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Abstract—We present a novel integration between a com- 
putational framework for modeling attention-driven perception 
and cognition (ARCADIA) with a cognitive robotic architecture 
(DIARC), demonstrating how this integration can be used to 
drive the gaze behavior of a robotic platform. Although some 
previous approaches to controlling gaze behavior in robots during 
human-robot interactions have relied either on models of human 
visual attention or human cognition, ARCADIA provides a 
novel framework with an attentional mechanism that bridges 
both lower-level visual and higher-level cognitive processes. We 
demonstrate how this approach can produce more natural and 
human-like robot gaze behavior. In particular, we focus on how 
our approach can control gaze during an interactive object 
learning task. We present results from a pilot crowdsourced 
evaluation that investigates whether the gaze behavior produced 
during this task increases confidence that the robot has correctly 
learned each object.

I.  I  NTRODUCTION

In our day-to-day lives, we constantly shift our attentional 
focus to different locations in the outside world and to our 
own mental processes. Interpreting and reacting to signals 
of others’ attentional focus is an essential part of social 
interaction [20]. Gaze, being one of the principle signals 
of attentional focus, has been a major topic of research for 
enabling more natural and effective human-robot interactions 
[2], [52]. Gaze is also a window into what tasks people are 
performing [50], what objects they are thinking about [44], 
and what mental strategies they may be using to achieve their 
tasks [23]. Therefore, developing computational methods for 
robots to produce and reciprocate gaze behavior is important 
for multiple reasons. Natural and human-like gaze behavior 
may facilitate human-robot social interactions. Additionally, 
enabling robots to engage in information processing during 
tasks in more human-like, attention-bound ways, and using

gaze to reflect this processing, could be one method of 
producing more explainable robotic behavior [19]. 

Over the years, researchers have developed a wide range 
of computational methods for generating gaze behaviors in 
artificial agents (see [2] for a survey). These range from data- 
driven and heuristic approaches that produce gaze behavior 
tailored for a specific task (either trained or engineered, re- 
spectively), to biologically inspired approaches that use a more 
general, human-inspired model of visual attention or cognition 
as a basis for producing gaze behavior. These “biologically- 
inspired” approaches range from neuro-biologically inspired 
models of human visual attention [24] to higher-level cognitive 
architectures such as Soar [27] or ACT-R [6]. 

While biologically inspired approaches to generating gaze 
behavior may generalize to a wider set of tasks and con- 
texts, they still have some key limitations. Neuro-biological 
approaches, such as those in the Itti and Koch tradition [24], 
provide high-fidelity models of some aspects of human visual 
attention, but they fail to account for how attention can be 
captured and directed toward other non-visual activities and 
cognitive processes. In contrast, while cognitive architectures 
such as Soar and ACT-R provide a more general account of 
human cognitive processes, none of these architectures have a 
dedicated core mechanism for modeling the role of attention 
in these processes. 

In this paper, we present a novel integration of a compu- 
tational framework for modeling attention-driven processes, 
ARCADIA [14], with a cognitive robotic architecture, DIARC 
[43]. In contrast to prior biologically inspired approaches, 
ARCADIA provides a novel framework with an attentional 
mechanism that bridges both lower-level visual and higher- 
level cognitive processes. We demonstrate this integration in 
different tabletop scenarios. In particular, we focus on the
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application of the integrated system to control gaze behavior 
during an interactive learning task. In this task, a human 
teaches a robot the names of novel objects, then asks the robot 
to point to a particular object. To evaluate whether the gaze 
behavior of the system improves human ratings of confidence 
that the robot has learned correctly, we conducted a pilot 
crowdsourced evaluation. We report on initial results from this 
pilot and discuss the strengths and limitations of the current 
evaluation. Finally, we discuss the potential of this integration 
and directions for expanded capabilities.

II.  A RCHITECTURE I NTEGRATION

We present a new approach to generating gaze behavior 
in robotic agents by integrating two existing architectures 
with complementary abilities: (1) the ARCADIA architec- 
ture, which provides a framework for modeling attentional 
processes; and (2) the DIARC architecture, which provides 
a flexible framework to enable a wide-range of cognitively- 
inspired behaviors on robotic platforms.

A. ARCADIA
ARCADIA provides a computational framework in which 

attention is a central organizing mechanism that unifies per- 
ceptual, cognitive, and action-oriented processes [14]. An 
instance of ARCADIA consists of a few key elements: a set 
of information processing components, a central information 
buffer called accessible content, an attentional strategy, and a 
focus of attention. Additionally, an instance of ARCADIA also 
consists of an environment and sensors that take information 
from the environment and push it to accessible content. 

ARCADIA operates in discrete computational cycles. Dur- 
ing each cycle, each component reads information from ac- 
cessible content and produces new output that will constitute 
the contents of accessible content during the next cycle. 
Furthermore, on each cycle, the attentional strategy selects 
an information element from accessible content to be the 
new focus of attention during the next cycle. The current 
focus of attention is available to each component, which 
may be responsive to the focus or operate independently. 
In this way, ARCADIA has a natural mechanism to model 
processes that require attentional focus and ones that do not. In 
addition, there are no representational constraints within each 
ARCADIA component, though information sent to accessible 
content is packaged in a common format. Discrete packages of 
information in accessible content are referred to as interlingua 
elements. 

Because of this representational flexibility and ability to 
model both attention-bound and attention-independent pro- 
cesses, ARCADIA has been used to successfully model a vari- 
ety of phenomena from human psychology. For example, AR- 
CADIA can model visual perception tasks such as multiple- 
object tracking [29] and numerical perception [16]. ARCADIA 
also can model phenomena that bridges both perception and 
more complex, cognitive tasks, such as identifying causal 
relationships between events [10]. However, these previous 
models all relied on input from video files or still images. To

enable ARCADIA to both receive sensory input from physical 
sensors and control physical affectors, we aimed to integrate 
the system with a pre-existing cognitive robotic architecture.

B. DIARC

The “Distributed Integrated Affect Reflection Cognition” 
(DIARC) architecture is a cognitive architecture for embodied 
agents [43]. DIARC is implemented in ADE, a middleware 
infrastructure [38], [40]. The ADE implementation of DIARC 
provides an open component-based and modular design via 
defined APIs that can be easily extended to integrate new com- 
ponents or connect to other architectures [21]. In ADE, a series 
of DIARC components engage in independent processing and 
asynchronous communication. DIARC components can be 
also distributed across multiple computers. Communication 
between components is facilitated by the ADE-Registry, 
which tracks the status and network location of each compo- 
nent. 

The DIARC architecture has been used to enable multi- 
modal human-robot interactions through speech, text, and 
GUIs [32], [37]. In order to enable better coordination with 
humans, DIARC possesses deeply integrated natural language 
capabilities [17], [49], including the ability to learn novel 
objects and action through dialogue [41]. Additionally, DIARC 
also includes the ability to reason about theory of mind and 
shared mental models [18], [22], [39]. However, one feature to 
improve the quality of human-robot interactions that DIARC 
has lacked previously is a systematic mechanism to produce 
gaze behavior.

C. Core ARCADIA/DIARC Integration

Figure 1 depicts the key components from both systems 
used in the integration. We created a new DIARC compo- 
nent, ArcadiaComponent, that serves as a wrapper for an 
instance of ARCADIA. This component is responsible for 
collecting information from other DIARC components and 
communicating it to the ARCADIA instance. While DIARC 
itself is an asychronous architecture, each DIARC component 
operates on fixed computational cycles. We tied each ARCA- 
DIA cycle to the update cycle of the wrapper component. 
During each ArcadiaComponent cycle, information from 
DIARC is packaged and placed in ARCADIA’s environment 
buffer. Additionally, the ArcadiaComponent obtains the 
current focus of attention selected by ARCADIA’s attention 
strategy and generates commands to move the robot’s head 
orientation conditioned on the current focus of attention.

D. ARCADIA/DIARC Components

While the ArcadiaComponent is responsible for com- 
municating with the instance of the ARCADIA, individual 
DIARC and ARCADIA components are responsible for pro- 
ducing, consuming, and repackaging specific informational 
elements. For instance, when a robot is situated in front of 
multiple objects, DIARC’s vision system may detect these 
objects, creating corresponding DIARC MemoryObject rep- 
resentations. Dialogue history that may contain linguistic
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Fig. 1. Diagram depicting the system components involved in the ARCADIA/DIARC integration. Blue represents architectural features and components from 
the DIARC architecture, while yellow represents architectural features and components from ARCADIA.

descriptors matching visual objects is also collected from 
DIARC’s dialogue component. These DIARC objects are sent 
to ARCADIA’s environment buffer. An ARCADIA sensor 
takes DIARC objects from the environment buffer and repack- 
ages them as ARCADIA elements. In the case of a DIARC 
MemoryObject, an ARCADIA 3D object reporter compo- 
nent wraps ade-memory-object, pushing them to AR- 
CADIA’s accessible content buffer. The ARCADIA linguistic 
cue reporter takes the dialogue information from DIARC 
and produces an ARCADIA linguistic-cue element, 
if the dialogue information contained any visual description 
predicates. 

ARCADIA’s attentional strategy then selects an ele- 
ment from accessible content to be the focus of attention. 
The DIARC ArcadiaComponent then queries the cur- 
rent focus of attention from the ARCADIA instance. The 
ArcadiaComponent contains conditional code that deter- 
mines when a gaze orientation command should be issued 
and the new gaze direction. Gaze shift timing can be in- 
fluenced by multiple factors such as a typical gaze shift
delay parameter ⌧idle, which dictates baseline frequency of
gaze shifts, or special cases that may preempt the typi- 
cal gaze shift frequency. For example, if the robot hears 
a new utterance (and an updated dialogue history is re- 
trieved by the ArcadiaComponent), a gaze shift is ini- 
tiated faster than the baseline frequency. Additionally, the 
ArcadiaComponent contains code that conditionally re- 
sponds based on the type of ARCADIA interlingua element 
retrieved as the focus of attention. Currently, if the current 
focus is an ade-memory-object element, then the original 
DIARC MemoryObject is retrieved and a goal to orient the 
head pose to gaze at this object is submitted to the DIARC

GoalManagerComponent. While the system is presently 
only responsive to ade-memory-object elements, in prin- 
ciple a wide-range of different gaze shifting behaviors could be 
developed that differ based on the retrieved ARCADIA focus 
of attention.

III.  ATTENTIONAL S TRATEGIES

In the previous section, we introduced the ARCADIA and 
DIARC architectures and described how these systems were 
integrated. However, we have not yet addressed how this 
integration enables the generation of useful robotic gaze be- 
havior. As mentioned previously, the ArcadiaComponent 
generates a command to move the robot’s head orientation 
based on the focus of attention from ARCADIA. However, 
what determines the focus of attention is ARCADIA’s current 
attentional strategy. 

The concept of an attentional strategy is an intuitive one. 
Imagine you are an office worker tasked with three responsi- 
bilities:

• (A) Process paperwork
• (B) Respond to emails
• (C) Perform online training 
You will likely come up with a strategy on how to prioritize 

these tasks. For instance, your strategy might be: B � A � C . 
In this case, you immediately respond to emails as they arrive. 
In the absence of new emails, though, you do not simply sit 
idle. Rather, you check to see if there are any outstanding 
pieces of paperwork that need to be completed. Likewise, if 
no new pieces of paperwork are available, you then see if you 
have any online training to do. 

But, what if you are suddenly faced with an urgent deadline 
to complete mandatory training courses? Then, you might
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Fig. 2. Diagram depicting how the ARCADIA attentional strategy affects gaze behavior. Sensory, dialogue history, and robot state information are communicated 
to ARCADIA from DIARC. ARCADIA components then package and process this information into ARCADIA elements. The attentional strategy then selects 
one of these elements to be the focus of attention, according to the priorities encoded in the strategy. The current focus of attention may affect how information 
is processed by ARCADIA components, and the attentional strategy can be changed as a result of new information. The focus of attention determines where, 
if at all, the robot should shift its gaze.

switch to a different strategy that prioritizes online training
(i.e., C � ...). It is not hard to imagine situations that might
warrant each different possible prioritization strategy. 

ARCADIA’s attentional strategies operate in a similar man- 
ner, except instead of prioritizing office tasks, it prioritizes 
pieces of information. Figure 2 depicts how an attentional 
strategy determines gaze behavior. On each computational 
cycle, ARCADIA selects the highest priority piece of infor- 
mation available in its information buffer (accessible content) 
to be the focus of attention. Also, like in the example, 
ARCADIA’s attentional strategies are not necessarily fixed, 
but can be switched and changed depending on its current 
cognitive task.

A. Gaze Behaviors

Attentional strategies prioritize ARCADIA’s focus on differ- 
ent information elements, which informs DIARC as to where 
to orient the robot’s gaze. We describe three simple strategies 
that result in different gaze behaviors, below.

1) Inhibition of Return: When we survey our environment, 
we usually do not fixate on a single object indefinitely. The 
behavioral bias of avoiding focus on previously or currently 
focused objects is called inhibition of return [25]. As it is a 
common phenomenon in human visual perception, it has been 
implemented in prior ARCADIA cognitive models [13]. In the 
context of our robotic gaze mechanism, inhibition of return is 
used to prioritize focus on objects not currently within the 
center of the robot’s field of view. If multiple objects exist 
outside the current center of the field of view, then a random 
object is selected. This results in the behavior of shifting gaze 
from object to object.

2) Fixation on Groups: In our daily lives, we sometimes do 
not fixate on individual objects, but rather on groups of objects. 
For instance, when enumerating a collection of objects, we 
often shift eye gaze among salient subgroups of objects, 
rather than individuals [47]. To enable similar group fixation 
behavior, we implemented an ARCADIA component that 
calculated the centroid of all detected 3D objects in the field 
of view, generating a new 3D point representing the center of 
this collection. Prioritizing this group centroid enables shifting 
gaze toward the middle of a group of objects. For example, if 
two items are detected, gaze would be reoriented toward the 
center point between the two objects.

3) Fixation on Linguistically Cued Objects: People of- 
ten shift their gaze among items referred to or possibly 
referred to in dialogue [44]. Each 3D object representation 
(ade-memory-object) contains a set of visual description 
predicates associated with the detectors in the DIARC vision 
system responsible for detecting the object instance (e.g., 
cup detector - cup(X ), red detector - red(X ), etc.). The 
linguistic-cue information from DIARC’s dialogue his- 
tory provides a set of visual description predicates information 
from the most recent utterance. If a linguistic-cue 
element exists, each 3D object can be ranked by similarity 
to the visual description predicates from this element. For 
example, if two items are detected, one green and one yel- 
low, and the dialogue system hears “the green cup”, then 
the ade-memory-object associated with the green object 
would be selected as the focus of attention. Gaze is thus 
directed at objects based on possible relevance to the current 
dialogue.
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B. Composing Gaze Behaviors 
Attentional strategies can be written to include different sets 

of behaviors with different levels of priority (see Figure 2), 
allowing for the emergence of different, more complex gaze 
behaviors. For example, a strategy that includes both linguistic 
cuing and inhibition of return, with linguistically cued objects 
prioritized, would result in the robot shifting gaze between 
objects until one of the objects (or a similar looking object) 
was mentioned in dialogue. Once the linguistic cue was 
no longer present, either through subsequent, non-relevant 
dialogue or a timeout, the robot would return to randomly 
shifting gaze between objects.

C. Early Demonstration 
As an initial proof-of-concept demonstration of the inte- 

gration of ARCADIA/DIARC, we filmed a PR2 exhibiting 
gaze shifting behavior resulting from a pure inhibition of 
return attentional strategy. Gaze behavior generated by this 
simple attentional strategy is depicted in a video found in 
the supplementary materials 1 . During the beginning of the 
demonstration, the PR2 shifts its gaze between the two de- 
tected objects. As the PR2 centers its gaze on one object, 
the attentional strategy inhibits its corresponding object repre- 
sentation and selects the non-centered object, and the PR2 
shifts its gaze after a short delay. In the middle of the 
video, a third object is introduced, and the PR2 shifts its 
gaze to this new object. The robot then subsequently shifts 
its gaze among the three objects. To demonstrate multiple 
gaze behaviors working in conjunction with one another, we 
tested the DIARC/ARCADIA integration in an interactive 
object learning task. This domain is presented in the following 
section.

IV. D EMONSTRATION :  I  NTERACTIVE O BJECT L EARNING

Consider the following scenario illustrated in Figure 3. A 
Fetch robot is situated behind a table with two objects: a red 
cube and a blue cube. The robot engages in the following 
dialogue interaction with a human teacher:

Teacher: Do you see the red object? (1)
Robot: Yes. (2)
Teacher: Do you see the blue object? (3)
Robot: Yes. (4)
Teacher: The red object is a glorp. (5)
Robot: Okay. (6)
Teacher: The blue object is a blicket. (7)
Robot: Okay. (8)
...
Teacher: Point to the blicket. (9)

After each utterance from the human teacher, the robot 
could engage in one of three possible behaviors, before ver- 
bally responding:

1) The robot does not shift its gaze

1 Videos also found at the following OSF page: https://osf.io/k8pj4/

Fig. 3. A tabletop interactive object learning scenario.

2) The robot shifts its gaze to the referenced object (e.g., 
robot looks at the blue object while responding to line 
7)

3) The robot shifts its gaze to the opposite, unreferenced 
object (e.g., robot looks at the red object while respond- 
ing to line 7) 

We denote behavior 1 as neutral gaze behavior, while we 
denote behaviors 2 and 3 as adaptive and maladaptive gaze 
behavior, respectively. Below, we describe what the perceptual 
and language mechanisms in DIARC and the attentional mech- 
anisms in ARCADIA are doing during this interaction, and 
how they can be configured to produce behavior corresponding 
to each gaze behavior.

A. Neutral Gaze 
Neutral gaze behavior is the baseline behavior. Using DI- 

ARC’s natural language, visual perception, and object learn- 
ing capabilities without the ARCADIA integration enables 
interactive, dialogue-driven object learning. However, no gaze 
shifting behavior is present. A video of the interaction with 
neutral gaze behavior can be found in the supplementary 
materials. 

In the video, the human teacher first exchanges greetings 
with the Fetch robot. The interaction then proceeds as de- 
scribed previously. First, the teacher asks whether the robot 
sees the red object (Line 1). If red object detection was 
not already activated, this triggers DIARC’s vision system to 
search for red objects on the tabletop. The robot finds the red 
block and replies affirmatively (Line 2). A similar interaction 
occurs with the blue block (Lines 3-4). Next, the teacher states 
that the red object is a “glorp,” which engages DIARC’s object 
learning mechanisms, associating the with the label “glorp.”
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(Lines 5-6). The same interaction occurs with regard to the 
blue block, being assigned the name “blicket” (Lines 7-8). 
The robot, having correctly learned the labels to each object, 
points at the blue or red object depending on whether it is 
instructed to point at the “blicket” or “glorp,” respectively.

B. Adaptive Gaze
Video of the learning interaction with adaptive gaze be- 

havior can be found in the supplementary materials. The 
dialogue and visual learning components of the interaction, 
enabled by DIARC, are the same as in the neutral gaze section 
described above. However, now DIARC is also communicating 
with ARCADIA, operating with an attentional strategy that 
prioritizes: (1) linguistically cued objects; (2) group centroid 
fixation; (3) inhibition of return. In the video, the human 
teacher exchanges greetings with the Fetch robot, as before. 
Because there is no visual descriptor content in these utter- 
ances, there is no linguistic cue that is sent to ARCADIA. 
If DIARC’s object detector was already activated, two 3D 
object representations corresponding to both objects would 
be forwarded to ARCADIA’s accessible content buffer. This 
would trigger focus toward the point between the two objects 
(being the next available element in accessible content). If 
object detection was not activated, there would be no 3D object 
representations in ARCADIA’s accessible content to select for 
focus. In either case, the robot’s gaze remains in a neutral 
position looking between both objects. 

When the teacher asks whether the robot sees the red 
object (Line 1), this triggers the activation of a red object 
detector, which provides additional visual descriptor informa- 
tion to the 3D object representation associated with the red 
object, and produces a linguistic cue (red(X ),  object(X )) that 
is forwarded to ARCADIA. The attentional strategy would 
then prioritize the object representation that best matches the 
linguistic cue, shifting the robot’s gaze to the red object as 
the robot replies (Line 2). After a few seconds, the linguistic 
cue decays. A similar chain of events occurs with Lines 3- 
4, except now the linguistic cue would now prioritize the 3D 
object representation corresponding to the blue object. As the 
linguistic cue decays, the robot’s gaze returns to the neutral 
point between the two detected objects. This gaze behavior 
continues in a similar manner for the rest of the dialogue. 2

C. Predictions
As mechanisms that enable teaching robots through natural 

language interactions are developed [41], [42], questions 
arise regarding how robotic learners are perceived by human 
teachers. Recent work has examined how gaze behavior 
affects judgments of the robot’s attention to learning and 
confidence [4]. However, how gaze behavior affects whether 
human interaction partners are confident in whether or 
not a robot learner has successfully learned the intended 
information has yet to be examined. In this regard, the 
difference between the robot’s behavior in the adaptive vs.

2 Inverting the linguistic cue similarity calculation produces behavior con-
sistent with maladaptive gaze.

neutral gaze conditions is stark. Intuitively, people should 
have more confidence that the robot has learned each object 
correctly in the adaptive condition compared to the other 
conditions. Additionally, it seems that maladaptive robot 
behavior should be associated with the opposite belief, that 
the robot has learned the objects incorrectly. This leads to the 
following predictions:

P1: People will more strongly predict that the robot will 
point to the correct object in the adaptive condition than in 
the neutral or maladaptive condition.

P2: People will more strongly predict that the robot will point 
to the incorrect object in the maladaptive condition than in 
the neutral or adaptive condition.

Additionally, we would predict that people should find the 
robot in both the adaptive and maladaptive gaze conditions 
less unresponsive than the robot in the neutral gaze condition. 
To test these predictions, we conducted an initial evaluation 
of the system in a crowd-sourced study.

V. P ILOT E VALUATION

We conducted our study online, using videos that captured 
the interactions described above. While the original demon- 
stration videos included the robot pointing at learned objects, 
videos used in the evaluation were edited to stop before the 
robot shifted its gaze in response to the pointing command 
and began its pointing action.

A. Participants
A total of 150 U.S.-based participants who were fluent in 

English and had a high approval rating on Prolific.co were 
recruited through the platform and participated in the study. 
Of these, 143 completed all of our measures and passed 
our attention checks and are included in the analyses below. 
Participants were between 18 and 54 years-old (M=25.52, 
SD=7.04 years). The gender distribution for the sample was:
male 23.08%, female 74.12%, non-binary 2.8%.

B. Procedure
We used a between-participant design, where participants 

were divided into three main conditions, depending on the 
gaze behavior they saw: neutral (n = 48), adaptive (n = 48) or 
maladaptive (n = 47). Through random assignment, approxi- 
mately half of the participants in each condition saw the human 
teacher ask the robot to point to one object, and half to the 
other object. The videos were filmed from the vantage point of 
the human teacher and showed a front view of the robot that 
was positioned behind a table. The two objects were placed on 
the table in front of the robot (see Fig. 3). The human was not 
visible in the frame, but his voice could be heard. The videos 
also contained subtitles of the dialogue between the human 
and the robot. 

After watching the video, participants were asked a series 
of questions. A static photo of the robot and the two objects
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labeled A (red object) and B (blue object) remained on 
the screen, above the questions. First, we verified that the 
participants were able to identify in the photo the object that 
the robot was asked to point to, by matching it to the A or B 
labels. We used this as an attention check and excluded from 
analyses participants that were not able to answer correctly. To 
capture participants predictions of whether the robot will point, 
and if so whether it will point correctly they were asked the 
following questions: a) “Use the slider to indicate how likely 
it is that the robot will point to an object from 0% - Definitely 
will not point to 100% - Definitely will point.” (Slider range:
0-100, increments of 1). b) “If the robot points to an object, 
use the slider to indicate which object the robot will point 
to.”, with answer anchors: Definitely A (Left), Equally likely
A or B (Middle), and Definitely B (Right; Slider range: 0- 
100, increments of 1). As an additional check, we then asked 
participants about the object that the robot was not asked to 
point to, prompting them to indicate how likely it was that 
the robot had learned to match it to its label. Finally we asked 
participants to indicate their agreement or disagreement to four 
statements inspired by [36]: 1) The robot is unresponsive. 2) 
The robot will malfunction. 3) The robot meets the needs of 
the task. 4) The robot will perform exactly as instructed. The 
ratings were indicated by using a slider from 0 - Strongly 
disagree to 100 - Strongly agree.

C. Results

First, we calculated for each participant the predicted 
likelihood that the robot will point at the correct object 
by multiplying the percent chance that the robot will point 
(question a) with the percent chance that it will point correctly 
(question b). Shapiro-Wilk tests showed that the data were not 
normally distributed in either the neutral, W = .906,  p  <  .001, 
adaptive, W = .912,  p  = .001 or maladaptive gaze conditions, 
W = .889,  p  <  .001. We thus proceeded with performing the 
Kruskal-Wallis non-parametric test to assess whether there was 
an effect of condition on people’s predicted likelihood that the 
robot will point at the correct object, and found a significant 
effect , �2 (2) = 6.173,  p  =  0.046. To compare the individual 
conditions, we performed non-parametric pairwise multiple 
comparisons using Dunn’s test. We found that participants in 
the maladaptive gaze condition predicted a significantly lower 
chance that the robot will point correctly than participants 
in the adaptive gaze p = .016 and neutral gaze conditions
p = .015. However, we found no differences between the 
adaptive gaze and neutral gaze conditions p = .494. As an 
additional confirmation, and to rule out the possibility that peo- 
ple might have believed that the robot’s motors were faulty but 
not its ability to learn, we checked for differences between the 
maladaptive gaze condition and the other two conditions with 
regards to the predicted likelihood that the robot had learned 
to identify the object it was not asked to point to. Dunn’s tests 
revealed a significant difference between the maladaptive gaze 
and both neutral (p =  0.033) and adaptive gaze conditions 
(p =  0.044). We also found significant differences between 
conditions in participants’ agreement with the statement that

the robot was unresponsive �2 (2) = 7.974,  p  = .019. Dunn’s 
test pairwise comparisons revealed that participants in the 
neutral gaze condition agreed with this statement more than 
participants in both the adaptive (p = .012) and maladaptive 
gaze conditions (p = .004). For the other statements, we found 
no significant differences in agreement between conditions.

D. Discussion
The results supported our P2 prediction, that participants 

would be more likely to predict that the robot in the mal- 
adaptive condition would point to the incorrect object. This 
demonstrates that the gaze behavior generated by the system 
did have an effect on human perception of the robot. However, 
the results did not fully support the P1 prediction, finding no 
significant difference between the adaptive and neutral gaze 
conditions. Examining the distribution of responses in each 
condition (see Figure 4) shows that there is a strong bias 
toward participants responding that the robot would definitely 
point to the correct object. Even in the maladaptive condition, 
where intuitively the median response should be skewed 
toward predicting incorrect pointing, participants were likely to 
respond that the robot was going to point correctly. Because of 
this bias, a more subtle difference between neutral and adaptive 
gaze behavior may not have been detected with the current 
experimental setup. We hypothesize that this bias could be due 
to a few possible explanations. First, the objects on the table 
were relatively close together, producing more subtle shifts in 
gaze, which may have been harder for participants to perceive 
and make judgments about. Second, the robot’s head shape 
and the filming angle may have also contributed to difficulty 
in making judgments about the robot’s field of view and gaze 
direction. Third, the consistent and sensible dialogue responses 
by the robot may also contribute an assumption of a high-level 
of robot competency. 

Regardless, we did find that the robot in the neutral gaze 
condition was found to be significantly less responsive than the 
robots in the adaptive and maladaptive condition. This finding 
suggests that the gaze behavior generated by the integrated 
system does provide some helpful feedback to human interac- 
tants. Further refinements of our evaluation will be necessary 
to tease out whether the lack of significant difference in the 
pointing prediction question was simply an artifact of our 
study implementation. As alluded to above, these refinements 
could include stimuli where the objects are spread further 
apart, necessitating larger and more dramatic shifts in gaze, 
and additional conditions where only non-verbal feedback is 
given.

VI. G ENERAL D ISCUSSION

Successful human-robot interaction depends on a variety 
of factors, including whether people infer the correct beliefs 
about what these robotic agents have perceived about their 
environment [45]. Cues such as eye gaze enable people to 
make such inferences during social interactions [20]. There- 
fore, studying how gaze behavior can be used by robots to 
facilitate interactions is an active area of research [2], [3].
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Fig. 4. Box plots representing participants’ perceptions that the robot would point to the correct object (left) and that the “robot was unresponsive” (right).

Throughout the years, many approaches to enabling dy- 
namic gaze behavior in robots have been developed (see
[2] for a survey). These include approaches with data-driven 
[1], heuristic [5], [51], and biologically- and cognitively- 
inspired aspects [12], [24], [46]. One of the challenges the 
field faces is the diversity of robotic platforms and interac- 
tive tasks gaze behavior could be involved in, often making 
direct comparisons between proposed approaches difficult. 
Furthermore, attention itself is a multifaceted phenomenon, 
which is realized differently among cognitive architectures 
with attentional components (see [26] for a comprehensive 
review and discussion). 

To enable helpful, dynamic gaze behavior in robotic agents, 
we have proposed and demonstrated the integration of the 
ARCADIA attention-driven cognitive framework and the DI- 
ARC cognitive robotic architecture. The DIARC architecture 
provides general mechanisms that abstracted over different 
robotic platforms, while the ARCADIA framework enables ab- 
straction of gaze behavior over different tasks. This integration 
was demonstrated in different scenarios on multiple robotic 
platforms. Our initial proof-of-concept demonstration involved
a PR2 robot dynamically shifting its gaze between objects 
in a simple tabletop environment. Our second demonstration 
involved a Fetch robot dynamically shifting its gaze between 
objects in a dialogue-driven object learning scenario. 

To evaluate the effectiveness of this gaze behavior in helping
a human observer feel that the robot learned correctly and 
was responsive, we conducted a crowdsourced study using 
videos of the robot operating with and without the integrated 
system. While the results were not consistent with our pre- 
diction regarding increased perceptions of learning success 
in the adaptive condition over the neutral control condition, 
the response distribution suggests possible limitations to our 
current evaluation method. Also, the data did indicate a 
significant effect of dynamic gaze: maladaptive gaze increased 
perceptions of incorrect learning and adaptive and maladaptive 
gaze decreased perceptions of robot unresponsiveness. 

In some regards, the attentional strategies enable develop-

ment of gaze behaviors in a manner akin to a subsumption 
architecture [7]. In a subsumption architecture, simple behav- 
iors are composed in a hierarchical manner to enable more 
emergent, complex behaviors. However, unlike in a classical 
subsumption architecture approach, the ARCADIA/DIARC 
integration does not eschew symbolic representation. Rather, 
information elements in both DIARC and ARCADIA are 
designed to be representationally agnostic, allowing for in- 
formation processing that can be influenced by both lower- 
level sensory data and higher-level cognitive processing. Other 
recent work in generating dynamic gaze behavior for robots 
also relies on this hierarchical layering of gaze behaviors, 
explicitly referencing subsumption architectures [33]. Though 
not demonstrated in the context of this paper, one point of 
contrast to this approach is that ARCADIA does have the 
ability to change attentional strategies based on task context, 
which enables top-down configuration of the hierarchy of gaze 
behaviors. 

As [26] point out, ARCADIA’s architecture (specifically its 
accessible content) resembles Global Workspace Theory [8], 
a resemblance which is also shared by the ASMO architecture 
[30], [31]. Like the ARCADIA/DIARC integration, ASMO is 
an architecture designed to both have an explicit attentional 
mechanism and ability to control robotic platforms [30]. 
In contrast to ARCADIA, ASMO’s attentional mechanism 
does not select a unitary focus of attention. Rather, ASMO’s 
attentional mechanism is used to mediate between multiple 
possible resource (e.g., robotic effectors) requests. Thus, it is 
possible for ASMO to focus on multiple activities at once, 
provided these activities do not share resources [30]. Another 
biologically inspired approach toward robotic gaze control is 
the STAR architecture, which has recently been used to enable 
a simulated robot to engage in visual search tasks [34]. While 
ASMO and STAR are examples of architectures that bridge 
bottom-up and top-down attention, they do not currently have 
natural language components, unlike the presented ARCA- 
DIA/DIARC integration. 

While the behavior exhibited in our two demonstrations
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is relatively simple, the integration that it demonstrates is 
powerful. Any information available from DIARC components 
can be given to ARCADIA, processed, and used to potentially 
influence the focus of attention. There is a considerable 
amount of flexibility in which of the two architectures is 
responsible for specific pieces of information processing and 
decision-making. For instance, ARCADIA can receive infor- 
mation about key features of the robot’s environment and state, 
and use this to compute where to look. Other configurations 
could use ARCADIA not only to decide where to look, but 
to model more human-like and attention-dependent cognitive 
processes. In these cases, the DIARC wrapper component 
could potentially initiate different postures and gaze behaviors 
reflective of attention toward internal representations rather 
than external objects or points in space. 

Generating helpful and informative gaze behavior during 
dialogue interactions is a common application for models of 
gaze behavior [11], [28], [46]. As demonstrated, the AR- 
CADIA/DIARC integration can direct gaze toward objects 
mentioned in dialogue, though future extensions of this work 
are needed to bias and direct gaze toward speaking agents. For 
example, sound localization and speech onset information can 
be used to know when and where to direct the robot’s gaze 
when an interaction partner is speaking. Furthermore, dialogue 
state information from DIARC’s dialogue system could be 
used to generate anticipatory gaze shifts [35] based on the 
expected next speaker (see [48] for an example of top-down 
biasing in DIARC based on dialogue state information). We 
would predict that a robot exhibiting both reactive and antic- 
ipatory gaze shifts in dialogue interactions would be viewed 
as a more natural interaction partner by human interactants. 

Another direction of future work is using the ARCA- 
DIA/DIARC integration to enable active perception [9], using 
the attentional mechanism to cue gaze and robot orienta- 
tion toward areas outside the current field-of-view to gather 
more information about the environment. Additionally, using 
ARCADIA’s capacity to change attentional strategies during 
task-switching would enable context-dependent gaze behavior 
[15]. For instance, in a collaborative scenario during which 
a robot must both manipulate items in an environment and 
communicate with a human interaction partner, subtasks that 
involve critical manipulation actions could deprioritize gaze 
toward the interaction partner, whereas other subtasks could 
involve switching gaze between the human partner and the 
task items. 

Finally, different ways to integrate ARCADIA and DIARC 
can be explored. For example, each DIARC component could 
potentially have a separate instance of ARCADIA to provide 
an attentional processing mechanism dedicated to the function 
of that specific component. In this paper, we have presented 
the foundation that enables these possibilities.
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