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Abstract. Humans working in teams typically use task-based natu-
ral language dialogues to coordinate activities. And they use mental
models of team mates which they update automatically based on per-
ceived and communicated information to predict the actions of their
team mates. It is thus reasonable to assume that humans will expect
future robots interacting with humans in natural language as part of
mixed-initiative teams to exhibit the same kinds of belief modeling
exhibited by humans.

In this paper, we propose principles that robots can use to repre-
sent beliefs and goals of other agents based on task-based natural
language dialogues and use automatic inference based on communi-
cated information to update their mental models of other agents. We
demonstrate the proposed principles in a simple case study involv-
ing two robots and a human operator performing simple tasks in a
laboratory environment.

1 Introduction

Mixed human-robot initiatives – teams that consist of both human
and robotic team members – are widely seen as an important appli-
cation domain for future autonomous robots. The goal in such teams
is to utilize unique strengths of both humans and robots in order to
accomplish joint goals. For example, NASA envisions space robots
to help astronauts with the construction of planetary space stations.
Or rescue robots in disaster areas are envisioned to aid human rescue
workers in finding and retrieving wounded people. From a robotics
perspective, the research challenge here is twofold: to provide the
robotic capabilities necessary for a given task and to provide ap-
propriate mechanisms for human-robot interactions that are effective
and natural for humans.

While human teams typically use natural language to coordinate
activities (such as discussing goals, developing plans, adjusting be-
haviors, etc.), mixed initiative teams are severely limited by current
robots’ cognitive limitations. Current robotic systems do not have
the necessary modeling and inferencing capabilities for extensively
emulating human mental models, nor do they have the natural lan-
guage capabilities to engage in natural task-based dialogues, though
progress is being made on these fronts [1]. Specifically, humans in
teams are capable of (1) following multi-agent dialogues, (2) auto-
matically updating their mental models of the involved agents based
on the information communicated in natural language, and (3) auto-
matically drawing inferences from the obtained information which
may prompt them to confirm, augment or correct information and
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communicate those updates to their interlocutors effectively [6, 8].
If we want mixed initiative teams to interact in natural human-like
ways, then robots will need mechanisms (built-in or learned) for per-
forming mental and belief modeling and updating very much like
humans.

In this paper, we propose simple belief update schemes for multi-
agent dialogues that can be integrated into a cognitive architecture,
thus allowing artificial agents to engage in more natural dialogues
for activity coordination in mixed initiative teams. Specifically, we
show how robots can use information gained from listening to dia-
logues among other agents to make inferences about those agents’
belief states and goals, and how agents can use automatic inferences
applied to mental models of other agents to better understand natural
language directives and arrive at explicit goal representation (of their
own and other agents’ goals).

The paper is organized as follows. We begin with a few motivat-
ing mixed initiative scenarios where a human commander instructs
autonomous robots to perform various tasks. These scenarios are in-
tended to isolate several of the principles humans automatically em-
ploy in the context of teams and underscore the importance of belief-
modeling mechanisms and perceptual integration. Then, we formal-
ize the principles and describe our framework for belief modeling
and updating, which also includes principles for inferring belief state
based on particular natural language expressions. Next, we introduce
the evaluation scenario and present the implementation details of the
previously introduced principles in a distributed robotic architecture
run on two robots. A particular dialogue interaction between the op-
erator and the two robots then demonstrates the operation and utility
of the proposed principles and framework. The subsequent discus-
sion section addresses some of the challenges for larger, more capa-
ble systems while the conclusion summarizes our accomplishments
and briefly touches on future work.

2 Motivation

Robotic systems are often well-suited for operating along-side or in
place of humans, for example, in hazardous environments such as
nuclear power plants or outer space. However, for humans to work
with robots effectively, the interaction and cognitive capabilities of
the robot become a critical factor, in addition to its physical char-
acteristics and behavioral repertoire. While it is possible to devise
special purpose interfaces that allow for teleoperation of robots or
interactions with robots capable of limited autonomy, the much more
natural case – from a human perspective – is where humans interact
with autonomous robotic teams members as they would with other
human team members: using natural language. This is particularly
important in cases where typical human-machine communication



modalities are impractical [7]. For example, human searchers during
rescue operations in disaster zones typically coordinate their activ-
ities through spoken natural language interactions via wireless au-
dio links, while simultaneously occupying their eyes and hands with
time-critical work. To efficiently interact with human team members,
robotic team members would then also have to be capable of using
spoken natural language.

However, being capable of using (rudimentary) spoken language
alone is not sufficient because so much other cognitive activity is
triggered in humans when humans engage in even simple dialogue
exchanges. For example, human team members automatically form
mental models of the beliefs and goals other team members have
based on dialogue context and use those mental models to make in-
ferences about other states that obtain (e.g., if a searcher says that she
is done searching area X and has a goal to search another area, then
she will likely leave X) and to adapt their natural language interac-
tions (e.g., A telling B that A searched X will lead allow C to assume
that B knows that A left X in questions like “Do you know where A
is going next?”). Moreover, if A knows that B wants to be informed
if a subtask is completed (e.g., area X search), A will automatically
update B (“I finished searching X”). And B can then update C on A’s
activity if A is temporarily not reachable when C inquires about the
status of area X; or B can correct C if C makes a statement that in-
dicates a false belief (e.g., “Area X still needs to be searched” when
A previously informed B that the search of area X was completed).
Working in teams thus requires agents to monitor the dialogues and
employ similar mental modeling and automatic model updates as in
the human case. And it also requires similar automatic application of
inference principles to communicated information.

To make these types of example more concrete in a simple
robotic domain (as we will later use for evaluating our proposal
mechanisms), consider a simple environment consisting of three
navigation-points. A human-operator (O) is charged with coordinat-
ing in natural language the goals and behaviors of two autonomous
robots, a quadrotor (Q1) and a ground-transport (T1) via radio. Let
us use at(α, λ) to denote that agent α is located at nav-point λ and
B(α, φ) to denote that agent α believes that φ is true. Consider the
following scenario:

Figure 1. Sample environment for joint human-robot tasks.

O: Transport 1, travel to Nav-point 3.
T1: Okay.
O: Quadrotor 1, follow Transport 1.
Q1: Okay.

The scenario is illustrated in Figure 1. In order for the transport to
get to Nav-point 3 in the above scenario, it must pass through Nav-
point 2. Q1 can thus simply wait for T1 to show up at Nav-point 2 at
which point it can follow it to Nav-point 3.

Note that autonomous agents must not only be able to update their
beliefs to reflect the propositions communicated in utterances, but
they must be able to compare these propositions to their own percep-
tions. If contradictions occur, agents must be able to ask for clarifi-
cation or offer corrective statements as in the following example:

O: Transport 1, are you at Nav-point 2?
T1: Yes, I am at Nav-point 2.
Q1: I do not see Transport 1.

In addition to the need for integrating the agent’s perceptions into
the dialogue system, a belief-modeling competency is necessary to
generate the proper clarification or correction statement. Quadrotor
1’s response would only make sense if B(O, at(Q1, N2)) was true.
If B(O,¬at(Q1, N2)), the quadrotor would have to produce a cor-
rective utterance that implies at(Q1, N2) ∧ ¬Sees(Q1, T1), such
as “I am at Nav-point 2 and do not see Transport 1, ” or “I do not see
Transport 1 at Nav-point 2.”

In sum, two important competencies must be present in a robotic
agent for it to be able to communicate efficiently with human oper-
ators and team members: (1) the ability to build and maintain men-
tal models or belief-model of the other agents (based on the synthe-
sis of perceived, communicated, and inferred information) in order
to maintain situational awareness; and (2) the ability to support the
maintenance of other’s mental models of oneself through commu-
nicating new information. For the rest of the paper we will use the
term “mental model” in a technical sense to refer to the set of beliefs
B(β, φ) agent α has about other agents β.

3 Belief Modeling and Dialogue
For robots to be able to engage in simple but natural sounding dia-
logues and automatically perform the types of belief modeling pre-
sented above, we need to add explicit rules that represent relation-
ships among linguistic expressions as well as past and future be-
liefs. In particular, for task-based dialogue interactions we need to
add rules that allow agents to reason about (1) the effects of percep-
tions, actions, and past beliefs on new/updated beliefs and (2) the
effects of different utterance types (i.e., statement, questions, com-
mands, and acknowledgments) on beliefs. The former includes all
relevant properties of the agent in the world for it to be able to under-
stand task-based dialogues; the latter includes all kinds of pragmatic
implications of the employed utterance types both general (e.g., ad-
verbial modifiers) as well as specific to the communicated context
(e.g., the location predicate).

Indeed, these rules that enable belief-modeling of interlocutors are
necessary to enable plan-based dialogue agents, which were first ex-
plored by Cohen and Perrault (1979) and Perrault and Allen (1980).
Traum (1999) provides a review of dialogue agents enabled by the
modeling of beliefs, desires, and intentions (BDI) and articulates the
advantages of this approach, stating that modeling the changes com-
municative acts have on the mental models of agents “...allows an
agent theorist or designer to place agent communication within the
same general framework as agent action.”

3.1 Agent Behavioral Rules
For the purposes of the employed example and the given space lim-
itations, we make several simplifying assumptions: (1) we will not
worry about employing generalizable and robust mechanisms for the
translation from natural language expression to logical formulas for



the simple domains employed here (e.g., which we have done else-
where [5]), we simply use pattern-matching to convert from natural
language to logical forms; (2) we assume that all agents are truth
tellers and never lie; (3) we assume that all agents immediately ex-
ecute the most recent order and only that order (e.g., we have pre-
viously dealt with the more complex case of giving agents multiple
possibly contradictory orders in natural language [12]); and (4) we
make each agent first utter its name and then the name of the ad-
dressee so that it is easy for each agent to determine the speaker and
the intended listener based on the linguistic information alone.

These rules include facts about agent behaviors that other agents
can use to predict the other agents’ behaviors. The first rule is con-
cerned with an agent’s perceptual system which is taken to automat-
ically generate beliefs about what it perceives. In particular, if an
agent α perceives the presence of another agent β at location λ, then
it generates the belief that B(β, λ).

Perceives(α, at(β, λ)) ⇒ B(α, at(β, λ)) (1)

The next three rules are about agent actions: If agent α has a goal
to be at location λ, then α is heading there:

goal(α, at(α, λ)) := goingTo(α, λ) (2)

If agent α is supposed to follow agent β, and β is heading to loca-
tion λ, α is also going to λ:

follow(α, β) ∧ goingTo(β, λ) := goingTo(α, λ) (3)

The next rule pertains to triggering a notification event. If you are
supposed to inform agent β when a condition φ is achieved, then
when φ is achieved, generate an intention-to-know φ by β, which
will leverage the dialogue generation capabilities of the agent:

Inform(β, φ) ∧ φ := IK(β, φ) (4)

3.2 Belief Update Rules for Utterances
We need to add rules for handling utterances both from a speaker’s
and a listener’s perspective. Here we will build on our recently in-
troduced formal framework [4] where we use [[u]]c to denote the
“pragmatic meaning” of an utterance u in context c (which includes
task, goal, belief and discourse aspects).

The first general rule (based on the above discussed simplifica-
tions) is that an agent always believes all propositions it is able to
infer from the utterance of another agent:

([[u]]c ⇒b
α φ) ∧Heard(α, u) ⇒ B(α, φ) (5)

Note that the inferences here are bounded by the agent’s computa-
tional and algorithmic inference limitations (indicated by the agent’s
inference ⇒b

α mechanism bounded by b). While this rule is reason-
able for simple agents in limited task-domains and might allow an
agent to generate all implications given by an utterance in context C,
it is likely that more sophisticated agents in more complex domains
will not be able to generate all implications.

The second rule is that an agent believes everything it said itself:

([[u]]c ⇒b
α φ) ∧ Said(α, u) ⇒ B(α, φ) (6)

This rule comports with Gricean conversation maxims, specifi-
cally the maxim of quality, which requires one to not say what one
believes is false [9]. Though it would fail in cases of intentional de-
ception, it is assumed that in the domain of collaborative HRI, such

cases are not to be expected. Such a rule would rely on feedback ut-
terances, such as acknowledgments (e.g. “OK”) and/or reiterations
(e.g. “Yes, I am going to nav-point 3.”) to maintain correct mental-
models.

In addition to adding general rules for utterances based on speaker
and listener roles, we need to add more specific rules for captur-
ing the pragmatic implications of different utterance types such as
statements, questions, commands and acknowledgments based on
prior dialogue history and sentential modifiers. We present several
pragmatic rules below in the form of UtteranceType(α, β,X,M),
where α denotes the speaker, β denotes the audience, X denotes
the surface semantics, and M denotes the set of sentential modifiers
present in the utterance (which may be the empty set, denoted here
as {}). Pragmatic rules for various adverbial modifiers in this domain
(such as “still” and “now”) were presented in [4].

3.2.1 Statements

If α informs β that it is at λ, then we can assume that α is indeed at
that location:

[[Stmt(α, β, at(α, λ), {})]]c := at(α, λ) (7)

If α informs β that it is going to λ, then we can assume that α is
indeed going to location λ:

[[Stmt(α, β, goingTo(α, λ), {})]]c := goingTo(α, λ) (8)

If α informs β that it is going to λ with γ, then we can assume that
α is indeed going to location λ and believes γ is doing the same:

[[Stmt(α, β, at(β, λ), {with(γ)})]]c := (9)

goingTo(α, λ) ∧B(α, goingTo(γ, λ))

If α informs β that it is engaged in action θ, then we can assume
that α is indeed doing that action:

[[Stmt(α, β, doing(α, θ), {})]]c := doing(α, θ) (10)

3.2.2 Questions

If α asks β about its location in the general sense (“where are you?”),
then one can infer that α has an intention to know (expressed via the
“IK” operator) where β is located:

[[Askloc(α, β, {})]]c := IK(α, at(β, λ)) (11)

for some λ.
If α asks β about its heading in the general sense (“where are

you going?”), then one can infer that α has an intention to know the
location where β is traveling to:

[[Askgoto(α, β, {})]]c := IK(α, goingTo(β, λ)) (12)

for some λ.
If α asks β about its current action in the general sense (“what are

you doing?”), then one can infer that α has an intention to know the
current action that β is engaged in, which is specified by the doing()
predicate:

[[Askdoing(α, β, {})]]c := IK(α, doing(β, θ)) (13)

for some action θ.



3.2.3 Commands

If α orders β to travel to λ, then one can infer that β has a goal to be
at λ, α wishes to be informed when β reaches λ, and that α wants to
know whether β heard the command:

[[Cmd(α, β, at(β, λ), {})]]c := (14)

G(β, at(β, λ)) ∧ Inform(α, at(β, λ))

∧IK(α,Heard(β,G(β, at(β, λ))))

If α orders β to follow γ, then one can infer that β has a goal to
follow γ and α wants to know whether β heard the command:

[[Cmd(α, β, at(β, λ), {})]]c := (15)

follow(β, γ) ∧ IK(α,Heard(β, follow(β, γ)))

If α orders β to travel to λ, then one can infer that β has a goal to
be at λ, α wishes to be informed when β reaches λ, and that α wants
to know whether β heard the command:

[[Cmd(α, β, at(β, λ), {})]]c := (16)

G(β, at(β, λ)) ∧ Inform(α, at(β, λ))

∧IK(α,Heard(β,G(β, at(β, λ))))

3.2.4 Acknowledgments

If α utters an acknowledgment (e.g., “OK.”) when the previous utter-
ance was a positive statement of location by β, then one can infer α
no longer has the intention to know β’s location:

[[Ack(α, β, {})]]c := ¬IK(α, at(β, λ)) (17)

for some λwhere for anyM Prior(Stmt(β, α, at(β, λ), {M})) ∈
c. If α utters an acknowledgment (e.g., “OK.”) when the previous
utterance was a command by β to be at λ, then one can infer that

[[Ack(α, β, {})]]c := (18)

G(α, at(α, λ)) ∧ heard(α,G(α, λ))

where Prior(Cmd(β, α, at(α, λ), {M})) ∈ c If α utters an ac-
knowledgment (e.g., “OK.”) when the previous utterance was a com-
mand by β to follow γ, then one can infer that

[[Ack(α, β, {})]]c := (19)

follow(α, γ) ∧ heard(α,meet(α, γ))

where Prior(Cmd(β, α, at(α, λ), {M})) ∈ c

3.3 Belief Updates
Each agent γ updates its beliefs whenever it hears an utterance u
from speaker α addressing another agent β (which may or may not
be the same agent as γ) or whenever it receives a set of perceptual
updates Ψγ . It uses the above specified principles to determine all
pragmatic implications of the utterance and also to detect any beliefs
inconsistent with existing beliefs (both pragmatic implications and
inconsistency detection are determined by γ’s inference algorithm
⇒b
γ and are thus subject to b – for low values of b the agent might

fail to compute all implications or to derive a contradiction); the set
of conflicting beliefs Pγ are then removed from the agent γ’s sets of
beliefs.

4 CASE STUDY

All principles and belief updates described above were implemented
as a special dialogue component in the Java-based Agent Develop-
ment Environment (ADE) (see http://ade.sourceforge.net/) which is
a framework for implementing distributed architectural components
for robotic architectures. A simple resolution-style inference mech-
anism with a shallow one-step look-ahead search limit was used.
The new dialogue component (in conjunction with previous algo-
rithms for utterance generation and response selection as detailed in
[4]) was used integrated into the existing robotic DIARC architec-
ture which comprises components for perceptual processing (using
camera-based vision) and navigation (for ground-based and air-based
vehicles), action planning and natural language processing and has
been used extensively for human-robot interactions in natural lan-
guage [13]. For the case study, we used a Videre Erratic mobile robot
and Parrot AR Drone Quadricopter from ExPansys. A picture of the
platforms used can be found in Figure 2, while video of the interac-
tion can be found online.

Figure 2. The quadricopter (left) and Videre (right) robotic platforms
utilized for the study4.

As illustrated in Figure 2, both the quadrotor (Q1) and the Videre
transport (T1) start in the same location, which we designate S. The
belief-spaces of both agents are initialized to be empty, though both
are able to perceive that they are at the starting location:

ΨQ1 := {at(Q1, S)} → BQ1 := {at(Q1, S)}
ΨT1 := {at(T1, S)} → BT1 := {at(T1, S)}

The human operator (O) then queries the quadrotor:

O: Drone, what are you doing?

Since the quadrotor is idle, and has no doing(Q1, θ) terms in its
belief-space, the quadrotor replies accordingly and the operator
acknowledges:

Q1: Commander, I am not doing anything.
O: Okay.

The operator then gives the transport an order to travel to location
alpha:

4 http://www.youtube.com/watch?v=40_Ee2g5ztg



O: Transport, go to alpha.

Both the transport and quadrotor hear this utterance, and they update
their beliefs accordingly:

u := parse(”O: T1, go to alpha.”)
→ u := Cmd(T1, O, at(T1, α), {})
[[u]]c := {G(T1, at(T1, α)), Inform(O, at(T1, α)),
...IK(O, heard(T1, G(T1, at(T1, α))))}

¯PQ1 := contradictedTerms([[u]]c, BQ1)
¯PT1 := contradictedTerms([[u]]c, BT1)
BQ1 := (BQ1 − ¯PQ1) + [[u]]c
BT1 := (BT1 − ¯PT 1) + [[u]]c

The belief-spaces of both agents are consequently:

BQ1 := {at(Q1, S), G(T1, at(T1, α)),
...Inform(O, at(T1, α)),
...IK(O, heard(T1, G(T1, at(T1, α))))}
BT1 := {at(T1, S), G(T1, at(T1, α)),
...Inform(O, at(T1, α)),
...IK(O, heard(T1, G(T1, at(T1, α))))}

As the previous command utterance was directed at T1, the agents
assume the dialogue’s turn is passed to T1. The transport subse-
quently satisfies the operator’s intention to know the command was
heard by generating an acknowledgment utterance:

T1: Okay.

The transport then begins to travel to location α, adding the
doing(T1, goingTo(T1, α)) term to its belief-space. The operator
then gives the quadrotor an order to follow the transport, which is
followed by the transport’s acknowledgment:

O: Drone, follow transport.
Q1: Okay.

Having no other goals, the quadrotor then begins to follow the
transport, adding the doing(Q1, follow(Q1, T1)) term to its
belief-space. At this point, the belief-spaces of each agent are:

BQ1 := {at(Q1, S), G(T1, at(T1, α)),
...Inform(O, at(T1, α)), follow(Q1, T1),
...doing(Q1, follow(Q1, T1))}
BT1 := {at(T1, S), G(T1, at(T1, α)),
...Inform(O, at(T1, α)), follow(Q1, T1),
...doing(T1, goingTo(T1, α))}

Later, the operator queries the quadrotor:

O: Drone, what are you doing?

Retrieving the appropriate term from its beliefs, the quadrotor
responds in accordance with Rule 10:

Q1: Commander, I am following transport.
O: Okay.

The operator subsequently asks the quadrotor about its destination:

O: Drone, where are you going?

Because the quadrotor has previously heard that the transport was
commanded to go to α, Q1 is able to infer:

G(T1, at(T1, α)) := goingTo(T1, α)
goingTo(T1, α) ∧ follow(Q1, T1) :=
goingTo(Q1, α)
→ goingTo(Q1, α)

Figure 3. The quadrotor infers its destination.

The above inference is depicted in Figure 3. Based on this inference,
Q1 responds accordingly:

Q1: Commander, I am going to alpha with
transport.
O: Okay.

At this point, we should clarify that there is a distinction between
the robot having a explicit goal to undertake and action and having
the knowledge that it is undertaking an action. Having a goal to per-
form an action (or achieve some state) will modulate the behavior
of the robot, while just having knowledge of the current action will
not necessarily affect the system’s behavior. In this case the inference
made in Figure 3 is only resulting in knowledge that the robot is go-
ing to the final location alpha, but not a goal to go to location alpha.
Thus, the quadrotor will not be in danger of incorrectly following the
transport by predicting the final location and traveling there (instead
of following).

We should also contrast the two questions we have just examined.
“What are you doing?” we have interpreted as a query to ascertain
the robot’s current goal, whereas “Where are you going?” seeks more
specific knowledge from the robot that can only be answered by mak-
ing the inference in Figure 3. We believe that, given the same level of
knowledge and dialogue history, it would be plausible for a human to
answer the question in a similar manner, and as such, the dialogue in-
teraction is made more natural by enabling the robot to do the same.

Later, when the transport finally reaches location alpha, the
transport is able to perceive it’s new location. The transport updates
its belief-space accordingly:

ΨT1 := {at(T1, α)}
→ BT1 := {at(T1, α), Inform(O, at(T1, α)), ...}

Inferring via Rule 4 the operator’s intention to be notified of its
arrival at the intended destination, the transport states:



T1: Commander, I am now at alpha.

5 DISCUSSION
The dynamics of human teams are complex and multifarious, deeply
integrating and intertwining natural language exchanges and actions.
Humans are extremely good at building mental models of their team
mates that include general team mate characteristics as well as par-
ticular team mate beliefs, goals and intentions. And humans can ef-
fortlessly use all this knowledge to make quick inferences about the
mental states of their team mates based on information gleaned from
natural language interactions and the details of how that information
was linguistically expressed. Most importantly, humans will expect
future robots, in particular if they are otherwise very capable, to be
able to perform the same kind of mental modeling and to make the
same kinds of quick automatic inferences as part of task-based natu-
ral language dialogues.

We have introduced a set of principles that can form the basis of a
mental modeling mechanism that is deeply integrated with the natu-
ral language dialogue mechanisms. The formalism captures percep-
tual and behavioral aspects of agents as well as their beliefs and in-
tentions/goals. It also allows for different models and model updates
for different agents (e.g., how an agent reacts to a particular com-
mand given by the operator) by allowing for the definition of agent-
specific update rules. And it provides a natural level of abstraction
where agents can introspect on their own behaviors and behavioral
dispositions in an effort to model themselves and other agents.

Similar challenges involving utilizing natural language communi-
cation and maintaining situation-awareness have been investigated in
[2] and in the multi-robot domain in [3]. In contrast with these ap-
proaches, our approach so far involves simple reactive agents, rather
than agents with planning capabilities.

Beyond the sophistication of our agents, our current approach
has additional shortcomings. First, it is unclear how far the search
depth of the inference algorithm can be reasonable extended if more
dialogue principles are added without losing real-time processing.
Clearly, there will be limits to the set of propositions an agent can
derive automatically given the number of pragmatic and agent-based
rules. To curb the complexity and avoid generating thousands of irrel-
evant beliefs, it will become necessary to incorporate a notion of rele-
vance that allows for targeted inference (also to derive contradictions
as part of belief updates). Finally, the current version makes several
simplifying assumptions (e.g., about perceptions and behavioral de-
cisions) that will clearly be too simple for more complex tasks and
agents. For instance, our communication is currently accomplished
individually between single agents. Belief update rules need to be
extended to account for group communication [14, 11]. The problem
of collaborative planning, in which agents must work together to de-
velop a joint plan, poses further challenges in that agents must have
the ability to communicate and reason about partial candidate plans
[10].

6 CONCLUSIONS
In this paper, we introduced new principles for belief modeling and
updating for autonomous agents (such as robots or virtual characters)
interacting with humans and other autonomous agents in mixed ini-
tiative teams through spoken natural language dialogues. We showed
how we can represent beliefs and intentions of other agents to gener-
ate mental models that are rich enough to capture task-based aspects

of other agents and their beliefs. We also showed how a robot can
update its mental model of another robot based on task-based ut-
terances it heard and how it can automatically apply inference-rules
to the information obtained from the utterance to model and predict
other agents beliefs and behaviors.

Future work will address the issues of scalability, relevance, an
scope mentioned in the discussion section above. And we will con-
duct simple HRI evaluation experiments that will allow a human op-
erator to command a mixed initiative team with one ground and one
aerial robot as described in the case study, with and without belief
modeling. This will allow us to determine whether and to what ex-
tent belief modeling as proposed in this paper can lead to objectively
better task performance and subjectively better acceptance by human
team mates.

ACKNOWLEDGEMENTS
This work was in part funded by ONR grants #N00014-07-1-1049
and #N00014-11-1-0493. We would also like to thank the referees
for their userful comments which helped improve this paper.

REFERENCES
[1] Cynthia Breazeal, Andrew Brooks, Jesse Gray, Guy Hoffman, Cory

Kidd, Hans Lee, Jeff Lieberman, Andrea Lockerd, and David Mulanda,
‘Humanoid robots as cooperative partners for people.’, Journal of Hu-
manoid Robots, 1, (2004).

[2] M Brenner, ‘Situation-aware interpretation, planning and execution of
user commands by autonomous robots’, in Proceedings of the 16th In-
ternational Symposium on Robot and Human Interactive Communica-
tion (RO-MAN). IEEE, (2007).

[3] M Brenner and B Nebel, ‘Continual planning and acting in dynamic
multiagent environments’, Autonomous Agents and Multi-Agent Sys-
tems, 19(3), 239–331, (2009).

[4] Gordon Briggs and Matthias Scheutz, ‘Facilitating mental modeling in
collaborative human-robot interaction through adverbial cues’, in Pro-
ceedings of the 12th Annual SIGdial Meeting on Discourse and Dia-
logue. ACL, (2011).

[5] Rehj Cantrell, Matthias Scheutz, Paul Schermerhorn, and X Wu, ‘Ro-
bust spoken instruction understanding for hri’, in Proceedings of the 6th
International Conference on Human-Robot Interaction. ACM/IEEE,
(2010).

[6] P. R. Cohen and Hector Levesque, ‘Teamwork’, Technote 504, SRI In-
ternational, Menlo Park, CA, (1991).

[7] P. R. Cohen and S. L. Oviatt, ‘The role of voice input for human-
machine communication’, Proceedings of the National Academy of Sci-
ence, USA, 92, 9921–9927, (1995).

[8] Philip R. Cohen, Hector J. Levesque, Jose Nunes, and Sharon L. Oviatt,
‘Task-oriented dialogue as a consequence of joint activity’, in Pacific
Rim International Conference on Artificial Intelligence, (1990).

[9] H. P. Grice, ‘Logic and conversation’, Syntax and Semantics, 3(1), 43–
58, (1975).

[10] Barbara J. Grosz and Sarit Kraus, ‘Collaborative plans for complex
group action’, ARTIFICIAL INTELLIGENCE, 86(2), 269–357, (1996).

[11] Sanjeev Kumar, Marcus J. Huber, David R. Mcgee, Philip R. Cohen,
and Hector J. Levesque, ‘Semantics of agent communication languages
for group interaction’, in In Proceedings of the 17 th Int. Conf. on Arti-
ficial Intelligence, pp. 42–47, (2000).

[12] Paul Schermerhorn and Matthias Scheutz, ‘Using logic to handle con-
flicts between system, component, and infrastructure goals in complex
robotic architectures’, in Proceedings of the International Conference
on Robotics and Automation, (2010).

[13] Matthias Scheutz, Paul Schermerhorn, J Kramer, and D Anderson,
‘First steps toward natural human-like hri’, Autonomous Robots, 22(4),
411–423, (2007).

[14] Ira A. Smith and Philip R. Cohen. Toward a semantics for an agent
communications language based on speech-acts, 1995.


