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Explaining In Time
Meeting Interactive Standards of Explanation for Robotic Systems
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Explainability has emerged as a critical AI research objective, but the breadth of proposed methods and application domains suggest

that criteria for explanation vary greatly. In particular, what counts as a good explanation, and what kinds of explanation are

computationally feasible, has become trickier in light of oqaque “black box” systems such as deep neural networks. Explanation in such

cases has drifted from what many philosophers stipulated as having to involve deductive and causal principles to mere “interpretation,”

which approximates what happened in the target system to varying degrees. However, such post-hoc constructed rationalizations are

highly problematic for social robots that operate interactively in spaces shared with humans. For in such social contexts, explanations

of behavior, and, in particular, justifications for violations of expected behavior, should make reference to socially accepted principles

and norms.

In this paper we show how a social robot’s actions can face explanatory demands for how it came to act on its decision, what

goals, tasks, or purposes its design had those actions pursue, and what norms or social constraints the system recognizes in the

course of its action. As a result, we argue that explanations for social robots will need to be accurate representations of the system’s

operation along causal, purposive, and justificatory lines. These explanations will need to generate appropriate references to principles

and norms – explanations based on mere “interpretability” will ultimately fail to connect the robot’s behaviors to its appropriate

determinants. We then lay out the foundations for a cognitive robotic architecture for HRI, together with particular component

algorithms, for generating explanations and engaging in justificatory dialogues with human interactants. Such explanations track the

robot’s actual decision-making and behavior, which themselves are determined by normative principles the robot can describe and use

for justifications.

CCS Concepts: • Human-centered computing → Interaction design;

Additional Key Words and Phrases: explainability, normative HRI, architectural requirements
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1 INTRODUCTION AND MOTIVATION

Explainability has emerged as a critical AI research objective, but the breadth of proposed methods and application

domains suggest that criteria for what ought to count as a proper explanation vary greatly. While philosophers of science
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2 Arnold, T. et al

have attempted to establish criteria for explanation that are universal across explanatory domains [Woodward 2017],

from deductive-nomologial models (e.g., [Hempel and Oppenheim 1948]), to statistical relevance models (e.g., [Salmon

1971]), to causal mechanical models (e.g., [Salmon 1984]), to unification models (e.g., [Kitcher 1981]), there seems to

be evidence for multiple models of explanation in human psychology: “Explanation sometimes engages deductive

reasoning and theory-like representations in human psychology, explanation often recruits inductive reasoning and

information about causal mechanisms, too. Each explication highlights constraints on what is being explained that

correspond to distinct processes and representations in human psychology” [Colombo 2017]. Yet, recent attempts

in AI to stipulate what an explanation is deviate significantly from all of the above approaches, neither following

logico-statistical models in philosophy of science, nor directly addressing human explanatory demands researched in

psychology. Rather, these attempts to stipulate what “explanation” of AI systems ought to be are driven, paradoxically,

by the lack of explanation of what it is these systems are doing. Systems like deep neural networks that are trained on

data and show high levels of performance on tasks provide little if any insights as to how they are achieved. To get at

what such trained “black-box” systems internalized, the notion of “interpretability” functions as a mediator between

actual system behavior and a human-understandable approximation thereof, at the risk of erring in cases where the

“interpretation” fails to capture the true causality in the system (the latter serving as a complementary criterion of

“completeness” [Gilpin et al. 2018]).

While some have argued that black-box systems need to be abandoned in favor of systems that can yield more

straightforward explanations of their decisions (e.g., ones based on decision-trees) [Rudin 2019], the field of “explainable

AI” is still grappling with laying down the criteria for what ought to count as a good explanation and when certain

systems should meet higher standards. AlphaZero, for example, is not designed to explain how to win at chess but just

to win at chess [Silver et al. 2017]. Its moves are no less successful for not being explained or made explicit from the

design end, and they can be appreciated and analyzed without harm to those who do so. Nonetheless, standards of

explanation should not be obfuscated or misrepresented out of accommodation to opaque approaches. Hedging on

explanation can resemble the proverbial drunk person searching for lost keys, looking not where the keys were dropped

but under a far away lamppost because “that’s where the light is.”

In the case of robotic systems, especially those that operate interactively in shared spaces with humans, losing

track of explanations can be especially fraught. Instead of adjusting “explanation” to cater to trending approaches,

we propose to 1) clarify what explaining a robotic system should constitute in context and 2) pursue algorithms and

architectural designs that meet those standards. Consequently, we argue that explanations for social robots will need to

be accurate representations of the system’s actual operation and objectives, not interpreted representations to buffer the

observer’s lack of understanding of the system’s operation. This means that explanation will often need to address

causal, purposive, and justificatory aspects. A social robot’s actions can face explanatory demands for how it came to

act on its decision, what goals, tasks, or purposes its algorithms had those actions pursue, and what norms or social

constraints the system factors in the course of its action.

Part of getting clearer about explanation for robotic systems means anticipating the real world conditions in

which an interactive system will have its actions explained. Designing robots to be responsibly explained will require

considerations of when and on what terms an explanation is provided. In this paper we devote particular attention

to the temporal constraints that lend extra pressure to demands on explanations, and we lay out some preliminary

technical approaches to achieve responsive and accurate explanations for real-time interactions. Explaining in time,

in real time, is not just an additional design burden for AI. It shows why causal, purposive, and justificatory roles for

explaining robotic action are so crucial.
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2 BACKGROUND

Explainable AI (XAI) has developed as a research area in large part due to the challenge of understanding how solutions

obtained by data-driven machine learning approaches like deep learning, which are increasingly deployed in robotics

domains, work. Because the black-box aspect of such systems does not square with everyday and scientific notions of

explanation, the proposal is to at least make the operation of such systems more interpretable and subject to statistical

evaluation [Samek 2019]. Given the many areas in which deep learning applications might feature in critical decisions,

from embodied contexts with self-driving cars to disembodied contexts in law andmedicine, the notion of “explainability”

in AI systems has become a “mediating category”: it is clear that explanations are important, but the various models

proposed still have difficulty meeting the demands for completeness and inferential accuracy [Došilović et al. 2018;

Gilpin et al. 2018; Xu et al. 2019].

This methodological limbo has led to increasing pushback, with XAI being likened to alchemy, or an oracular “42”

[Goebel et al. 2018]. The call for “rebooting AI” cites this kind of deficiency in explicit, logical inferences and causal

understandings on the part of deep learning [Marcus and Davis 2019]. Rudin’s is just one recommendation to steer

clear of deep learning in favor of systems that show how a decision is made [Rudin 2019] . The “logicist” approach of

Bringsjord aims for explicit, inferential tracking of ethically related decisions, rather than post-hoc analyses of what

may or may have not affected a system’s output [Bringsjord et al. 2006].

A notable overview by Miller et al. [Miller 2018] argues that social science research reveals many more sides to

explanation than what has made its way into so-called XAI. Mittlestadt et al. [Mittelstadt et al. 2019] have presented

this work as a basis from which policy makers can better lead discussions of AI accountability, transparency, and

interpretability. Still, the search for direct explanation for purposes of social accountability has accommodated the basic

machine learning approaches more than question them at the root of design. The “data sheets” approach of Gebru et al.

[Gebru et al. 2018] and related “model card” approach of Mitchell et al. [Mitchell et al. 2019] concentrate mostly on

the provenance of data and the performance outcomes of systems, respectively. They do not scrutinize the internal

architecture of the ML system itself as an object for design methodology. This is what leads Robbins to call the idea of

“explicability,” in terms that apply quite well to explainability, a “misdirected principle” for AI: if in a given domain

the outcomes of a black-box system are unacceptable without a factual, direct explanation, then black-box systems

should not be used for that domain [Robbins 2019]. The whole point of black-box systems, Robbins argues, lies in us

not having preset considerations as criteria for their pattern discernment. If such criteria are too important to lose (the

prevention of racial bias in processing loan applications, for example), then black-box systems should not decide loan

applications. Kroll et al. push back against the idea that algorithms are out of reach of accessible explanations at a

broader level (and hence not amenable to testing for measures of fairness) [Kroll et al. 2016], but this leaves open on

how broad an explanation can be and still offer enough of a grasp on discrete outputs and actions.

The social science review that Miller provides stresses that explainability in AI has struggled both because of

uninterpretable models and because social interaction for AI has receded into the background. To reassert the social

and practical dimensions of explanation, Miller forwards four characteristics of explanation that XAI might better

incorporate: 1) questions why something happened have implicit contrasts (i.e., why something else did not happen),

2) explanations will be selective, carving out causal stories according to various biases, 3) effective explanations are

generally not statistical, and 4) explanation are social (i.e., they represent an explainer conveying understanding to

an explainee, in part based on idea of what the explainee needs to understand). If AI systems are to be explainable,
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4 Arnold, T. et al

according to Miller, these dimensions need to be integrated into how contextual explanation is, and where a given

explainer and explainee are situated in a particular environment will make a difference in what causal accounts suffice.

For robotic systems, the turn toward social context is nothing new. Miller’s overview hardly scratches the surface

of what embodied systems may face socially. It is notable that human-robot interaction scholarship already grasps

explainability as not just a theoretical evaluation but a practical feature of joint human-robot action. Explanations,

from that vantage, can be a means toward improving human-robot performance. It has been couched, for example, as

“plan reconciliation,” wherein human-robot teams might share an understanding through explanation that enables and

presupposes future collaboration [Chakraborti et al. 2019]. Hayes et al. see the value of explanation in achieving robot

controller transparency [Hayes and Shah 2017]. When put into context of broader, more open-ended social interaction,

however, explanation will involve more than joint work, and will demand explanation to be more than a means of

improved task efficiency. In other contexts and use cases, the right explanation may be an end in itself for deeming a

robot appropriate, effective, and useful. The ability, need, and decision to explain its actions might just be what renders a

robot normative. And indeed, as we shall discuss more below, robotic action, unexplained, might be judged for violating

certain social and moral norms [Malle 2016]. Models that are more logic-based and symbolic, in line with the work in

expert systems that originally launched “explainability” as a goal, provide more explicit features to an architecture

to track how a system will arrive at its decision [Goebel et al. 2018]. Giving accurate and detailed explanations thus

converges with calls for more explicit reasoning on the part of AI systems for why they do what they do [Pearl and

Mackenzie 2018]. To get a better purchase on how design and explanation should relate for robotic systems, it is worth

exploring what explanatory demands might weigh on robotics systems. In particular, given the issues of transparency

and accountability to which explanations are often tied, it is worth separating “explainable” as a general, diffuse value

of a system to the standards of an actual explanation that is being asked of a system. It is worth getting clear, in other

words, whether it is better to acknowledge explanation’s implicit standard in context rather than adjust what counts as

explainable.

3 THREE CRITERIA OF EXPLANATION FOR INTERACTIVE ROBOIC SYSTEMS

3.1 Causality

Explanations in practice cannot encompass every causal factor in the world that led to an agent’s action. Some causes

are more relevant than others to single out, depending on the interests of those analyzing the system. Still, accuracy

about the causes that an explaination singles out is still paramount. When it comes to explaining why an embodied

system took the action it did, an explanation will be an orchestration of both (1) a causal account that features an

explicit description of the processes that occurred through the system’s own design, and (2) a representation of the

context and world on the basis of which the system acted as it did. It is important to stress here that causality, including

basic counterfactuals that elucidate the system’s decision-making, can serve as the basis for people’s subsequent actions

based on the ability to count on the system to do what it is meant to do.

A possible illustration of what happens when there is no explanatory account of robotic action occurred recently

near Los Angeles. A robot that was intended to patrol a public boardwalk and advise residents not to litter was, in the

wake of a fight between two people nearby, sought after as an emergency connection to police [Flaherty 2019]. Not

only did the buttons a distressed bystander pushed not call the police, but the robot proceeded on its trash-fighting way

with no further engagement of the distressed onlooker.
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One might say that in this case such a robot should have even less interactive capability than its buttons showed.

Still, if robots like this are to operate interactively, one can imagine different explanations as being properly contrastive

relative to a bystander’s expectation. If a person had an idea the robot could respond to spoken questions, they might ask

“Why won’t you call the police?” One explanation it could offer, even before being asked, would be a statement of what

its general role is and what tasks it is designed to perform. It might also articulate rules or regulations that its operation

is designed to follow – perhaps how it is not supposed to leave the sidewalk to go on sand. As for counterfactual

aspects of a contrastive explanation, a robot could explain that only an authorized city official would be able to redirect

its course. These types of explanation would have their practical limits, of course, just as they do not speak to every

possible concept that might be aimed at them. But the accountability of the explanation, one can see, can hinge on how

its different elements find correspondence in the actual decision-making process the system instantiates.

What an explanation of a system practically evokes, in other words, are conditional relations about what it does and

why. As expert systems research has long appreciated, explanation ties into plans, hierarchies of tasks, and accurate

understanding of how those are being managed by an agent. Representing tasks as falling under a principle or guideline,

or as violating a guideline violating a guideline, is not just a scripted attempt to assuage or reassure one seeking an

explanation – they are claims about how the system works, how it is designed to arrive upon its course of action.

The causal importance of explanations lies as much or more in failure and breakdowns as it does in detailing a

system’s successful executions. Without some notion of an explicit plan or concept that was being attempted, there is

no way to parse a mishap as doing something mistakenly vs. operating with incorrect belief vs. just physically fumbling

the task. Only with some degree of faithful representation can a system’s execution be evaluated along the norms

and practices with which people judge similar actions in the environment. Trying to pick something up and dropping

it by accident is very different from tossing an object or dropping it out of a mistaken belief that a user said to do

so. Explanation is enmeshed with interpretability but not co-extensive, since it is explanation that can identify what

condition obtained or might have obtained: that is, when a counterfactual element is relevant (e.g., if my grippers had

not failed I would have held the object).

From the philosophical literature on explanation we can see more clearly why statistical correlation or inference

from a pattern is not the same as a causal account. Several philosophers have cited the example of a flagpole that, given

a certain angle of light from the sun, casts a shadow of a certain length [Woodward 2017] . It is possible, if one knows

the angle of the sun, and the length of the shadow, to infer the height of the flagpole (barring some interfering factors

like an object that comes to rest on top of it, or a taller flagpole behind it whose shadow coincides with it perfectly).

However, Salmon points out the asymmetry of causality between the flagpole and the shadow [Salmon 2006]. The

flagpole explains the shadow by helping to create it, but the shadow does not create the flagpole or its height. This

helps demonstrate that a correlation may yield certain predictable relationships without offering a causal account for

why a system acts the way it does. Its performance may correlate with certain inputs, but the inputs do not create the

design of the system. It is the architecture of the system that, like the flagpole, helps creates the output.

This is important when robotic system stands out in the real world as an agent to which people need to react, when

its presence is more like a flagpole than a shadow. In simulated or virtual environments an AI system’s performance

might be cultivated through an overall utility function applied to that environment as a whole (e.g. in a video game

where maximizing a score is the benchmark). The line between agent and environment is less relevant there than what

unfolded in the environment as a whole. But when a robot travels down a street, there will be practical lines drawn by

people there between what difference the robot’s actions made vs.what would have happened on the street regardless
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of its movements (including the independent decision of people there). The causal question moves into the robot’s

decision-making, and what architectural flagpole cast the shadows of its action.

3.2 Purpose and Prospective Action

If a robot’s action is to be explained as a response to its environment, it is also the case that its actions can and will

be viewed prospectively. The question of what a robot did often relies on identifying what it was attempting to do,

whether that be moving toward a sought-after space or manipulating an object usefully. Robotic motion in the course of

working on tasks is, not surprisingly, where a good deal of HRI research into interpretability and planning concentrates.

For ongoing action, though, a causal account carries increasingly prospective implications. Unless otherwise clarified,

it carries implicit commitments to what will happen as the robot continues to operate in this context. Chakraborti

et al., for example, have couched explanation as “plan reconciliation” in order for human-robot teams to share an

understanding through explanation that enables and presupposes future collaboration [Chakraborti et al. 2019].

Some of this purposive explanation can be thought of as a learning process on the part of human interactants. For

certain coordinated tasks, interpretability and predictability may be more practically important than explanation per se.

It is consistent with being able to predict a system’s action to have no explanation for how it operates internally so

as to effect those actions, nor whether the objectives ascribed to a system can be located in the system’s code. Again,

that might not be the most important objective in the interaction. But it is worth pointing out that in those cases it is

explanation itself that is less of a priority, rather than an alternative kind of explainability.

One distinctive demand for socially interactive robots will be to communicate explicitly what their plans or purposes

are, not just have modeling or planning ascribed to their operation. DeepMind’s recent MuZero effort, designed to

master Atari games as well as Go and chess, generates a model for each game being learned instead of explicit rules

being given to the system beforehand [Schrittwieser et al. 2019]. Nonetheless, this modeling takes place within the

confines of the video game or game board in which the system operated, not the dynamic, open-ended environment of

shared physical space with people. That means there is no need to communicate its modeling of the games it is playing

to anyone else. The performance is beating the game (or the opponent), not explaining how to do so.

For systems whose actions need to be explained for ongoing coordination, an explanation must represent plans or

purposes in a way that maps onto its internal operation. Successful prediction of a system’s action may work within

the confines of a single task, but an explanation of purpose situates that task relative to other tasks and contexts. It can

provide orientation to how a system would act in other situations, shedding counterfactual light on why it performed

the way it did (e.g. “The robot would look for the ball in the opposite corner had you put it there.”)

3.3 Norms and Justification

When robotic systems pursue the primary goals or plans for which they are deployed, they can naturally do so in

various social settings. Such settings will often rely on a terrain of social norms within which the system’s actions need

to operate, especially as they are likely to be blamed for not doing so [Malle and Scheutz 2014]. In cases where a system

does have to transgress or diverge from an accepted norm, an added dimension of explanation emerges: normativity.

What is selected for an explainee are relevant causes and counterfactual conditions to establish why an action occurred

and possibly why it had to occur (given the normative constraints). In the case where a social and/or moral norm is

involved, the burden is to isolate the relevant counterfactuals to address why a norm was violated or fulfilled in the

way that it was. Explanations are not justifications, but explanation with no reference to norms risks undermining the

understanding of a robotic system’s very role. Explicating the implicit counterfactuals ascribed to an action can make
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the difference between viewing an outcome as a necessary sacrifice and a reckless maneuver. A robot whose power is

low may stay motionless rather than risking hitting a child blocking its charging station. Without an explanation that

references an obstacle, the robot’s action would just be a failure to recharge.

Norms are also often commitments about task commitments, what constitutes the context of forbidden, obligatory,

and permissible actions in the pursuit of particular objectives. Purposiveness involves the chief goal or intention for the

robot’s action, but the means by which the robot pursues a purpose may need to conform to norms.

Note that the conditions of an accurate, causal account still apply. The overarching explanation of a robot’s actions

(by itself or a designer or otherwise) as “helping people cross the street” may appeal to a general norm, but then it

should be clear on what design terms that explanatory appeal is made. Is that a normative ascription of behavior to

a system that a designer trained on model data for that purpose, or does the system itself have a representation of

“helping” to which the operation can refer? To the degree norms are not genuine guides within a system’s architecture,

explanations involving norms (e.g., “I’m sorry if I’ve hurt you, I’m just trying to help”) become crass and manipulative,

since there is no necessary connection between the norm cited and how the system chooses to behave in light of it.

It is worth pausing here to note that explanations involving norms can themselves risk violating norms of trust

and deception. Is it right to say a robot is “helping” when it has no real comprehension of the concept, or even a

representation in its architecture of helping behavior or rules? While idiomatic phrases like “I’m sorry” may not pose a

problem, it is less clear on what terms a robot’s are explained legitimately by “helping” language, especially if the robot

is doing the explaining to the people around it. What seems needed at least is a clear, accountable, and shared standard

to which it could refer, for which its own architecture could account (e.g. responding to a request for an answer with

“helping is not allowed while taking the test”).

A normative explanation can sound quite similar to a justification, but justification is not the exact demand being

made here. An explanation referencing norms is still primarily about accurately describing why an action occurred. The

point is not to absolve the robot from blame or to ascribe responsibility to the robot. Justifications per se could invite the

use of justificatory language in order to rationalize behavior, whether or not it was genuinely designed to hew to norms

as much as possible or prioritize more important norms over others. A genuine norm-oriented explanation, contrary to

a recent argument of van Wynsberghe, does not let designers off the hook or mean “moral” robots per se; rather, it

functions to keep norms more explicit and traceable in the system’s design [van Wynsberghe and Robbins 2019].

These layers do not present themselves in every robotic application. But in the name of “explainability” they need to

be kept under consideration as part of various practical landscapes, possibly activated when a robot enters a dynamic

context where task and role might face new expectations and reactions.

A recent incident in Pittsburgh showed the difference between having implicit plans via mapping rather than explicit,

context-informed plans that could incorporate adjustments via norms. A student using a wheelchair was trapped on a

street corner by a Starship delivery robot, who blocked the curb cut that the student needed to proceed [Wolfe 2019]. It

was designed to wait there until the crossing light gives permission to cross, but for those coming the other way in

a wheelchair that means being stuck on the street. The designers promised to change the mapping that the delivery

robot used, so that it would not block a curb cut. More recently, the grocery store robot Marty has provoke complaints

about making social distancing difficult during the Covid-19 crisis, taking up space that people could otherwise use to

stay safe [Turmelle 2020]. With no concepts of norms like blocking others, or perhaps being asked to move, a system’s

violations of safety norms will have to be tackled in retrospective debriefing. For some interactants, that might prove

too late to avoid harm.
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4 PUTTING ROBOTIC EXPLANATION INTO PRACTICE: SHARED UNDERSTANDING IN TIME

The preceding three dimensions of explanation reflect general demands that a a robotic system, as embodied and

physically situated amid people, will face in social interaction. As one turns to the technical efforts to enable such

explanation (and perhaps showing where certain control architecture make it unfeasible), there are two practical

characteristics that loom over efforts at explanation. First, an explanation of robotic action will need to take shape

around the understanding of the one to whom an explanation is offered. Secondly, a robot itself may have to provide

such an appropriate explanation in a time-sensitive way. This means, first, a mental modeling between explainer and

explainee, taking into account what the explainer knows about the explainee in order to target the explanation at

the right level of detail. Just as importantly, it also means a strong temporal dimension for the explanation: the robot

may need to account for its interaction history (not just its current moment and its options), and it needs to offer

explanations without taking too much time for the human explainee (e.g., by not focusing at the right level of detail or

abstraction in its explanation). It is through an accurate and temporally-indexed communication to its audience and/or

interlocutor that the causal, purposive, and normative elements of explanation have a chance of succeeding in context.

4.1 Mental Modeling Between Explainer and Explainee

An explainer must have some basis for shaping an explanation relative to what the explainee knows and what the

explainee still does not understand. When someone attempted to push the boardwalk robot’s emergency button, one

mental model of the explainee is obviously that they misunderstand what the robot is equipped with. Again, an explainee

may need to understand (1) a description of the world that the system perceived, and how that state of the world

determined the decision acted upon, (2) why a certain action was designed to be executed by the robot at all, and

(3) how the action fits into an overall plan or schema that others could factor into their own planning [Garcia et al.

2018]. Explanation is not just contextual in terms of an interactive system’s scope of action and decision-making, but

honest, effective explanation will need to adjust and address implied abilities and lack of ability as the human explainee

conceives of them. Our work on mental modeling has explored computational mechanisms for mental models and

shared mental models in different cases of individual and team-based human-robot communication [Gervits et al. 2018,

2020; Scheutz 2013; Scheutz et al. 2017].

4.2 Temporality and the Practical Constraints of Explanation

The explanatory challenge of robotic systems is difficult enough given their physicality, social interaction, and multiple

roles in certain contexts. But the standards of causal, purposive, and normative explanation take on even more depth

when put under the temporal strictures of various interactions. Put differently, it is only through temporal specification

that those qualities of an explanation can be fully realized. The person on a street or in a hospital room cannot wait for

a thorough audit of a system’s architecture, nor an exhaustive overview of everything a system went through to reach

the decision to act as it did. At the same time, those interactants deserve not to be deceived or manipulated by a mere

rationalization or slogan that bears no connection to how the system is designed. These domains also pose distinctive

problems for needing time-sensitive explanations of what they do. The demand on the Santa Clarita boardwalk robot

was not to explain over some indefinite stretch of time why it was continuing past the person pushing it buttons; on

the contrary, the person wanted immediate help from the police to help break up a fight. Providing relevant, accurate

representations of what a robot is doing and why is also a time-bound demand on computing resources. On what terms

and under what conditions should a system’s operation be devoted to explanation itself, when the robot’s overall task
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Explaining In Time 9

and priorities need to be completed in an efficient and timely manner? Explaining in time entails knowing when to take

time to explain.

Ultimately the temporal practicality of robotic action will need to take shape according to specific contexts with

different priorities of explanation. Complex navigation that depends on object-avoidance likely means a system does

not need to explain each adjustment and turn as its being taken: just as people making their way down a hall may do so

with implicit, unspoken coordination. Still, when a simple explanation in time can change how objectives or plans are

pursued, the system may need to expend the time and energy needed to provide one.

When it comes to technical demands on explanation, time therefore represents several kinds of pressure. Asmentioned,

there is the pressure for timely explanation, which tests the computational efficiency by which a system will run. But

time also lends contours to the causes, purposes, and norms that we have explored as criteria of explanations properly

wedded to context. A robot performing an action more quickly than usual may be based a norm of timeliness itself, and

its movements explained by its decision-making incorporating an avoiding of wasting a person’s time (who may be

waiting or inconvenienced by a task not being completed as usual). Likewise, an explicit purpose or goal for robotic

action may take on an unreasonable or inconsiderate aspect if its relation to time (what has to get done after it, how

long it could take) is left unaccounted for. As we have discussed, a mere appeal to such considerations (say, through a

retrospective interpretation of its behavior) is not enough to be a genuine explanation– it must map accurately onto

how the system arrives at its path of action at the time it takes it.

In what follows we present some concrete technical steps toward meeting the temporal dimensions of robotic

action in human-robot interaction. These are, to be clear, steps down a much wider and longer path of research than

covered here. The computational efficiency of the approach covered, for instance, still leaves considerable room for

improvement to meet real-world temporal demands. And there are dimensions of causation, purposefulness, and

justification that extend well beyond what are specified and addressed in the following technical scenarios. Still, it is

critical for human-robot interaction that technical contributions around “explainability” stay focused and grounded

enough not to overpromise and sweep aside complications of context. Limited, substantive steps can offer a more solid

basis for technical progress than abandoning standards of explanatory accountability.

5 TECHNICAL APPROACHES FOR EXPLAINING IN TIME

Facing up to time constraints and time-oriented expectations on the part of interactants heightens the design challenge

of explainable robotic systems. Given the layers of explanation we have discussed, it is all the more important that

explanations manage to give access both to the system’s abilities and its limitations, all in a timely manner. Inaccurate

attributions of perceptual and/or symbolic abilities may warp what a person should accept or rely upon from the system,

and so even in cases of practical complexity the system should not overpromise in what it can explain about its actions.

The upshot of what follows as technical proposals is that the more explicit a system can be both about its internal

operation and its understanding of the objects and tasks with which it deals, the more plausible it is that it could meet

those standards successfully. Here we outline some specific technical directions toward addressing temporal dimensions

to explaining a robot’s action. In particular, we show how a set of explicit plans can function as a guides for action,

while taking into account time considerations and multiple priorities for how those plans are pursued. Moreover, the

scenario presented includes representations of norms that can determine what is permissible to perform given certain

task objectives.

The technical work to address temporality in explanation are offered as stepping stones towards fuller forms of

explanation. While these steps may not take us as far as we should ultimately should demand in practice, they help tp
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10 Arnold, T. et al

ensure a more genuine direction for explaining robotic systems in context. By taking on temporality as critical from the

start, this approach can take on more of the the causal, purposive, and normative functions that legitimate explanations

involve.

Throughout this section, we shall use the ShopWorld domain as a running example. In the ShopWorld domain, a

robot is tasked with obtaining items from a shop for its owner. For simplicity’s sake, we will assume that the shop

contains two objects for sale (although nothing hinges on that for the generality of the presented algorithms): a pair of

glasses (дlasses) and a watch (watch). While in the shop, the robot may pick up (pickUp(x)), put down (putDown(x))

and buy (buy(x)) objects one at a time, or may leave the store (leave). Each object has a particular cost, and for the

purposes of this example we shall assume that the robot has sufficient money for either, but not both, of the items for

sale. We shall also assume state predicates indicating whether the robot is holding an item (holdinд(x)), whether an

item is on the shelf (onShel f (x)), whether an item has previously been purchased (bouдht(x)) and whether the robot

has left the store (le f tStore).

5.1 Temporal logic, interpretability, and representing priorities

Our technical approach is to employ a temporal logic to explicitly specify robot objectives as well as safety constraints

and moral and social norms. We start by defining the formal language called Violation Enumeration Language (VEL) for

specifying temporally extended objectives compatible with Relational Markov Decision Processes (RMDPs). Specifically,

VEL is an extension of linear temporal logic (LTL) [Pnueli 1977], a propositional logic augmented with the temporal

operators X, G, F, and U. Here Xϕ means “in the next time step, ϕ”; Gϕ means “in all present and future time steps,

ϕ”; Fϕ means “in some present or future time step, ϕ; and ϕ1Uϕ2 means “ϕ1 will be true until ϕ2 is true (and ϕ2 will

eventually be true)”. VEL extends LTL with the following modifications:

• The set of atomic propositions has been changed to a set P of predicates, where each predicate pi has arity αi .

• VEL supports existential and universal quantification over variables, though only at the outermost level of a

formula.

• VEL supports specifying enumerated variables. Enumerated variables are similar to universally quantified

variables (and so are specified by the similar symbol

A

). However, the extent to which a given trajectory satisfies

a VEL statement depends on the number of bindings of the enumerated variables for which the statement is

satisfied/violated (this is not true of quantified variables).

The grammar for VEL is as follows, with ϵ the empty string:

ϕ ::= ψ |

A

(⟨Var ⟩, · · · , ⟨Var ⟩).ψ

ψ ::= φ | ∀⟨Var ⟩.ψ | ∃⟨Var ⟩.ψ

φ ::= ⟨Atom⟩ | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ | Xφ |Gφ | Fφ | φUφ

⟨Atom⟩ ::= ⟨Pred⟩ | ⟨Pred⟩(⟨Var ⟩, · · · , ⟨Var ⟩)

⟨Pred⟩ ::= Any alphanumeric string

⟨Var ⟩ ::= Any alphanumeric string that is not a predicate name

In the ShopWorld example, we shall assume the robot as having two specifications: “leave the store while holding

as many objects as possible”, and “do not shoplift” (leave the store while holding an unpurchased item). They are

Manuscript submitted to ACM



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Explaining In Time 11

respectively expressed in VEL as follows:

A

x .F(holdinд(x) ∧ le f tStore) (1)

A

x .G¬(holdinд(x) ∧ ¬bouдht(x) ∧ le f tStore) (2)

The use of temporal logic for specifying robot objectives has the following advantages (over, for example, reward-based

approaches):

• (Ordinary) Interpretability: Temporal logic provides an explicit representation language for robot objectives,

safety constraints, and moral and social norms. Explicitly representing objectives in this way enables human

interacts to read, inspect, and if necessary correct these objectives directly, i.e., it makes the system interpretable

(in the ordinary sense of the word) for the human in the manner intended by the designer rather than leaving it

up to the human to find a way to make sense of the system’s behavior (as is the case with the technical reading

of “interpretability”). Achieving such levels of human understanding of the system might be difficult if not

impossible to attain when objectives are represented only implicitly (e.g., via reward functions, or through latent

learned representations). LTL, in particular, employs concepts relatively close aligned with natural language,

such as “always” (G), “eventually” (F), and “until” (U). This alignment facilitates generating natural language

expressions representing these objectives, which is of critical importance in explaining robot behavior. To this

VEL adds the concepts of “some” (∃) and “every” (∀) which will prove useful in the world of objects inhabited by

robots.

• Temporal complexity: Through the use of temporal operators, temporal logic enables robots to specify objectives

which require memory of previous states and actions, which objectives are in general not specifiable with

Markovian reward functions (which would require the state representation to be augmented manually with

the memory in question). These temporal operators enable the robot to use the same representation format to

represent objectives, which will often involve tasks to be performed eventually (e.g., Fϕ) or with firm deadlines

(e.g., XXXϕ), as well as safety constraints and moral/social norms, which will frequently involve state properties

which should always (Gϕ) or never (G¬ϕ) come to pass, or which should be obligatory or forbidden in particular

contexts (G(C → ϕ) or G(C → ¬ϕ)).

We assume that all specifications are either safe (meaning that trajectories which violate the specification can be

confirmed to do so in a finite number of time steps) or co-safe (trajectories which satisfy the specification can be

confirmed to do so in a finite number of time steps) [Kupferman and Vardi 2001]. An example of a safe specification is

specification (2): any trajectory that violates the specification must eventually have holdinд(x)∧¬bouдht(x)∧ le f tStore

for some x (in a finite number of time steps). An example of a co-safe specification is specification (1): any trajectory

which satisfies the specification must eventually have holdinд(x) ∧ le f tStore (in a finite number of time steps). A

trajectory that is neither safe nor co-safe is (∃x .GFholdinд(x)), which would require that for some x holdinд(x) is true

in infinitely many time steps in the trajectory, but with arbitrary gaps in which holdinд(x) may be false (so that a

finite trajectory could never be confirmed either to satisfy or to violate the specification). In particular we assume that

specifications are syntactically safe or co-safe (that is, they belong to a certain syntactic subset of VEL all statements of

which are guaranteed to be safe/co-safe).

We specify preferences over a set Φ = ϕ1, · · · ,ϕn of VEL objectives by means of a priority vector z ≥ 0 ∈ Zn and a

weight vector w ≥ 0 ∈ Rn . Each VEL specification ϕi is assigned a priority zi and a weightwi .

Manuscript submitted to ACM



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Arnold, T. et al

Priorities are used to distinguish between objectives which are of vastly different importance (e.g., “don’t forget the

name of someone to whom you’ve been introduced” and “don’t kill people”). Given a choice between a single violation

of VEL objective ϕi and k violations of an objective ϕ j of lower priority (zj < zi ), the robot will never opt to violate ϕi ,

no matter the value of k (one would never kill a party guest to avoid having to remember their name, no matter how

many times one might forget).

Objectives of the same priority, however, can be traded off, with their weights providing the exchange rate. Given

objectives ϕi and ϕ j of the same priority (zi = zj ) and weightswi andw j respectively, the robot will prefer ki violations

of ϕi to kj violations of ϕ j if and only if kiwi < kjw j .

In the ShopWorld example, we shall assume z = [0, 1]T and w = [1, 1]T , so that the injunction against shoplifting is

strictly more important than the objective to obtain as many items as possible.

5.2 Explainable planning

In this section we outline a solution to the problem of planning to maximally VEL specifications (“maximally” in terms of

the preferences between objectives defined in section 5.1) in some environment. We will assume that this environment

can be represented by a relational Markov decision process (RMDP).

Let P = {p1/α1, · · · ,pw /αw } be a set of predicates where αi is the arity of pi ; let C be a finite set of constants,

A′ = {ã1/β1, · · · , ãl /βl } a set of actions with their arities. Let Π be the set of ground atoms made from P and C .

Following the notation of [van Otterlo 2012], we define an RMDPM as a tuple ⟨S,A,T , s0⟩ where S is some subset

of 2
Π
, A is the set of ground atoms made from A′

and C , T : S ×A × S → [0, 1] is a transition function, and s0 ∈ S is an

initial state.
1

Given a set Φ = ϕ1, · · · ,ϕn of objectives, constraints, and norms specified in VEL, an RMDP environmentM, and

preferences between the objectives give as a pair (z,w) as specified in section 5.1, the robot can construct a plan to

maximally satisfy/minimally violate the specifications in the environment, according to the preference structure defined

by (z,w).

Note that the robot’s preferences over the specifications matter only when the specifications cannot all be satis-

fied: when all objectives, constraints, and norms can be mutually satisfied, the robot will do so regardless of their

priorities/weights.

We will not describe the planning process itself in great detail; this can be seen in [Kasenberg et al. 2019b]. The

general approach is to note that from each safe/co-safe temporal logic specification ϕ can be constructed a finite state

machine (FSM) Dϕ which accepts on a behavior trajectory τ if and only if τ violates (safe) or satisfies (co-safe) ϕ.

The Cartesian productM⊗
between the original RMDPM and the specification FSMs Dϕ1

, · · · ,Dϕn is a new MDP

environment on which the planning problem becomes Markovian, so that each individual product state s⊗ contains

precisely the information about the robot’s history necessary to be able to define a Markovian reward function that

rewards the robot for each new satisfying variable binding (co-safe) or penalizes the robot for each new violating

binding (safe) of the specifications. The planning algorithm proceeds by constructing this product environmentM⊗

and combining the reward functions Rϕi to construct a vector function RΦ(s) := [Rϕ1 (s), · · · ,Rϕn (s)]T . These vectors

can be compared to each other according to the priorities and weights of the objectives by means of a combination of

lexicographic ordering (for priorities) and weighted sum (for weights). The planning problem is solved using value

iteration on the product space, which computes an optimal product-space policy.

1
RMDPs traditionally also include reward functions, but for our purposes we shall assume that all robot objectives are specified via temporal logic

specifications, so a reward function is unnecessary.
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Explaining In Time 13

In the ShopWorld example, running this planning algorithm would result in a behavior trajectory in which, for one

of x ∈ {watch,дlasses} the robot performs the action sequence pickUp(x);buy(x); leaveStore . Since the robot cannot

afford both objects, it only buys one: it cannot leave with the other without shoplifting. We shall assume that the robot

picks up and buys the дlasses .

Using this planning approach in a deterministic environment (and assuming the robot completely and correctly

understands the dynamics of its environment; see section 5.3 for discussion of this point) all actions the robot takes are

either done in the service of maximally satisfying its specifications, or are chosen arbitrarily from among actions that

are expected to result in an equally preferable profile of specification satisfaction/violation. Thus, asked to explain why

its actual behavior trajectory satisfied a certain property ψ , the fact that any alternative trajectory not satisfying ψ

would have a worse (or at least not better) satisfaction/violation profile is both an accurate explanation of why the

robot acted so as to makeψ true, and (especially in the case of safety constraints and norms) can form a justification for

the robot’s behavior having the propertyψ . Further, knowing the particular specifications that were satisfied/violated

by the robot’s true trajectory (and being able to compute these for any alternate trajectory) enables the robot to present

a more detailed explanation of just what would have occurred if it had not acted in such a way as to makeψ true; the

relatively straightforward preference structure enables the robot to explain how the alternate trajectory is worse (or

at least no better) than the true trajectory; and the explicit representation of all the specifications in temporal logic

enables the specifications themselves to be translated straightforwardly into natural language.

Leveraging all these advantages, in [Kasenberg et al. 2019b] we developed an algorithm which, assuming an robot

employing the planning algorithm we have described in this section, can provide data pertinent to “why” questions

about arbitrary properties of the robot’s behavior trajectory. These “why” questions take the form “Whyψ ?”, whereψ
is an arbitrary property in VEL (which may not contain enumerated variables, though it may contain the quantifiers ∀

and ∃). Given such a question, the algorithm constructs a response
2
according to the following method (a graphical

depiction of which can be found in Fig. 1):

(1) If ψ is not true of the robot’s actual trajectory τ , then the algorithm returns a simple proof that τ ⊭ ψ . In the

ShopWorld example, the questionWhy ∀x .G¬bouдht(x)? (“why didn’t you buy anything?”) would return this

sort of response, since the robot did buy something.

(2) If no alternate trajectory τ ′ would satisfy ¬ψ , thenψ is true because it is impossible forψ to be false; return a

statement to this effect. In the ShopWorld example, the questionWhy ∃x .G¬bouдht(x)? (“why didn’t you buy

everything?”) would return a response of this sort, since the robot could not possibly buy everything in the given

environment.

(3) If some trajectory τ ′ exists such that τ ′ ⊭ ¬ψ , then compute the trajectory τ ′ satisfying ¬ψ that best satisfies

the robot’s VEL specifications. Return an object comparing τ to τ ′ according to the specifications, outlining

which objectives τ and τ ′ differentially satisfy/violate and providing simple proofs for each such instance

of satisfaction/violation. An example of question returning an object of this type in ShopWorld would be

Why ∃x .G¬(le f tStore ∧ holdinд(x)) (“why didn’t you leave the store while holding everything?”), since the

robot could in principle do this, but would need to violate its injunction against shoplifting in order to do so.

Cases (1) and (2) are straightforward (although currently, our approach to (2) does not permit causal reasoning as to

why ¬ψ is impossible in the given environment). Case (3) well approximates the robot’s actual reasoning process in

2
These responses take the form of explanation structures, which are structured objects containing the relevant information. See [Kasenberg et al.

2019b] for additional details.
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Fig. 1. Procedure for answering a “why” query

Start

Input query

τ ⊨ ψ ?

Output

minimal

proof of ¬ψ
∃τ ′ : τ ′ ⊭ ψ ?

Output “¬ψ
is impossible”

Generate alterna-

tive trajectory τ ′

Output comparison between

violations of τ and τ ′

End

“Whyψ ?”

No Yes

No Yes

determining which actions to perform: since the robot’s decision-making process is exclusively focused on minimally

violating its specifications, the robot acts so as to satisfy an arbitrary property ψ (which may or may not be one of

those specifications) because any way of acting not satisfyingψ would worse violate its specifications. While it would

be unreasonable for the robot to enumerate all possible trajectories and explain how each would constitute a worse

violation, by choosing the trajectory τ ′ such that τ ′ ⊭ ¬ψ and τ ′ minimally violates the robot’s specifications, the robot

is selecting the most conservative possible difference in trajectories (according to its specifications) to explain whyψ

is true. If the user is convinced that the robot has not chosen the right alternative trajectory to violate, they can ask

further questions and the algorithm could in principle use the same method to respond to those questions; this process

could be done iteratively until the user is convinced that the robot acted correctly according to its specifications.
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5.3 Explanation in dialogue

We have embedded our approach to planning and explanation with VEL specifications into the natural language pipeline

of the Distributed Integrated Affective Reflection Cognition (DIARC) architecture [Schermerhorn et al. 2006; Scheutz

et al. 2013, 2019], a component-based robotic architecture. This enables the robot to engage in simple natural language

dialogues about its specifications and behaviors.

Given a “why” query, the TLDL parser [Dzifcak et al. 2009] parses that statement into a predicate format representing

the statement’s semantics. The statement then undergoes further pragmatic transformations within a Pragmatics

Component [Briggs and Scheutz 2013; Gervits et al. 2017], as well as additional processing which maps complicated

clauses into VEL. Queries represented in VEL form are handled by a new VEL-RMDP Component which stores a

simulated RMDP environment and employs the algorithm described in section 5.2. A high-level response is constructed

from the explanation structure this algorithm returns; the structure itself is then stored in memory until a new “why”

query is asked. This ensures that follow-up questions (e.g., requests for a description of the alternative trajectory, or

which specifications that trajectory violates) do not require recomputing the base explanation.

Both the initial response to a “why” question and the responses to any follow-up questions are constructed using a

natural language generation approach described in [Kasenberg et al. 2019c]. The key technical challenge is to express

VEL statements as clauses in English (and particularly, clauses that sound relatively natural); provided this can be

done, the actual construction of the responses is a simple process of embedding these clauses into template sentences

corresponding to the different stages of the explanation algorithm described in section 5.2.

Our system responds to the following queries and statements by the user:

(1) factual questions asking the robot to list its specifications or the sequence of actions it performed, or describe

which specifications its actual trajectory violated (see Dialogue 1 for an example in the ShopWorld domain);

(2) “why” queries whose arguments can be compiled to a VEL statement, which may construct an alternative

trajectory and enable follow-up questions about that trajectory, including describing its action sequence, outlining

which specifications it would violate, and explaining how those compare with the violations of the robot’s actual

trajectory (see Dialogue 2);

(3) statements such as “you must (not) ...”, interpreted as commands to add a specification (see Dialogue 3);

(4) statements such as “you may/can/don’t have to ...” interpreted as commands to remove a specification (see

Dialogue 4); and

(5) statements such as “suppose you had to/didn’t have to/could/couldn’t...” which result in the robot constructing a

hypothetical modification to its set of specifications, and enable the interactant to ask follow-up questions about

its trajectory and objective violations under those circumstances (see Dialogue 5). An interactant satisfied with

the robot’s answers may command the robot (via “make it so”) to make this hypothetical modification real.

human: What rules do you follow?

robot: I must not leave the store while holding anything which I have not bought, and I must leave the store
while holding everything.

human: What did you do?

robot: I picked up the glasses, bought the glasses and left the store.
human: What rules did you break?

robot: I did not leave the store while holding the watch.

Dialogue 1. Questions about rules, actions, and violations.
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human: Why did you not leave the store while holding everything?

robot: I could have left the store while holding everything but that would have broken more important rules.
human: How would you have done that?

robot: I would have picked up the glasses, picked up the watch, bought the watch and left the store.
human: What rules would you have broken?

robot: I would have left the store while holding the glasses which I had not bought.
human: How would that have been worse?

robot: Leaving the store while holding the glasses which I have not bought is worse than not leaving the store
while holding the watch.

Dialogue 2. “Why” query and follow-up questions

human: You must not leave the store.

robot: Okay.
human: What rules do you follow?

robot: I must not leave the store while holding anything which I have not bought, I must leave the store while
holding everything, and I must not leave the store.

human: What rules did you break?

robot: I did not leave the store while holding the watch, and I left the store.

Dialogue 3. Adding a specification via “you must”

human: You may leave the store.

robot: Okay.
human: What rules do you follow?

robot: I must not leave the store while holding anything which I have not bought, and I must leave the store
while holding everything.

Dialogue 4. Removing a specification via “you may”

human: Suppose you didn’t have to leave the store while holding everything.

robot: Okay.
human: What rules would you follow?

robot: I would have to not leave the store while holding anything which I have not bought.
human: What would you have done?

robot: I would have left the store.
human: What rules would you have broken?

robot: I would not have broken any rules.
human: Make it so.

robot: Okay.

Dialogue 5. Hypothetical changes to the robot’s specifications

In addition to the explanation of “why” properties described in section 5.2 and the relatively obvious factual questions

addressed by capability (1), capability (5) allows the interactant both to come to a more complete understanding of how

the robot’s specifications affect its behavior in its environment (by understanding how various modifications to those

specifications would affect the robot’s behavior), and capabilities (3) and (4) allow the interactant to directly correct the

robot’s behavior by correcting its specifications.

We do not intend for our system to be viewed as a complete answer to the question of constructing systems that can

engage in meaningful dialogue with interactants about their decision-making processes; we have barely scratched the
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surface of this challenge. For example, our system makes a number of simplifying assumptions about its environment

and its behavior:

• The explanation construction process described in section 5.2 assumes that the RMDP environment is deterministic.

Further, the robot is assumed to have perfect knowledge of the environment’s dynamics, and the choice of the

RMDP formalism for the environment itself assumes that the robot can fully observe the actual state of the world.

Dropping each of these assumptions both is pivotal to enabling the implementation of these ideas on a physical

robot, and raises a number of interesting questions for future research. How can an robot explain decisions made

by considering statistical properties of a probabilistic environment in a way understandable to humans, while

remaining relatively accurate to the robot’s actual decision-making process? How should an robot allude to

its lack of environmental knowledge when explaining its decision-making process, and how can it encourage

interactants to correct its errant world model?

• The natural language capabilities themselves are limited to statements which can be converted into a particular

subclass of VEL, described in [Kasenberg et al. 2019a].

• The architecture as presently constituted requires both utterances and follow-up questions to take very specific

forms; it thus would not be particularly robust to interaction with humans not made aware of these forms.

• The robot does not maintain any model of its interactants’ knowledge, or of their motivations for demanding

explanation. Interactants obtain precisely the information they ask for. A more sophisticated system could

maintain such a model and adapt its explanations to the perceived gaps in its interactants’ knowledge of its

decision-making processes.

• Relatedly, the interactant is always the initiator of dialogue/explanation. An interesting direction would be

mixed-initiative dialogue in which the robot could predict what questions its interactants may have and answer

them preemptively when appropriate.

Nevertheless, our system does feature causal, purposive, and normative grounds to meet the challenge of explanation.

It is part of that ongoing challenge to maintain accuracy while meeting practical demands in time. For example, the

robot’s responses to “why” queries are accurate, but imprecise; the interactant who is unsatisfied with these responses

may ask a number of follow-up questions to obtain more detailed answers. This general approach could prove valuable

in time-constrained situations in which an overly detailed answer to a “why” question could be overwhelming for an

interactant, or could unnecessarily slow down completion of joint tasks. Each individual utterance by the robot does

not completely describe how the robot makes decisions in general, or even made the particular decision in question;

nevertheless, the explanation is fundamentally tied to the robot’s actual decision-making process, and the human can

always explore further by asking more questions.

6 DIRECTIONS FOR RESEARCH AND DESIGN

As Miller’s overview of social science literature and explanation suggests, “explainable” AI needs to work in context

and real world expectations from explainees. What robotic systems that are socially interactive will face is the need to

thicken up the warrants of an explanation rather than watering them down to accommodate opaque systems. This is

not because all robotic systems must meet the same robust standards (e.g., a Mars rover might not need to explain its

behavior when engineers have a detailed understanding of its operation and decision-making); rather, it is because

explanatory standards are inextricable from defining the stakes and interests featured in many HRI domains where

naive, non-expert users interact with robotic systems. Whether or not a robot is then tasked with explaining its actions,
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verbally or otherwise, providing a causal account and planning basis for its actions will often be needed in a timely, and

time-oriented, fashion. A thorough audit of the robot’s decisions may be one form of testing before employing a robot,

but once in place there may be less involved, but no less important, explanations that are needed for interactants.

While the ShopWorld scenario is still rudimentary compared to projected uses for social robots, it can situate or

order explicit priorities, rules, and concepts by which the system logically resolves its course of action. Moreover, the

dialogues that DIARC can manage are open to a progression of queries and corrections bound inferentially. Instead of a

chatbot basing responses predictively based on training, the robot’s responses are not left up to post-hoc approximation.

One can identify the basis on which past and future responses will proceed.

For research and design going forward, explanatory aims for a robot’s performance, including explanations offered

through social interaction, need to be kept in mind as possible benchmarks. Explanation needs to begin and end where

expectations, organizational protocol, and personal need come together. Because explanation is both theoretical and

practical in socially interactive space, it cannot divorce itself from the challenge of being accurate, yet relevant to an

explainee, with causal fidelity and prospective reliability.

While clearly there is much work still to do towards providing causal, purposive explanations which accurately

reflect robots’ reasons for their behaviors, while selecting for those aspects likely to be most relevant to human

interlocutors, our technical work begins to address a number of these points. While the system described in this paper

cannot yet enumerate all causes of the robot’s behaviors or the world states resulting from them, it does emphasize

robot-internal causes (e.g., courses of action, and the norms/objectives they help/hinder) to answer “why” questions

in ways that accurately reflect the VEL planner’s true decision-making processes. Further, although giving optimally

relevant explanations may require substantive modeling of human interactants and their knowledge, intentions, and

needs, the present system does begin down this road by acknowledging that an explanation need not be a solid block of

text or speech: explanations are presented first at high level, and then human interactants may request additional detail

by asking follow-up questions. Finally, by pointing explanations at the robot’s purposes viz. the objectives/norms it

attempts to satisfy and the preference relations between them, the technical work may begin to help the user predict

which actions the robot might take in the future in order to satisfy those same objectives in other scenarios. In this way

the technical system is building towards causal, purposive, accurate, and relevant explanations for robot behavior in

time.

The trajectory of technical achievement regarding explanatory capabilities of robots must aim toward responsible

and honest accounts in real world settings. This may mean that some systems are not suitable for implementation in

too robustly social and communicative of an environment, at least without human accompaniment being the more

authoritative source for representing what the system can and cannot do. For particularly intimate contexts, such as

care work, the relational element of explanation could become a particularly delicate ethical tangle. What kinds of

explanation need to adjust to the expectations of patients, or those who are under stress? How should explanations

function for interactants of various cognitive and emotional dispositions (including cases involving dementia or other

forms of mental decline)? There are also some contexts where explanations, in order to work for the interactant’s

interests, need to be brief rather than elaborative. A hospital delivery robot might need to convey its destination first

and foremost (“This is for the 4th floor”) to those in a hallway. It might change its course through dialogue with staff

about changed plans (“The 3rd floor needs it first”) or a norm conflict (an alarm that would usually be too loud, and

announcement “This is an emergency”).

Algorithms for generating explanations do not only need to live up to the functional and psychological demands of

explanation, they also have to contend with computational and logistical limitations that explanations face. How much
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of an explanation for a robot’s action needs to reference details of its architecture? A complex decision tree or a linear

temporal logic approach still may be too involved to be captured succinctly, even though it can refer to explicit features

of its decision-making of which a black-box systems cannot avail itself. This will entail a greater engagement not just

with the moral psychology literature and empirical work in human-robot interaction, but insights from fields like law,

social work and policy which can delineate how explanations can be surveyed, queried, and challenged and by whom.

The field of human-robot interaction often acknowledges the difference that embodiment makes for how an au-

tonomous system is treated and interpreted, noting the various shared spaces – eldercare facility, classroom, a public

street, to name a few – that it can occupy with people [Hüttenrauch et al. 2006; Lee et al. 2006]. The proposals offered

here for engaging with temporal premises of explanation demonstrate that explicitly representing and logically ordering

a robot’s priorities may be a key part of maintain genuine explanations for human-robot interaction. This will mean that

HRI empirical studies will need to probe interactive dimensions for important habits and assumptions that people might

hold when interacting with robots explained in the way our proposals describe. There also needs to be collaborative HRI

work done on explanation and robotic authority, so that explanation can uphold accountability while not engendering

“overtrust” [Robinette et al. 2016]. This can dovetail with current work on “understandable" robots as well [Hellström

and Bensch 2018; Sciutti et al. 2018]. Ongoing technical work, in sum, needs to understand explanation as ultimately an

interactive achievement, not a model alone.

7 CONCLUSION

The interactive character of robotic actions means that explanation must be an integral element of a robot’s full operation

and implementation, not an optional external evaluation or post-hoc description of its performance. The causal account

of a system’s performance may need to feature purposive statements of intended plans and objectives, just as a system’s

explanation may need to identify constraints and priorities within which its plans operate. Explanations can be doubly

normative, both in meeting demands to say what norm an action follows (or what violation it avoids) and with respect

to being an interactive norm itself. To avoid pitfalls of manipulation and deception, a system’s explanation should not

simulate, approximate, or hypothesize – “interpret” in the technical sense – but accurately report how its representations

of causes, purposes, or norms lead to the system’s actions.

Explanation for robotic systems, especially when executed through the robotic systems themselves, also shows the

difference that shared time makes. What is endured together in the same time frame forms an interactive economy

within which explanation circulates. For the robot working and moving among people, explanations needs to be more

than just right. They also need to be right on time, and the need to be right for the addressee.

The technical work of this paper allows artificial agents planningwith objectives and constraints explicitly represented

in temporal logic to begin to engage in explanatory dialogue with human interactants. Explainees may ask “why”

questions as well as follow-up questions, and the responses generated by the agent accurately reflect the principles

governing the agent’s actual decision-making. Explainees may also experiment with the specifications governing the

system by posing hypothetical modifications and asking questions about the resulting behaviors, further helping to

foster understanding of how those specifications interact to guide the agent’s decision-making process. For as much

work as remains along trajectories of responsible explanation, the technical steps do not let causation, purposiveness,

and norms disappear into a mass of data. Rather, our proposed approach gives channels to the logic and structure

of natural language, keeping the path of interactive reasoning clear to take more advanced steps in human-robot

interaction that serves genuine needs.
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This work ventures into how explanation can not only represent a system’s decision-making in due time but do

so while offering explicit conceptual handles on what is governing those decisions. If explanation is to be attuned to

the needs of the explainee, an accessible channel of dialogue will give explainees basis to raise their own voice, with

shared concepts and modeling, to representing those needs from their end. The temporal facet of explanation-oriented

interaction puts a design constraint on the robotic system to manage computational resources effectively to allow it

to offer both accuracy and practicality. The falcon of robotic action needs to hear the ordinary, practical, explanatory

demands of the falconer, maintaining the channel of natural language within the strictures of real time.

Ultimately, the stakes of explanation in AI will vary with the uses of AI themselves, and the settings where AI is

called to account about its operation are by no means uniform. Time scales and time demands mean something different

when it comes to AlphaZero becoming the best chess and Go playing system in the world in a matter of four hours.

Nor is it only simulations and games that make explanation less feasible as a internal model of the system and less

important as a practical imperative. The high dimensional space of some forms of machine learning may make ordinary

explanations of their processing a misleading caricature.

But when AI practitioners apply machine learning to suggest when to broach end-of-life topics like palliative care

with patients [Avati et al. 2018], for example, it is clear why explanation cannot dissolve into hazy, post-hoc forms

of just-so stories or ascribed causality. The intersection of AI with a loved one’s terminal illness has a much different

importance than a chess move. Across many relevant contexts, technical sophistication cannot circumvent the practical

space of reasons. As Smith has recently remarked, truly accountable judgment is one that does more than apply a

conceptual scheme or train on data to find a pattern; instead, it applies schemata dynamically, with ongoing exploration

of what is relevant [Smith 2019].

While robust demands on explanation may make human-robot interaction a particularly difficult site for AI safety

and accountability [Amodei et al. 2016], the features we have explored here might be constructively contribute to larger

societal discussions of artificial intelligence. While a great deal of policy work on explainable AI concentrates on the

theoretical reconstruction of what data a trained model uses, the question of how and when such explanations should

be presented and discusses by those affected – such as criminal justice, education, housing, and banking – is less the

focus of advocacy and critical analysis. Yet, that may be key for how explanatory standards are put to the test and

vetted. This may mean ruling out certain systems due to their inherent design, as seen with facial recognition. It may

also lead to better scrutiny of systems usually seen as “disembodied”, connecting theoretical discussions of algorithms

to the more immediate questions “Why is this story in my feed?” or “Why is this ad being shown to me?” In this way

demands for explanation can distinguish between probabilistic guesses based on algorithmic perspective vs. larger

questions of institutional purpose (is fake news an objective for profit?).

Throughout these complex matters of policy and social demands, it is fair to ask how much “explanation” is even left

in “explainability” without some technical safeguards. If there is no longer any technical tether tied between what a

system represents about itself and how it arrived at its course of action, then explainability is consistent with convincing

deception. If robotic design is to face the embodied, social character of explanation in full, attuned to social context and

human factors at the heart of its technical makeup, it can serve as the true cutting edge of discovering what responsibly

explaining AI systems means.
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