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Abstract

Current approaches to handling indirect speech acts (ISAs)
do not account for their sociolinguistic underpinnings (i.e.,
politeness strategies). Deeper understanding and appropriate
generation of indirect acts will require mechanisms that in-
tegrate natural language (NL) understanding and generation
with social information about agent roles and obligations,
which we introduce in this paper. Additionally, we tackle
the problem of understanding and handling indirect answers
that take the form of either speech acts or physical actions,
which requires an inferential, plan-reasoning approach. In or-
der to enable artificial agents to handle an even wider-variety
of ISAs, we present a hybrid approach, utilizing both the id-
iomatic and inferential strategies. We then demonstrate our
system successfully generating indirect requests and handling
indirect answers, and discuss avenues of future research.

Introduction
Indirect speech acts (ISAs) comprise a frequently employed,
diverse set of human communication modalities (Searle
1975; Hassell, Beecham, and Christensen 1996). As a result,
artificial agents like robots who communicate with humans
in natural language dialogues will have to handle typical
ISAs, especially if the goal is for the dialogue interactions
to be natural and intuitive for human interactants (Scheutz
et al. 2007). While natural and easy for humans, process-
ing ISAs in artificial agents involves a complex network of
different interacting components in a cognitive system.

Two distinct methods of handling ISAs have been iden-
tified and developed. The idiomatic approach leverages the
fact that certain utterances have become conventionally syn-
onymous with other speech acts (e.g., “Can you get me a
coffee?” as a request for coffee) (Wilske and Kruijff 2006).
The inferential approach, on the other hand, uses reasoning
based on a mental model of the interlocutor to infer the in-
tended meaning of an utterance (e.g., see (Perrault and Allen
1980) for a plan-based inferential approach). While it is an
appealing strategy that in principle can handle both conven-
tionalized and unconventionalized instances of ISAs, it can
be computationally expensive and thus may not make sense
for conventionalized ISAs.However, for unconventionalized
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ISAs, these reasoning approaches may need to be imple-
mented.

The contribution of this paper is two-fold. First, we
present a hybrid system that incorporates both an idiomatic
approach and a plan-based inferential approach to efficiently
understand both indirect requests and answers. Second, we
show how our system utilizes knowledge of social roles and
social norms to appropriately generate both conventional-
ized and unconventionalized request ISAs. Previous work in
human-robot interaction (HRI) has not explicitly tackled so-
ciolinguistic aspects of ISAs, which is necessary for socially
appropriate request formulation. We then proceed to vali-
date both generative and understanding portions of our inte-
grated system through proof-of-concept demonstrations. Fi-
nally, future directions for investigating technical challenges
and the sociolinguistic aspects of ISAs in HRI are presented.

Indirect Requests and Answers
Consider a scenario in which a cleaning robot R is tasked by
a supervisor (Alice) to sweep the floor of large room in con-
junction with another co-worker (Bob). R needs to get Bob
to assist with the activity through a verbal request, which can
be phrased in direct and indirect ways: “Sweep the floor!”,
“Can you sweep the floor?”, “I need you to sweep the floor.”,
and “Alice wants the floor swept.” However, whether or
not these request forms are considered socially appropriate
depends on the mutually understood social relationship be-
tween R and Bob as well as the interaction context.

Brown and Levinson (1987) articulate conversational
strategies used to convey varying degrees of politeness dur-
ing natural language interaction. The strategies relevant to
formulating requests are summarized below, in general order
of least to most polite:

1. Be direct (bald on-record).
2. Be conventionally indirect.
3. Be unconventionally indirect (off-record).
4. Refrain from the request.

In addition to considerations of politeness, the appropriate
request strategy is dependent on knowledge of social roles
and norms (Locher and Watts 2005; Allwood, Traum, and
Jokinen 2000). Table 1 describes the appropriateness of re-
quest strategies in the room sweeping scenario depending
on social relationship and interaction context. If a speaker



Request Utterance Social Role Politeness Norm Appropriateness
Direct Request: Manager Politeness Favored Non-politic (Too Direct - FTA)
(e.g. “Sweep the floor”) Directness Favored Politic

Co-worker Politeness Favored Non-politic (FTA)
Directness Favored Non-politic (FTA)

Conventionally Indirect Request: Manager Politeness Favored Politic
(e.g. “Can you sweep the floor?”, Directness Favored Non-politic (Too Indirect)
“I would like you to sweep the floor.”) Co-worker Politeness Favored Non-politic (FTA)

Directness Favored Non-politic (FTA)
Unconventionally Indirect Request: Manager Politeness Favored Politic
(e.g. “Alice wants the floor swept.”) Directness Favored Non-politic (Too Indirect)

Co-worker Politeness Favored Politic
Directness Favored Politic

Table 1: Appropriateness of certain speech acts in a given social context. Speech acts can be considered inappropriate (non-
politic) for implying excessive or wholly unsupportable social dominance over an interlocutor (FTA) or for being too indirect
in contexts where directness is desired.

is in a peer relationship with an interlocutor, the interlocutor
may not be obligated to acquiesce to requests to perform ac-
tions on behalf of the speaker. If such a request were made
(whether direct or conventionally indirect), a socially unde-
sirable face-threatening act (FTA) would occur. An alter-
nate way of getting the interlocutor to adopt the desired goal
would be an unconventionally indirect approach: informing
Bob of the desire of his supervisor will trigger a social obli-
gation to fulfill that goal.

This unconventionally indirect approach is not necessary,
however, in the case where the requester is in a supervisory
position over the interlocutor, such that the interlocutor does
have an obligation to obey a command. Yet, in this case,
socially appropriate utterance selection is still modulated by
social knowledge about the expected level of directness in
the interaction context. For instance, certain interaction con-
texts require direct language to avoid confusion (e.g., mili-
tary or medical settings), whereas in other contexts polite-
ness is favored. Therefore, it is necessary for R to have
both knowledge about social roles and obligations as well
as social norms of directness within the interaction context
in order to select the appropriate request strategy.

Now we will examine the issue of indirect answer han-
dling. Consider another scenario in which R has a goal to
sweep the floor of the mailroom. Here, R does not know
where the mailroom is located, but generates a plan to ac-
quire this information through a dialogue interaction.

Example 1:
Robot: “Do you know where the mailroom is?”
Bob: “It is the second door on the right.”

Although Bob has not directly answered the question, it is
clear that he has correctly understood the intention of R, in-
terpreting the question as an indirect request for the location
of the mailroom.

Example 2:
Robot: “Do you know where the mailroom is?”
Bob: “Follow me.”

Bob has again not directly answered the question, but in-

stead issued a command to R. However, it would be clear
to a human that this speech act is likely part of an alternate
plan to help R achieve what Bob believes is R’s goal. R
ought to be able to ascertain whether or not such an indi-
rect response is indicative of goal comprehension and adapt
its behavior accordingly (either adopting the alternate plan
or politely rejecting it, e.g. “Thank you for the offer, but I
don’t want to go there right away.”).

Example 3:
Robot: “Do you know where the mailroom is?”
Bob: [gestures and walks off]

Although Bob does not respond with a speech act, the ob-
served action is possibly relevant and again indicative of an
alternate plan to help the robot achieve the goal. Not only
will the robotic agent require the ability to interpret a vari-
ety of speech acts, but also the ability to make sense of non-
linguistic actions in the context of a task-based dialogue.

Proposed Hybrid Approach
We first begin with an architectural overview, followed by
a discussion of how we handle conventionalized indirect re-
quests. We then proceed to present our approach to handling
unconventionalized ISAs (with a focus on indirect answers).
Finally, we discuss how socially sensitive natural language
generation is performed.

The architectural diagram of the various involved com-
ponents in Figure 1 shows two distinct input pipelines
through which the robot gathers data from the external
world: the NL pipeline and the non-linguistic perceptual
pipeline. Components in the system architecture were de-
veloped in the Agent Development Environment (ADE) (see
http://ade.sourceforge.net/) which is a framework for imple-
menting distributed cognitive robotic architectures.

The NL pipeline: The automatic speech recognition sys-
tem (ASR) sends detected natural language text to the NLP
component, which performs parsing, reference resolution,
and initial semantic analysis. The results are sent to the prag-
matics component which makes pragmatic adjustments and
passes the final semantic analysis to the robot’s belief sys-



Figure 1: A diagram of the robotic architecture and component interactions involved in ISA understanding and generation. Note
that the component indicated by the (1) implements the idiomatic understanding approach, while the component indicated by
the (2) implements the plan-based inferential approach. The dotted lines indicate data flow for action and NL output, whereas
the solid lines indicate data flow for action and NL understanding.

tem (specifying how the robot should update its own beliefs
about the world, as well beliefs about other agents and their
beliefs). Updates are also sent to the action recognizer com-
ponent that maps the observed NL input, if possible, to the
corresponding speech action understood by the robot’s plan-
reasoning system.

The non-linguistic pipeline: A variety of perceptual sys-
tems (e.g., the robot’s vision system) detect data that is rele-
vant to ascertaining the type of non-linguistic action the in-
teractant is performing. This data is forwarded to the action
recognizer component for action identification purposes.

Handling of conventionalized, or idiomatic, ISAs is
achieved in the NL pipeline, as the idiomatic approach lever-
ages only linguistic rules. A brief discussion of the prag-
matic reasoner that will handle these ISA forms is found in
the subsequent section.

Handling Idiomatic ISAs
The pragmatics component (1) has several roles. It is re-
sponsible for determining updates to the agent’s own beliefs
based on received input from the NLP component as well as
handling NLG requests from other components (e.g., plan-
ner). The pragmatic reasoning component receives surface
semantics and utterance information from the NLP com-
ponent in the form u = UtteranceType(α, β,X,M), in
which UtteranceType denotes the utterance classification,
α denotes the speaker identity, β denotes the addressee
identity, X denotes the surface semantics of the utterance,
and M denotes a set of sentential modifiers. The prag-
matics component contains a set of pragmatic rules Σ =
{σ1, ..., σn}, in which rule σ has a set of contextual con-
straints C, an utterance form U , and a set of belief up-
dates [[U ]]C . These rules, for instance, can be used to infer

the belief-model implications of various adverbial modifiers
(Briggs and Scheutz 2011).

The functional role of the pragmatics reasoner is to de-
termine the underlying, intended semantics of an utterance
given the surface semantics and the context. This makes it
the ideal component to implement the idiomatic approach to
handling conventionalized ISAs, which involves interpret-
ing speech acts of one form as speech acts of another form in
certain contexts. However, when such linguistic conventions
are not available, deeper reasoning is required. The compo-
nents that carry out the higher level inferential reasoning in-
volved in tackling unconventionalized ISAs are introduced
in the following section.

Handling Unconventionalized ISAs
As illustrated in Figure 1, the core of our inferential ISA
reasoning system is contained in a planner/plan-reasoning
system. This component receives state information from the
robot’s belief/knowledge storage and reasoning component
as well as information regarding observed speech acts and
non-linguistic actions from an action identification compo-
nent. We first describe the planner implementation, followed
by the various sense-making plan-reasoning algorithms that
are employed by the reasoning component.

The Planner. The planner/plan-reasoner contains
STRIPS-style action definitions for a variety of speech
acts (including those defined in Perrault and Allen (1980))
and non-linguistic actions. Planning is implemented via
the GraphPlan algorithm (Blum and Furst 1995). In the
following section, we describe the mechanism used to
handle unexpected actions, in particular indirect answers, in
the course of a robot’s plan-execution.



Sense-making through Plan-reasoning. Let us consider
a scenario that involves the robot R attempting to achieve
a goal g. Let Φ denote the set of all valid plans generated
by the planner to achieve g, and let φ0 ∈ Φ denote the plan
currently adopted by R to achieve the goal. Let φ denote
a plan consisting of a sequence of actions [a1, ..., an]. The
robot tracks its progress in φ0 with a counter value c, such
that φ0(c) is the current action being executed either by the
robot or by another agent it is interacting with. When φ0(c)
is an action the robot is not performing, the robot must wait
until an action aobs is observed and identified by the action
recognition component. The planner/plan-reasoning system
handles observed actions based on the following cases:

• (Case 1) aobs = φ0(c). In this case, the plan is proceeding
as expected. This corresponds to a direct answer (or a
conventionally indirect answer).

• (Case 2) aobs = φ0(c′), c < c′. In this case, an action
is observed that is consistent with the current plan, but
involves a possible jump ahead in the plan. c should be
set to c′ if such a jump still results in desired goal state. If
this check fails, alternate plans should be considered (case
3).

• (Case 3) ¬∃c′ such that φ0(c′) = aobs but ∃φ ∈ Φ, φ 6=
φ0 such that aobs ∈ φ. In this case, the observed action
is inconsistent with the current plan, but it can be found
in an alternate plan that has been calculated. In this case
the alternate plan φ should be adopted as the current plan
φ0 and the counter should be set such that φ(c) = aobs,
pending a validity check as described in the previous case.

• (Case 4) ¬∃φ ∈ Φ such that aobs ∈ φ. In this case, the
observed action cannot be accounted for by any known
plan. It is likely that the robot’s interaction partner has
misunderstood the robot’s goal (or the robot does not have
enough knowledge to have discovered the alternate plan
of the other agent).

This sense-making algorithm, which utilizes the set Φ of
plans generated by the robot to achieve a goal, relies on an
assumption that the robot’s interactant has correctly under-
stood the robot’s intentions. We justify such an assumption
through the Gricean Maxim of Relation, which states that
any contribution to a cooperative interaction must “be rele-
vant” (Grice 1975). However, in case 4, in which no known
plan provides an explanation for the interactant’s action, the
robot ought to conclude that such an assumption was in er-
ror. In this case the robot either must initiate an abductive-
reasoning process to infer what alternative goal its interac-
tant has ascribed to it and/or explicitly communicate its in-
tentions (e.g., “I’m sorry, I don’t understand, I am trying to
get to mailroom.”).

Modeling Social Roles. Many actions include as a pre-
condition that the agent must want to perform that ac-
tion. To explicitly model agents deciding to adopt another
agent’s goal as their own (in response to a request, for in-
stance), Perrault and Allen (1980) present a “glue” action
cause to want:

action: cause to want(α, β, g)
type: agent(α) ∧ agent(β)

precond: B(β,W (α, g))
effect: W (β, g)

The cause to want action assumes that agent β will po-
tentially adopt any goal from any agent as its own, which is
unrealistic. Though the process by which an agent decides
to adopt another agent’s goal can be quite complex, social
obligations can be used as one straightforward way of defin-
ing certain instances where such goal adoption occurs. For
instance, in our cleaning agent example, we can argue that
there exists an obligation by an agent β to want to sweep a
location L if β believes that his or her supervisor α wants
this to be accomplished and he or she has a janitorial role.
Below we define this obligation glue action:

action: obl sweep(α, β, L)
type: agent(α) ∧ agent(β) ∧ location(L)
precond: B(β, role(β, janitor)) ∧
B(β, is supervisor of(α, β)) ∧
B(β,W (α, swept(L)))

effect: W (β, sweep(β, L))

By replacing the general cause to want glue action with
a series of obligation modeling actions, socially sensitive di-
alogue interaction planning can be undertaken. Socially in-
appropriate speech acts will not be utilized in communica-
tive plans, because they will not achieve the desired effects
to the interlocutor’s belief state. A walkthrough of the gen-
eration process will be shown in greater detail later.

Generating Requests
When a robot desires to get its interlocutor β to adopt a goal
g, a two-step process is initiated where first the appropriate
speech acts must be selected (what to say), followed by a
step that determines what utterances to use to carry out the
selected speech acts (how to say it).

What to Say. The planner is initialized in order to formu-
late a dialogue plan that will result in the interlocutor adopt-
ing the goal g. As described previously, this dialogue plan-
ning process is what determines whether or not the request
can be made via a direct statement of the speaker’s desire
(either through bald on-record directness or conventional in-
directness) or must be implied by an unconventionally indi-
rect utterance. It may be the case that no plan exists to get
β to adopt goal g, meaning that given the social constraints,
such a request is not possible.

How to Say It. Once a valid dialogue plan has been
found, the constituent speech act(s) are sent to the pragmat-
ics component. A set of applicable pragmatic rules that con-
vey the appropriate propositions are found. For the purposes
of assisting NL generation, each pragmatic rule σ has an
associated value η, which denotes the degree to which the
utterance can be construed as a face-threatening act (Gupta,
Walker, and Romano 2007), as well as a marker denoting
whether or not it is a direct-form (i.e., whether inferred se-
mantics are the same as the semantics of the surface form).
Currently, η values are assigned according to the surface ut-
terance type associated with the pragmatic rule. Direct com-
mands (e.g., “Sweep the floor”) are given a high η level,
whereas questions and statements are given a low η value.



The aim of the utterance selection algorithm is to be as
direct as possible, while not exceeding the maximum allow-
able η level, which is determined by social context. For
instance, a workplace environment that requires directness
in communication would prompt a higher maximum η level
to be set. η-levels can also be determined by social power
relationships, as superiors will have higher allowable η lev-
els when communicating with subordinates than vice versa.
This η-level mechanism is what generates the use of conven-
tional ISA forms. An η level limit may prohibit the use of
a direct command, but if the same semantic content can be
communicated using an ISA (being either a statement or a
question), than this indirect form is used for the request.

Request Generation Walkthrough
We revisit the example from the beginning of the paper, in
which a robot is attempting to get a co-worker to assist it
in sweeping the floor. Denote the robot as agent R, the co-
worker Bob as β, the supervisor Alice as α, and the floor
as L. We examine three cases: one in which the robot has
a peer relationship with β; one in which the robot has a su-
pervisory relationship with β and the work relationship has
an expectation of politeness; and one in which the robot has
a supervisory relationship with β and the work relationship
has an expectation of directness.

Peer Relationship. In this case, the obligation mod-
eling action obl sweep(R, β, L) cannot be triggered as
the precondition B(β, is supervisor of(R, β)) does not
hold. However, obl sweep(α, β, L) can be triggered.
Therefore, the planner finds the plan beginning with,
inform(R, β,want(α, swept(L))). Because this speech
action is conveyed by a statement (which has a low as-
sociated η value), the contextual preference for direct vs.
polite speech does not affect the utterance selection pro-
cess. The pragmatics component selects the utterance form
Stmt(R, β,W (α, swept(L)), {}) to convey. Finally, the
NLG component translates this utterance to the appropriate
NL sentence: “Alice wants the floor swept.”

Supervisory Relationship - Low Directness. In this
case, the obligation modeling action obl sweep(R, β, L)
can be triggered. Therefore, the planner finds the
plan beginning with the direct request speech act
request sweep(R, β, L). However, in this case, ut-
terances with high η levels cannot be used. As
such, a direct command utterance of the form
Instruct(R, β, sweep(β, L), {}) cannot be se-
lected. Instead, the conventionally indirect form
AskY N(R, β, can do(β, sweep(β, L)), {}) can be se-
lected. Thus, the NLG component translates this utterance
form to the NL sentence: “Can you sweep the floor?”

Supervisory Relationship - High Directness. As in
the previous case, the planner finds the plan beginning
with request sweep(R, β, L). In this case, utterances with
high η levels can be used. As such, the direct command
Instruct(R, β, sweep(β, L), {}) is valid (and favored over
more indirect utterances). Thus, the NLG component trans-
lates this utterance form to the NL sentence: “Sweep the
floor.” Table 2 summarizes these results.

Indirect Answer Understanding Walkthrough
We first step through the operation of the indirect answer
handling system and the simulation environment used to test
our approach. Then we give examples of how the system
can find a variety of alternate plans to make sense of indirect
answers and discuss examples that we have tested in simu-
lation.

Simulation Environment
ADE provides a simulator that simulates the physical envi-
ronment and various robotic platforms in real-time. Hence,
changes needed to adapt system components for use in the
simulation environment to use in the real-world are minimal.
Regardless, all non-plan-reasoning components have previ-
ously been deployed and verified on physical robots.

We initialized the simulation environment map to reflect
the area around our laboratory. Two simulated agents were
instantiated: one simulated Videre Era robot, which was
backed by a streamlined version of the architecture in Figure
11, and one simulated Adept Pioneer robot (which we des-
ignated as the simulated “human” interactant “Bob”). For
the simulations, we revisited the scenario in which a ser-
vice robot must get to a building’s mailroom. In this case,
we gave the Videre robot the goal to be at the mailroom.
The two robots were placed near each other in a hallway
and were aware of each other’s presence. The simulated in-
teractant was programmed to respond in a couple different
ways to duplicate some of the exchanges discussed previ-
ously (and will be illustrated below).

Plan Discovery
The Videre robot knows of a set of locations L =
{bathroom, cafeteria,mailroom} (but not their loca-
tions within the building) and an online building map
internet map. The robot spots a nearby “human”, Bob,
which it adds to the set of possible interactant agents
A = {self, bob}. The robot has a goal to be at
the mailroom, which is represented by the predicate,
want(self, at(self,mailroom)).

Figure 2 illustrates a small set of possible plans the plan-
ner has discovered that would enable the robot to achieve its
goal to be at the mailroom. Because the only plan in this
set of plans that begins with a self-initiated action is P1, the
robot adopts that plan, though it would usually be the case
that the robot must choose from a set of self-initiative plans
based on some cost metric.

The plans found in the figure correspond to a variety
of possible interaction exchanges. For instance, P1 would
make sense of example 1. P2 would make sense of the fol-
lowing exchange:

Robot: “Bob, do you know where the mailroom is?”
Bob: “I’ll look that up online...”

P4 would make sense of the following dialogue:

Robot: “Bob, do you know where the mailroom is?”
Bob: “I think you can look that up online...”
1The full NL system was not run, as these simulations were

intended to focus on the plan-reasoning components.



Social Role Directness Level Planned Speech Act Utterance Selected
Manager High Directness request sweep(R, β, L) Instruct(R, β, sweep(β, L), {})

Low Directness request sweep(R, β, L) AskY N(R, β, can(β, sweep(β, L)), {})
Co-worker High Directness inform(R, β,want(α, swept(L))) Stmt(R, β,want(α, swept(L)), {})

Low Directness inform(R, β,want(α, swept(L))) Stmt(R, β,want(α, swept(L)), {})

Table 2: Speech act and utterance form selected by NL system to get β to sweep the floor considering social role and norms.

Figure 2: Examples of plans found by the planner to achieve
the goal at(self,mailroom). The blue boxes correspond
to actions undertaken by the robot, while the orange boxes
correspond to actions undertaken by the other agent (Bob).

Online Plan-Reasoning
We have so far shown how the planning system can discover
plans that are capable of making sense of indirect answers by
interactants. Below we will examine how the sense-making
algorithm handles two example scenarios.

In example 1, the Videre robot has adopted the plan P1
(see Figure 2). The robot executes the requestif action
(A1), asking Bob whether or not he knows the location of
the mailroom. Instead of directly responding, “yes”, Bob re-
sponds by providing the robot with the location information
of the mailroom, “It is the second door to the right.” This
utterance corresponds to action A4 in plan P1, and as such
falls under Case 2 in the sense-making algorithm. As a re-
sult, the current plan-index c is set to A5, and subsequently
the robot executes A5 to navigate to the mailroom.

In example 2, the Videre robot has adopted plan P1.
The robot again executes action A1, asking Bob whether
or not he knows the location of the mailroom. In
this case, instead of directly responding, Bob responds
with the command “Follow me.” The NL system de-
termines this utterance corresponds with the speech act,

request follow(bob, self, bob), which is not found in the
current plan P1. However, it discovers that this action cor-
responds with action A1 in plan P3, so Case 3 in the sense-
making algorithm applies. As a result, the current plan is
set to P3, and the current plan-index c is set to A2. Subse-
quently, the robot executes A2 and begins to follow Bob.

Future Work
While the NL system is able to identify speech acts
for the plan-reasoner, other mechanisms are needed for
non-linguistic action recognition. Previous approaches to
this problem have included using Hidden-Markov Models
(HMM) to identify movement activities based on lower-level
perceptual data (Kelley et al. 2008; 2012). A series of such
activity recognizers will be required to enable detection of
all the non-linguistic actions the plan-reasoner has knowl-
edge of. High-level knowledge of likely activities from the
plan-reasoning component could constrain which detectors
are active and bias the decisions of the operational detectors.

It has been assumed based on general human-computer
interaction research that humans will fallback on human-
human social behaviors when interacting with computers
(Nass, Steuer, and Tauber 1994), and as such will deploy
ISAs with robots (Wilske and Kruijff 2006). However, as
previously mentioned, ISAs may not be necessary/present in
highly task-oriented dialogues between well-defined superi-
ors and subordinates (which humans and robots will likely
be, respectively). To clarify this issue, we will need to per-
form HRI experiments to test this hypothesis in a variety of
HRI contexts.

Conclusion
The ability for dialogue agents to phrase utterances in so-
cially appropriate ways requires that knowledge of social
roles, obligations, and norms be utilized throughout the cog-
nitive architecture. We presented a hybrid approach inte-
grated into a cognitive architecture that implements both the
idiomatic and inferential approaches to ISA handling and
shown how this social knowledge can be integrated in the
system to achieve socially sensitive NL generation. In addi-
tion, we showed how this system can make sense of indirect
answers, which can take the form of both speech acts and
physical actions. Finally, we presented a proof-of-concept
validation for this integrated hybrid approach for both so-
cially sensitive utterance selection and indirect answer un-
derstanding.
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