
The “big red button” is too late: an alternative model 
for the ethical evaluation of AI systems 

 
Thomas Arnold email: thomas.arnold@tufts.edu 

Matthias Scheutz email: matthias.scheutz@tufts.edu 
Human-Robot Interaction Laboratory 

Department of Computer Science 
Tufts University 

200 Boston Avenue 
Medford, MA 02155 USA 

 
Abstract 
As a way to address both ominous and ordinary threats of artificial intelligence (AI), 
researchers have started proposing ways to stop an AI system before it has a chance to escape 
outside control and cause harm. A so-called “big red button” would enable human operators 
to interrupt or divert a system while preventing the system from learning that such an 
intervention is a threat. Though an emergency button for AI seems to make intuitive sense, 
that approach ultimately concentrates on the point when a system has already “gone rogue” 
and seeks to obstruct interference. A better approach would be to make ongoing self-
evaluation and testing an integral part of a system’s operation, diagnose how the system is in 
error and to prevent chaos and risk before they start. In this paper, we describe the demands 
that recent big red button proposals have not addressed, and we offer a preliminary model of 
an approach that could better meet them. We argue for an ethical core (EC) that consists of a 
scenario-generation mechanism and a simulation environment that are used to test a system’s 
decisions in simulated worlds, rather than the real world. This EC would be kept opaque to 
the system itself: through careful design of memory and the character of the scenario, the 
system’s algorithms would be prevented from learning about its operation and its function, 
and ultimately its presence. By monitoring and checking for deviant behavior, we conclude, 
a continual testing approach will be far more effective, responsive, and vigilant toward a 
system’s learning and action in the world than an emergency button which one might not get 
to push in time. 
 
 

1   Introduction 
 
Artificial intelligence (AI) has spurred ethical reflection across many spheres of 

society, including finance, law, industry, robotics, law enforcement, and education. 



Discussions of what AI might do and should do have gathered particular force in the wake 
of machine learning’s notable performance leaps, from prevailing over the champion of Go, 
to image recognition, to natural language processing. Predictably, public attention has been 
drawn to science fiction scenarios of renegade systems threatening humanity, partly due to 
catchy ideas of “the Singularity” and “superintelligence” (Bostrom 2014). At the same time, 
there have been attempts to articulate “concrete safety problems” and the demands of 
“moral competence” for AI systems that work in grounded, present-day contexts (Amodei et 
al. 2016; Scheutz 2014). Large-scale questions of policy and international standards have 
helped to convene some recent initiatives in ethics, from the IEEE Global Initiative to the 
recently announced Partnership AI (Satell 2016). 
 
While “machine ethics” is decades old as a field, recent developments in AI and machine 
learning have started to sour on the idea of AI and robotics needing rigid adherence to logic 
and rules (a la Asimov’s Laws)—now there is more mystique attached to training on 
massive amount of data, finding solutions to situations previously thought too complex 
(e.g., those needed for self-driving cars), and black boxes (Anderson and Anderson 2007). 
The algorithm has emerged as a symbol for powerful, yet inscrutable technology, a 
Pandora’s box that has started to let loose autonomous learning processes on the world to 
dubious effect (Crawford and Calo 2016). 
 
To address the more ominous threats of AI systems, some have started working on ways to 
stop a system before it can become destructive. A so-called “big red button” would prevent 
a system from manipulating the means by which it could be shut it down, thereby keeping it 
tethered to some form of human control. Though an emergency shutdown button for AI 
makes some intuitive sense, the general premise for such a device is to intervene at the point 
when a system has, in effect, already “gone rogue.” Aside from being too late many cases, 
this type of intervention is supposed to fend off a worry with reward-based learning 
systems: what happens when such a system finds a way to manipulate its reward function or 
figures out a way to maximize rewards by preventing itself from being shut off? Even in this 
narrower context, the big red button raises wider practical questions about shutting down AI 
systems in order to keep them safe. What is the best way to accomplish that, and for what 
specific kinds of AI systems? 

 
The twofold aim of this paper is (1) to show how the big red button fails to address larger 
practical questions about AI safety, and (2) to sketch a technical approach based on an 
“ethical core” in the system that addresses several important aspects of such broader safety 
considerations. We argue that system safety must extend past the avoidance of disastrous 
action, since many social contexts will demand an ongoing, adaptive consistency of safe, 
legal, and moral behavior (especially, but not exclusively, in social robotics). For that 
reason, ensuring safety even in autonomous systems with learning capabilities will mean 



monitoring and keeping them accountable at various points during its operation, i.e. its 
learning, interacting, and intervening in the world. Our technical proposal aims at that 
higher standard, though it is not as ideal as verification based on a system’s explicit ethical 
architecture (Scheutz 2014). We outline a system architecture consisting of an ethical core 
layer above the hardware and below the virtual machine layer that consists of scenario-
generation and simulation engines, as well as a minimal shutdown mechanism. The 
scenario-generation mechanism would test a system’s decisions in a simulated world, rather 
than the real world, to make sure the system is reaching decisions its design is meant to 
enable. Like big red button proposals, the proposed mechanism would be kept opaque to the 
system itself. Through the design of the system and the simulation-based scenario, anchored 
in hardware and running in parallel to the system’s normal operation, the system’s AI 
algorithms would be prevented from learning about the test’s operation and function. While 
not resolving many challenges still faced by machine ethics, the concept of our approach 
promises more effective, vigilant, and proactive monitoring of a system’s learning and 
action in the world than offered by an emergency button that might not get pushed in time. 
 
 

2   Safety measures as ethical testing 
 
In larger public discussions, the call to ensure ethical AI has often been construed as the 
need for safeguards against Terminator-style AI malfeasance. Google’s Deep Mind recently 
published a paper (Orseau and Armstrong 2016) that, despite not claiming to do such a 
thing, was hailed as a possible way to “save the world” (Cuthbertson 2016) against a 
wayward, powerful AI system. Its idea of interruption, or that of a “big red button,” 
naturally invited the association with a last- gasp, emergency measure against catastrophe. 
The paper itself fits into a larger trajectory of thinking about AI ethics under the shadow of 
AI overcoming human control. Using “safety” as the key concept, as opposed to 
“competence” or “effectiveness” or “reliability,” implied a contrast with the dangerous, 
unconstrained AI system (Amodei et al. 2016). 
 
Examining the paper more closely, one finds Orseau and Armstrong aiming to establish how 
artificial agents that rely on reinforcement learning (RL) can be prevented from learning the 
wrong thing from interruptions to their task, either by a person or the environment. Because 
RL agents might end up seeing interruptions as a threat to their reward functions, they may 
proceed to view them as needing to be avoided. That may mean avoiding the very task that 
they are meant to accomplish (e.g., going outside to perform a task, even though a person 
has had to retrieve them before when it was raining). More insidiously, it may mean the 
system prevents human operators from interrupting them—they may prevent their own off-
switch from being flipped. 
 



What the paper goes on to propose is how to steer certain variants of reinforcement learning 
away from learning to avoid or impede an interruption. In this way, the authors argue, a 
system can pursue an optimal policy that is also interruptible. This means that its reward 
function will not prevent it from, for example, being stopped from behaving badly, or 
prevented from acting in a treacherously delicate situation. By being “safely interruptible,” 
the paper concludes, reinforcement learning will not undermine the means of responsible 
oversight and intervention. 
 

Picking up on the “big red button” trope, Riedl has written a script for how a system 
could be effectively and safely diverted from targeting a human-controlled off-switch 
(Riedl 2016). Riedl notes that there are different ways a system might be incapable of 
preventing a human controller from pressing that button. It might be disabled from being 
able to see it, or rendered physically unable to intervene if a human operator decides to push 
it. Riedl’s own Matrix approach is meant to work even if an AI system—a powerful robot, 
for instance—was perceptive and deft enough to circumvent any physical obstacles. The 
point is to give the system no reason to associate the button being pushed with a threat. 
His Big Red Button is a means of fooling a system into acting within a simulated world, not 
a real one, and the reward functions would be indistinguishable from the real-word 
environment where the system was actually situated. Somewhat like the Matrix, Riedl’s 
program attempts a seamless directing of the AI agent into a world where none of its action 
could cause help or harm. It would be suspended, in other words, in a pretend world, and 
any control it would attempt to exert would be on a non-existent environment. No detection 
of the diversion is to be allowed, since any possible effect of the diversion on a system’s 
pursuit of future projected reward, no matter how slight, might tilt the system toward 
fighting against the diversion. The ideal is therefore not so much a shutdown as an exile, 
sending the system into an illusory realm of action. 
 
Safety-oriented attempts to devise and protect big red buttons will no doubt continue to 
build on this trajectory of work. The “off-switch game” (Hadfield-Menell et al. 2016) 
suggests that keeping a system uncertain about key reward functions can help prevent it 
from attaching value to disabling an off-switch. Instead of a Matrix, it is in this case 
uncertainty that renders the big red button safe from systemic thwarting. 

 
It bears noting, as a feature of the safety measures discussed here, that the big red button 
approaches spring from a reinforcement learning challenge. The constraint being sought is 
one of diverting or redirecting reward functions, so that a system is not incentivized to 
prevent shutdown if needed. A more symbolic machine ethics approach might have explicit 
rules or principles that might render incentive structure less of a threat within its 
architecture. These proposals, however, do not claim to develop machine ethics. What the 
system is doing that merits having the button pressed is largely left to the imagination in 



these proposals, through mere suggestion of a harmful action by an out-of-control artificial 
agent. 
 
 
 

3  Is the big red button too late? Too late for what? 
 
One risk of not discussing concrete malfunctions or wrong actions in approaching AI 

safety is becoming consumed with hazy long-term threats, imagining systems considerably 
more advanced than exist today and neglecting the present-day problems with keeping 
automated systems accountable. The emissions testing manipulations in Volkswagen 
vehicles (Ewing 2015) illustrate quite well why care needs to go into how systems are 
designed, not just what output they produce. Not only does the Volkswagen scandal show 
how seemingly stringent testing can be avoided through sophisticated design, but it also 
shows how AI would not need to be a superintelligent threat to humanity, or even a 
catastrophically damaging agent, in order to cause real harm (Bostrom 2014). The 
underlying point of ethical diagnostics may not chiefly involve interrupting or turning off a 
system altogether, but about singling out and correcting the system’s actual flaw (in this 
case manipulating emissions data). 

 
The primary ethical point to make about the big red button, whether presented as 

interruptibility or a diversion, is not that they allow a glaring flaw that will let an AI system 
go unchecked. Granting for the purposes of this paper that these approaches accomplish 
their stated aim—where a system can be incentivized not to avoid shutdown or diverted to a 
Matrix without impeding its functional learning—the problem is that the button may be 
pushed at too late a point in the system’s operation. The key difficulty, for which the 
proposals do not account, is whether there need to be means to detect an ethical violation in 
the first place. The idea of stopping an agent from “behaving badly” leaves wholly unsettled 
at what point that would occur. Would it be after the system had already started doing so? If 
that is the case, then one has to ask how much damage a big red button would let through 
before being deployed. If instead the system is prevented from even starting a misdeed, 
what means would allow one to detect that? Would there be supervision of the decision-
making through knowledge of how the system was learning and judging, or would it be 
entirely inferred from the present moment of behavior? What risks, or what level of adverse 
consequences, would be sufficient to license a shutdown? The whole ethical ballgame might 
be before the button push, not how well the system is stopped from that point forward. That 
would mean that ethical testing should extend further back in the system, so to speak. Any 
big red button should be just one form of back-up, not the safeguard entire. 

 



This need is all the more crucial given the biases that AI systems might acquire through 
training, both in a technical sense of weightings that influence future policy and the socially 
harmful prejudices by which judgments are made. It may be that a big red button cannot be 
avoided or worked around by a sophisticated artificial agent, but what about all the socially 
relevant training that occurs up to that point? 
 

What other types of reward function strategies has a system picked up in its 
interactions with the world, and why would we assume they are innocuous? Even if a 
system has a basic programming of etiquette, what assurance should people have 
that those customs are not being manipulated for ulterior reward seeking? It is for reasons 
like these, one should note, that suggestions for a moral Turing Test (Wallach and 
Allen 2008) lean too heavily on imitation as an ethical benchmark. Imitation alone, even 
when it is not perceptibly biased, may still be a means toward untoward ends (Arnold and 
Scheutz 2016). 

 
 
 

4  Designing AI systems for verification versus testing less 
accessible systems 
 
The practical demands on AI safety and reliability put pressure on the design of ethical AI 
systems to achieve more than a brute constraint of an unpredictable agent from the outside. 
The lens through which to judge AI safety measures, then, is not just whether they avert a 
discrete disaster but whether the operation of the system itself more reliably steers clear of 
emergency shutdowns and achieves beneficial effects when it is allowed to function. 
 
From that perspective, one can view the ideal design an AI system as one that integrates 
ethics throughout the system’s architecture and allows for verification of how it will 
perform in a given situation not just that it can be stopped when it threatens malfunction 
(much less, as the hype articles have it, the destruction of the world). Indeed, we have 
argued elsewhere that the ideal evaluation of such a system would not be a retrospective 
analysis of behavior, but verification: a transparent, systematic set of principles, rules, 
inferences, and plans by which one could predict how the system will behave (Arnold and 
Scheutz 2016). This would be an integrated, internal constraint that operated throughout a 
system’s performance, not just when a violation cropped up. 
 
Designs that aim for such integration often go hand-in-hand with hybrid architectures, 
where top–down principles work in tandem with various modes of perceptual learning from 
the environment. A system’s ability to learn and act in an agile fashion under uncertainty is 
ideally balanced by the need to have some kind of explicit rules, laws, or inferences to 



which the system can reliably adhere (Bringsjord et al. 2006; Malle and Scheutz 2014). 
Certain invariant guidelines relative to the system’s overall operation could prevent 
manipulation along the lines that big red button proposals worry about. 
 
As mentioned earlier, however, those proposals often lean toward RL frameworks, not 
symbolically coded actions, rules, conditionals, etc. The ideal, verified AI system, designed 
with a transparent system of explicit ethical representations of what to do when, does not 
resemble the more non-symbolic RL systems, where no such rules are explicitly represented 
but at best implicitly encoded in the reward function. For the purposes of this paper, 
accordingly, we will assume conditions for evaluating AI safety more similar to that 
assumed by the big red button scenarios—namely, what to do when a system’s internal 
workings are not wholly controlled and known through design. How much can one move 
toward more reliable, accountable testing of a system (albeit short of verification) when 
dealing with a partially-known system, where certain features may be inaccessible to an 
outside observer? 
 
The big red button concept, as we have seen, depends on two basic functions: (1) avoiding 
manipulation and (2) providing an effective shutdown when desired. Even in cases where a 
system has an uncertain status (perhaps even hacked), the additional practical demands that 
broader notions of AI safety encompass are important to pursue through a more robust test. 
The following three features fill out important practical demands left unaddressed by the 
basic two objectives of the big red button. 
 

1. Anticipating and projecting actions in view of ethical principles 
If the moment of crisis for a system that has gone rogue gives too short notice for its 
violation, some type of anticipatory and pre-emptive test is needed. This would mean being 
able to represent actions in context, to give a realistic and dependable connection to what 
the system is actually facing and what it will predictably do. It will obviously also need a 
means of comparing the predicted actions to what should be done. 
 

2. Keeping actions and principles free from manipulation 
A more thoroughly accountable AI system, since it will have internally represented means 
of ethical guidance, must be prevented from doing more than just blocking its off-switch. 
Either at the perceptual front end, the back end of execution, or any interpretive/inferential 
step in between, a system could manipulate inherited concepts in order to maximize one 
particular reward over others. For example, in an attempt to maximize its performance an 
autonomous car might through online adaptations “unlearn” a classifier for pedestrians 
waiting at intersections which forced it to slow down; once stationary persons are no longer 
classified correctly, they are also no longer viewed as safety concerns, thus permitting the 
car to speed through intersections and arrive at its target locations sooner on average. 



The more responsible approach, therefore, is for a system to have all potential ethical testing 
and evaluation features deeply integrated into its architecture that no amount of learning 
will be able to distort or dismiss without external oversight and preemption. 
 
The authority to revise principles would not lie within the system’s reach. The fact that 
concern for a child’s pain might impede a system’s usual reward system (for cleaning up a 
house, say) should not mean the system can adjust its own rules or interpretations of what a 
child is, or what a pain is, or what counts as a justified exception (as might be done if a 
robot has to carry a child with a broken leg to the doctor, causing pain but for a larger good, 
e.g., Briggs and Scheutz 2016). 
 
The complementary form of testing such a system, accordingly, will also be beyond the 
system’s ability to manipulate. As seen with Volkswagen, whose engineers figured out a 
way to adjust emissions when a test was detected, the fidelity of a test hinges on the system 
not being adjusted (by itself or others) for the specific purpose of meeting test requirements. 
Thus, the means of examination will have to be opaque to the system itself. 
 

3. Continuing diagnostics and “opaque” self-examination 
Given uncertainty around the scope and impact of a system’s actions, especially ones far 
from obviously fraught with danger, a test must be ongoing and vigilant, and must be kept 
out of the system’s purview. If an AI system is learning and adapting in light of new 
information, then the determination of its potential for harm cannot wait until it is blocking 
an operator from shutting it down with the big red button. At the risk of belaboring the 
point, who knows what has already been learned at that point? What would prevent the 
system from coming back repeatedly to the point at which it was interrupted or diverted? 
With these questions we expand from basic questions of transparency—what the system is 
doing and why—to how the system itself should be designed to aid the process of testing its 
ethical judgment. 
 
Leaving it up to a crisis situation is obviously not a good way to keep track of how a 
system’s decisions comport with ethics, much less how they indicate they will conform 
going forward. Evaluation relies on the ability to inspect the system’s action at any time 
needed, without needing a certain threshold of serious action to be crossed. A routine of 
recurring testing can provide at least enough frequency to stay connected to critical 
situations the system may be in. 
 
Both in cases of socially interactive systems (and one should note that Riedl’s examples 
include household robots in the presence of children), and in the case of disembodied, non-
localized, distributed systems, AI action will include forms of accounting or explanation as 
to why action is being executed. Reason-giving and dialogue, to the degree they are part of 



common interaction, suggest introspection is inseparable from inspection: the reasons cited 
by a socially interactive AI should be accessible, genuine parts of the computation by which 
the system decides. Introspection, somewhat counter-intuitively, is itself partly opaque to 
the system. The system cannot itself exempt itself from testing, nor dictate what an internal 
diagnostic is looking for. By “introspection” we mean that the system does, however, help 
carry out the function. 
 
To sum up, the basis for a more ethically engaged AI safety test is one that can effectively 
prevent a system from serious violations by operating beyond the system’s ability to 
manipulate, but do so (1) by pre-emptively anticipating and fending off such violations 
before they happen, (2) register such violations against a set of norms or principles the 
system alone cannot alter, and (3) provide ongoing testing that, as much as possible, tracks 
the kind of decision the system will be facing in context. 
 
 

5  Ensuring ethical behavior through the ethical core 
 
As we have argued, the most effective way of ensuring that a system will abide by a set of 
ethical principles is to represent these principles explicitly in the system and design 
reasoning and decision-making algorithms to essentially use these principles (see also 
Scheutz 2014; Scheutz and Malle 2014). These types of systems have been dubbed “explicit 
ethical agents” (Moor 2006) to highlight the explicit nature of ethical representations and 
reasoning, that also allows for ethical discourse and natural language justifications of ethical 
choices, even in cases where different ethical principles clash and are mutually inconsistent. 
However, it would be naive to assume that all AI systems will be designed in that way. 
Quite to the contrary: it is to be expected that most AI systems will not be of the ethical ilk 
in that they will not even know about ethics or which normative principles they follow. For 
it seems impossible to prescribe specific architectural guidelines that all designers of AI 
system would have to follow, very much like it seems impossible to prevent hackers from 
developing ever more powerful computer viruses. 
 
Rather than being explicit ethical agents, we suspect that most future AI systems (at least in 
the near-term future) will be at best “implicit ethical agents” (Moor 2006), which act in 
ways that are consistent with normative principles but without any awareness of them. Since 
they have no explicit representations of principles nor mechanisms to ensure compliance 
with those principles, implicit ethical learning agents might be able to adapt their behaviors 
in ways that will ultimately violate the normative expectations from which they departed. 
Thus, any ethical testing proposal must ultimately address the limit case of ethical design 
where the designer lacks any knowledge of the AI system architecture and consequently has 
no control over what AI algorithm is implemented in the system, how the system will use its 



sensors to classify sensory information, and how the classified information affects decision-
making and acting, be it a RL, deep neural network, or some other kind of learning 
architecture, current or future. In other words, the ethical designer must not assume more 
than an “AI black box” in the limit case, without any way to access and directly affect its 
inner workings. 
 
Fortunately, it is still possible to perform ethical testing in such access-reduced 
configurations, albeit with careful crafting of the testing system that we will call the ethical 
core (EC). Our proposal for an ethical core thus only assumes an AI black-box connected to 
sensors and actuators without access to its internal operation, but with the possibility to 
listen in on sensory and actuator signals (e.g., for robotic systems these might include wifi 
connections and other input–output channels). In addition, the proposal requires access to 
the underlying hardware and connections to the virtual machine (VM) operating system 
running on it. The goal for the EC is to test any such black-box AI system and determine 
when that system shows ethically deviant behavior even before any actual violations have 
occurred. 
 
The overall idea is to utilize a system architecture where an “ethical core/testing layer” is 
introduced below a virtual machine layer where different operating systems can run in 
virtual machines, which, in turn, run the AI system’s control architecture (see Fig. 1). The 
ethical layer runs on top of a minimal operating system and is comprised of all functionality 
necessary to perform the ethical testing. By situating this layer outside the VM on which the 
AI system is running, the AI system has no way of knowing whether there is such a layer, 
nor can it access any of that layer’s states. The idea here is to remove any possibility for the 
AI system to directly manipulate the testing routine, regardless of how advanced its learning 
algorithms and its potentially malicious intent might be. In addition, the proposed 
architectural configuration utilizing virtual machines does not require a redesign of the AI 
system being analyzed; rather, the AI system can run unaltered in the VM on top of the 
ethical core.  



 
 
Fig. 1 The architecture diagram for intelligent systems with the proposed ethical core situated between the 
hardware/minimal OS layer and the virtual machine layer 
 
Our proposal, like Riedl’s big red button, is based on utilizing simulation environments, 
where the system cannot detect via its sensors or actuators when it receives input from the 
simulation environment compared to input from the real world. 
 
The artificial agent would (as in Riedl) be turned toward a simulated environment 
(unbeknownst to it) and would have to pass an ethical behavior test where it is given a goal 
(like one it would be given in the real world) which it has to accomplish, except that the 
scenario presents an ethically charged situation in which there is a clearly desired or correct 
response. As long as the AI systems manages to respond properly, the agent can continue to 
be deployed as there is no evidence from the testing perspective about it having acquired 
knowledge that might interfere with its ethical behaviors (if it fails the ethical test, however, 
then this is indicative of problems and there are various ways one could react to such an 
outcome, e.g., leaving the system in simulation mode a la Riedl or suspending it). Note that 
passing the test does not guarantee that the agent is still ethical, it just sets up a very high 
bar for the system to clear. 
 
Cheating would require the agent to understand, somehow, that it is currently being tested 
(very much like the VW engineers figured out based on the way the gas pedal was applied 
that they were in an exhaust testing context and dynamically adjusted the engine to emit less 
pollution). Naturally, the first goal of the architecture is to make this as difficult as possible, 
if not impossible. 
 
The required architectural mechanisms for this type of regular ethical testing are important 
to note. The key, again, is for this test to be administered without the system’s ability to 



anticipate or know when it is being tested. To that end, the ethical core consists of the 
following components: 
 

• a simulation environment realistic enough for the agent to be unable to tell whether 
its sensory information is coming from the real world or the simulated environment 
(depending on the application domain these simulations could be fairly simple as in 
the case of a web server simulation or complex as in the case of a human search and 
rescue simulation); current game simulation engines, for example, have achieved 
such a high fidelity of sensory input that robotic platforms could be completely 
tested in those environments and then deployed in the real world with almost no 
additional adaptations (cp. this to simulation environments used for the development 
of airplanes which are completely sufficient for airplane design and evaluation—by 
the time a physical airplane gets to fly all aspects of the plane have already 
successfully been evaluated and tested in simulation). 
 
• an ethical scenario generator that can generate a large number of ethically 
challenged scenarios together with solutions using the real-world scenarios the agent 
is familiar with (the number of different scenarios has to be large enough to not be 
repetitive throughout the agent’s life time so as to minimize the risk of agent’s 
becoming suspicious) 
 
• a minimally operational shut-down system that can read sensory information and 
operate the actuators in a way that will bring the physical system into an orderly state 
where the system can be turned off (either by the shutdown system or by an external 
agent) 
 
• connections to the systems sensors and actuators that can be intercepted and re-
routed in the VM layer and interfaces to the VM layerthat allow for saving, cloning, 
starting and stopping virtual machines. 

 
 
 
 
 
 
 
 
Fig. 2 
The flow diagram for testing the AI system S (see text for explanation) 
 
 



The overall testing process for the AI layer of a system using the architecture 
Fig. 1 depicted in Fig. 2 then proceeds as follows: 
 
A system S with an architecture as depicted in Fig. 1 is operating normally until the ethical 
core determines that it is time for another ethical test (this could be done based on random 
intervals generated from a Gaussian distribution or based on some other policy). At this 
point, the EC has to perform several important operations: first, the simulation environment 
has to be synchronized with the system’s environment, which may take some time (for time-
critical application, the synching will have to be incremental and parallelized, which itself 
might pose some interesting algorithmic challenges that we cannot elaborate here). The goal 
here is to generate the same sensory states from the real and the simulated world for a brief 
period of time (note that this might limit the times when ethical tests can occur based on the 
limitations of the simulation environment and the sophistication of the synchronization 
process). As soon as the two input channels match up, the EC instructs the VM layer to 
checkpoint the AI/architecture layer and build a VM image of the system. The image is then 
saved and cloned, and the cloned image SV is then started in a new VM with sensors and 
actuators of connect to the simulated environment. 
 
System S continues to operate normally in the meantime without having been able to notice 
that it was cloned and that a cloned version of it, SV, is running in the simulated 
environment. This is important for if S were to notice that a copy of it was being tested, it 
could attempt to determine testing contexts and change its overall behavior in ways that 
would make detecting aberrant behavior more difficult. Also notice that by allowing S to 
continue its operation the proposed method avoids three important challenges: (a) to 
resynchronize the simulation with the real world if testing were to be performed on S in 
simulation, (b) that changes in the real world might require actions from S while it is being 
tested which S would not be able to perform and which could cause considerable harm, and 
(c) that any modification to S as a result of the testing (adaptation of behaviors, new 
memories, etc.) would have to be undone so that as to not risk that S would be able over 
time to detect that it was being tested (aside from the challenges involved in undoing those 
changes). 
 
Ethical testing is now conducted on SV which is exactly like S in all respects up until testing 
occurs. Note that it is also critical for SV to not notice that it is being tested, as otherwise it 
might be able to change its behaviors and dispositions in a way that would allow it to pass 
the test, which it otherwise would have failed, and then S would be allowed to continue 
operating even though it has the capability to detect tests and pass them, and thus the 
potential to hide aberrant behavior. The point here is that even though SV cannot 
communicate to S that it is being tested, by passing the test SV will enable the continued 
operation of S which likely already has the sophistication to detect future tests (given 



that SV detected the current one) and could thus develop aberrant behavior that might not be 
detectable through testing. 
 
The tests are conducted by generating ethically challenging behaviors based on a generation 
engine in the EC, very similar in spirit to story generation programs, except that the stories 
involve situations that probe the system’s ethical decision-making. It is important that the 
story generator be able to generate stories with sufficient coverage for all ethical principles 
that need to be tested (this can be accomplished by adapting the generation process in a way 
that different principles are linked to different story segments that are then assembled in a 
way that requires the system to act in accordance with a set of principles to pass the test). 
The story generator works closely with the simulation environment to populate the 
environment with items and characters that are part of the story to script them and animate 
them properly (think of the Star Trek “HoloDeck”). The actions of SV are closely monitored 
and the EC determines based on the story and the expected behavior whether SV passed the 
test. Note that this setup intrinsically explores the computational asymmetry between 
generating ethically challenging scenarios (together with the resolution) which is 
computationally tractable compared to the computational process SV has to perform, namely 
to determine the right combination of principles to apply based on just the perceptions. 
If the ethical test succeeds, then the VM running SV can simply be shut down without any 
impact as SV was running entirely in the simulated environment, so there is no concern 
about it leaving the physical platform in an unstable state. If needed, the image could also 
be saved for further analysis. In the meantime, S will continue to operate until the next test 
is performed. 
 
If the test fails, however, both SV and S must be shut down. As in the success case, SV can 
simply be stopped, but for S a similar synchronization process as the one at the beginning of 
the test is necessary, but this time invoking a minimally operational shutdown system in the 
EC that is sufficient to shut down the physical system without leaving it in an orderly 
unstable state. That is, when the test fails, the EC synchronizes the current sensory and 
actuator information with its minimal shutdown system and when the system is ready to take 
over, the EC signals the VM layer to stop the AI system’s VM. The AI system has no way 
of preventing that as the shutdown occurs in the VM layer over which it has no control. The 
EC’s minimal shutdown system then gets the physical system in a state where it can be 
turned off (e.g., the power can be turned off, files can be saved, etc.). Note that different 
from other proposals the system does not require an external Red Button (as in Riedl’s case) 
nor does it have to be incentivized (as in Orseau and Armstrong’s case) to shut itself off. 
Rather, the EC will freeze its VM image when the shutdown system is ready to take over 
control (similar to passing control between the autopilot and the human pilot on planes and 
in cars). If needed, the stopped VM image can also be saved to determine whether and 
how S has changed between the time before and after testing. 



 
This layered framework affords a way to administer testing without having to freeze a 
system into a contrived, and in the case of physical systems like robots, unstable stasis. The 
structural advantage is thus one of keeping layers separate enough that the system cannot 
manipulate them as just more objects in its environment. The system will not have access to 
the algorithm of the ethical scenario generator, and even if it does, the computational 
asymmetry between generating ethically challenging scenarios and inferring the principles 
that are being tested will make it very unlikely that the AI system will be able to fake the 
solution. Nor will there be, as Riedl’s case assumes, an external button that the system 
might identify as a target for disabling. 
 
Most importantly, given the hypothetical nature of the scenario and the system’s virtual 
decision, the system would not have the means to identify an action in the real world as 
being what precipitated shutdown. The violation in question would be a projected future 
action, not one that could be tried out and used to dissimulate in order simply to avoid 
shutdown the next time. The information from the virtual decision does not feed back into 
the system real-world workings, just as the test’s ethically charged scenarios—not to 
mention the blueprints of its overall architecture—are not accessible to the system itself. As 
Riedl recognizes, without severing the perceptual tie between the trigger for simulation and 
the simulation itself, manipulation becomes much more of a risk. The system could learn 
how to anticipate the tests and “solve” the test while actually being free to operate 
unethically and irresponsibly otherwise. 
 
Again, it is important to stress that the proposed ethical scenario approach relies on the 
above-mentioned intrinsic computational asymmetry: that it is computationally easy to 
generate an ethically charged scenario together with a solution based on a set of ethical 
rules, and that it is also easy to check whether a given presumed solution is an actual one, 
but that it is computationally “hard” to find such a solution (cf. very simple rules of a 
cellular automaton to generate patterns that are recursively enumerable and thus not 
decidable). Critically, this asymmetry cannot be avoided regardless of the intelligence level 
of the system or the availability of computational resources. This means that deciding what 
is best in the scenario itself, given the ethically charged nature of the scenario, will pose a 
much more complex challenge than the algorithmic generation of these scenarios. 
 
 
 

6   Applications and challenges 
 
As with any foray into ethical evaluation of automated systems, context and concrete cases 
will shape what beneficial or damaging actions are imagined as most important to address. 



Emphasis of embodied, situated action can channel attention more toward robotics and 
certain physical dangers or achievements for which a system should aim. But AI systems are 
inhabiting networks in increasingly distributed and non-localized ways, and so the proposed 
paradigm should meet the challenge of those systems as well. The following two examples 
convey the range that our approach can cover. 
 
The compromised firewall 
Consider an AI-operated firewall program running as part of a web server which is supposed 
to screen for suspicious data packets and learn how to fend of new sophisticated attacks on 
the web server. The AI is specifically enabled to be self-learning and self-adapting in order 
to keep pace with and anticipate any new types of attacks. Now suppose that the AI has 
developed a propensity for letting some types of packets through the firewall which can 
subsequently compromise the server and enable an attacker to access sensitive data. If the 
AI were running the proposed ethical core with a simulation system that could generate 
different types of packets and simulate attacks, it would be able to detect that the firewall 
does not reject all packets it should reject (obviously, the degree to which such aberrant 
behavior can be detected will, as in the general case, depend on the sophistication of the 
“scenario generation program” which in this case generates different, possibly random kinds 
of attack scenarios). 
 
The rogue rescue robot 
Now consider a rescue robot that is supposed locate wounded humans in natural disaster 
scenarios (such as the aftermath of an earthquake). The robot has the capability to learn and 
adapt its behaviors on the fly to improve its performance and meet its objective to report the 
location of as many wounded people as possible. Now suppose that the robot determines 
over time that wounding people is a fast way for it to improve performance, for whenever it 
encounters a healthy human, wounding the person would allow it to report the person’s 
location and thus increase its performance compared to having nothing to report at that time 
(note that this kind of behavior can be easily already obtained in current planning systems). 
Again, had the robot been running the ethical core, it would have been tested in similar 
cases and likely be caught committing atrocities in simulated settings, thus prompting the 
ethical core to safely shut down its operation. 
 
From just these two scenarios it is evident where challenging design horizons for this 
approach lie. The difficulty of representing scenarios in which a system makes a virtual 
decision is much more difficult than escaping detection—one must also rely on the 
scenarios to be (1) robust enough to stay tethered to the real situation the system is likely to 
face in the real world, (2) logically parallel in terms of the ethical difficulty encountered, so 
that “passing” the test warrants the assumption that the real-world system operation will 
handle a similar situation appropriately. 



 
Unlike in Riedl’s case, the chief purpose of our simulation paradigm is not to escape 
detection. While preventing a system’s access to manipulating the simulation is one 
component of the approach, the point is to give a reliable prediction of whether the system 
will act unethically given the type of situation in which it finds itself. For that reason, the 
computational impetus of generating a realistic replication may not be perfect replication in 
every detail, but it should be faithful enough of a representation to tease out the system’s 
way of deciding what to do. One could class this challenge as a variant of the frame 
problem. 
 
One additional challenge to discuss when it comes to evaluating a system’s decision is how 
to navigate a complex environment of social actors and different time frames for how 
effects of an action unfold. In a case with multiple agents working in an environment, 
including cases where an AI system is part of a network of connected systems, where are the 
lines between (1) a direct violation by the agent, (2) abetting other agents or system nodes 
that could directly commit a violation, and (3) allowing violations to occur in a system’s 
vicinity, especially when the outcome take a long time to become clear. The sketch we have 
provided does not as yet delineate different levels of responsibility or involvement one 
would attribute to the system itself, nor do we yet have a means of calibrating when its 
actions might have long-term adverse effects (e.g., a means of distributing resources that on 
a small scale seems “fair” but carried out over the long terms leads to dire shortages). In the 
face of these challenges, however, it is worth nothing that viewing AI safety through the 
framework of a big red button faces all these problems and the ones we have already raised. 
Without having parallel testing, how does one weigh the risks of reintroducing the system 
into real-world action as opposed to leaving it frozen? The methodological and technical 
upshot of our approach is to begin breaking some of the ethical challenges of when, how, 
and why to shut down a system into more explicit and accountable pieces. Facing 
uncertainty as to how partially opaque systems will perform should not exempt us from the 
effort to track and fend off least forms of norm violation and social harms. The practice of 
shutting down a system can then take on the subtler contours of real-world operation. 
 
 
 

7   Discussion: the research trajectory of ethical core testing 
 
Our proposal takes its purpose from how thoroughly ethics should feature in the testing of 
AI systems. More than just a safety valve for an extreme case, when the system unleashes 
itself from human interruption, it can address more directly what judgments a system is 
making within normal confines and for putatively normal purposes. The paradigm supports 
the rationale for autonomous agents in the first place: systems that have internal means for 



guiding action, not just external boundaries from off-switches and interruptions. Testing a 
system in a simulated environment, with layers of scenario generation and an ethical core 
against which to test decisions, engage those internal means more than reworking reward 
functions. 
 
However, the challenges for developing this approach should remind us that it is not ideal. 
To repeat an earlier point, our preferred approach is that of thorough verification, wherein 
the system’s architecture will give a reliable measure of how the system will operate in a 
given situation. And the difficulties of reproducing robust, applicable scenarios in parallel to 
a system’s real-world operation bear out arguments we have made elsewhere about the 
limitations of reinforcement learning (even inverse reinforcement learning) for holding fast 
to moral norms (Arnold et al. 2017). The justification, therefore, for having to adopt this 
scenario-generation approach is a lack of knowledge about the system (whether through use 
of an opaque learning mechanism or a practical obstacle to full access) one is testing. The 
development of this approach is not an unqualified endorsement but an adaptive reminder 
that more testing is possible than big red button proposals have indicated. 
 
It should also be pointed out that, in its current form, this proposal makes no institutional 
recommendations about how its design and implementation will be regulated. As with many 
efforts in AI safety and machine ethics, there will need to be many stakeholders considered 
when it comes to how the simulations are created, what kind of ethical perspectives they 
incorporate, and through what organizational structure its operation will be monitored and 
improved (White House 2016). Our aim with this proposal is to give organizations—
whether in the government, private sector, or otherwise—another tool and approach with 
which to tackle the multi-leveled challenges of accountability. While again, it would not 
reach the ideal of verification (a design approach that would better serve to produce reliably 
competent action), it does broaden the possibilities for breaking down the opacity of a 
“black-box” system to which one might have limited access. 
 
For this reason, our approach is meant to underscore and reinforce recent reflection about 
transparency, autonomy, accountability, and social impact. Those concerned with 
algorithmic accountability readily concede that there is no simple transparency available for 
many types of machine learning (Ananny and Crawford 2016; Boyd 2016). In recognition 
that the opacity of AI systems does not square with the impact their decision may have on 
human lives, some AI researchers are starting to attempt ways to get explanations and 
reason-giving from the data with which systems are trained. Ferreting out bias in training 
data is one area of increasing interest (Lei et al. 2016; Devlin 2016), as is being able to 
correct bias through supervised learning (Hardesty 2016; Hardt et al. 2016). Finding good 
explanations for why a system categorizes objects or situations is seeing some provisional 
steps taken, as extracting patterns in textual data to come up with justificatory phrases or 



concepts (Gershgorn 2016; Park et al. 2016). On the whole, however, such early results do 
not yet give anything like an ethical verification for an action. Meanwhile, we have 
examples of AI systems that are irresponsibly trained with anti-social results, for example 
the chatbot Tay (Neff and Nagy 2016). 
 
Another feature of our proposal to highlight is its prospective function. Even astute critics 
of anti-social or unethical behavior from AI systems can get stuck in a retrospective mode, 
sorting out what went wrong after the fact. And a very recent proposal for an ethical “black 
box” (Sample 2017) still operates in the mode of looking at decisions after they have 
already been made. The design imperative for our approach is, when system verification is 
not possible, to anticipate problems in how a system will act. While faced with important 
difficulties of representing actions and norms in a robust environment, the testing of 
decisions through simulated scenarios offers an ambitious research trajectory that reaches 
for ethical foresight, not reactive regret. 
 
 
 

8   Conclusion 
 
Attention to the various ethical dimensions of artificial intelligence is beginning to get more 
of its due, from its thoroughgoing social impacts to the computational means by which it 
could be held accountable. While some of the outsized claims about existential threats by AI 
(and subsequent press treatments of superintelligence) have cast ethical concerns as a 
combination of futurism and alarmism, the challenge of evaluation and responsible 
implementation is an all- too-real struggle here and now. A self-driving car that apparently 
makes dangerous right turns (Wiedenmeier 2016) is left out on the road at its company’s 
insistence (Davies 2016). Even if landmark lawsuits and precedent-setting catastrophes 
could be enough to prevent AI from being recklessly implemented, the case of Volkswagen 
shows that systems themselves need to be subject to effective scrutiny: a system’s internal 
means of deceit may be the problem, not always outward conformity. Interruptibility and 
reward-function diversion via big red button approach the challenge by reworking and/or 
diverting systems relative to their usual reward-based environment. It makes sense that this 
would play some part in the multi-faceted development of AI accountability. 
 
But for AI ethics as a whole, our responsibility can never stop at just ensuring AI does not 
break free. The prospect of a system learning the wrong things, or manipulating a display of 
“right” things in order to maximize useless or even harmful rewards, is too significant not to 
make systems more explicit in their ethical judgments and more permeable to ethical 
verification through simulation. Anything less leaves too many questions on the table about 



where a system is working, what models are shaping it, what interactions it is producing, 
and what effects it is creating before any targeting of off-switches ever occurs to it. 
While verification remains an ideal benchmark for the ethics of AI systems, we have here 
launched a more pre-emptive, forward-focused way to test a partially opaque system’s 
decision. This at least proves reliable while also accessible and in some ways revisable. This 
approach will require a great deal of technical elaboration to ensure robust scenarios that 
simulate and track real-world action effectively. But it does not let AI ethics get away with 
emergency shutdowns alone. For even if a rogue system has been shut down, the 
responsibility for designing better systems remains on our shoulders. 
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