing,
and running of a system. Each of the components
used in the tracking system was implemented as
and ADE component.

The tests were run in two configurations. In the
first test, all components of the architecture were
run on the robot. In the second, a remote machine
was used for visual processing and tracking.

Two steps were taken to ensure a more efficient
search for the car: (1) the motion and blob detec-
tion codes were optimized, and (2) the colors for
the car were optimized.

Due to varying lighting conditions, two color
ranges were used to identify the car. The process
of identifying and fine-tuning the colors identified
as potential car matches was aided by the ease of
adding visual interfaces to ADE components.

Figure 4 shows the panel which was added to
the vision server and which was used to configure
the parameters for blob detection. The panel dis-
plays three images: the unmodified camera picture
(top), the results of performing blob detection on



Figure 4: Control panel for dynamic color range
adjustment

Figure 5: Control panel for dynamic adjustment of
PID controller parameters

that image with the parameters set on the sliders
(middle), and the results of performing motion de-
tection on the original image.

Camera control was performed through the use
of 2 PID controllers - one for horizontal movement
and one for vertical movement. A similar calibra-
tion process was performed on the parameters of
each controller, using another graphical tool (Fig-
ure 5), which allowed us to change parameters as
the architecture was running.

The architecture for the above experiments was
run entirely on the robot. However, due to its
ADE-based implementation it was possible to also
run the architecture off-board, on a 2.1 GHz PC,
leaving only the robot servers and the control node
to execute on the robot. A reduction of approxi-
mately 35% in the time required for one complete
update of the architecture was observed.

7 Conclusion

In this paper we proposed an adaptive tracking sys-
tem for autonomous robots that uses color and mo-
tion information to track moving objects, while the
robot and its camera are possibly moving. The sys-

tem achieves an average frame rate of 7 frames per
second on an ActivMedia Pioneer 2 robot (where
10 frames per second is the maximum number of
frames that can be obtained from the framegrabber
in our setup). The performance evaluation showed
that the system, while far from perfect, has good
tracking performance under the less than perfect
environmental conditions in which it was tested
(flickering lights, similar colors in environment to
object tracked, motion in the background, etc.).
Most importantly, the system can run autonomously
on a robot with limited computational power, which
is what distinguishes it from most other systems.

We are currently investigating possibilities to
improve the system performance by adding optic
flow methods, although there seem to be intrinsic
computational barriers involved. We are also try-
ing to additional low-cost methods of motion esti-
mation in an effort to add predictive camera move-
ments, which should help in cases where the robot
now loses track of an object, because the camera is
too slow.
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