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An important open problem for enabling truly taskable robots is the lack of task-general natural
language mechanisms within cognitive robot architectures that enable robots to understand typi-
cal forms of human directives and generate appropriate responses. In this paper, we first provide
experimental evidence that humans tend to phrase their directives to robots indirectly, especially in
socially conventionalized contexts. We then introduce pragmatic and dialogue-based mechanisms to
infer intended meanings from such indirect speech acts and demonstrate that these mechanisms can
handle all indirect speech acts found in our experiment as well as other common forms of requests.
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1. Introduction
Two key challenges at the intersection of artificial intelligence (AI), robotics, and human-robot in-
teraction (HRI) need to be addressed in order to enable truly taskable robots: (1) the capability
challenge of developing robotic agents that are able to both algorithmically and physically perform
the desired tasks, and (2) the interaction challenge of developing agents that can be instructed by
humans through natural language (NL) in natural and intuitive ways (e.g. Scheutz, Schermerhorn,
Kramer, & Anderson, 2007) to perform the desired tasks and appropriately respond to these instruc-
tions. We will focus exclusively on the second challenge.

Specifically, we will focus on how robots can understand directives: utterances issued with the
intention that the addressee will perform some task for the speaker. For example, for an utterance
intended as a question, the speaker intends the addressee to provide an informative response; for
an utterance intended as a command, the speaker intends the addressee to perform some general
action. Several capabilities are required to understand even the simplest of directives, from speech
recognition, to syntactic and semantic analysis, to pragmatic understanding. What is more, robotic
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architectures that provide these capabilities must take into account the many social norms that NL-
enabled agents are expected to obey. For example, in order to adhere to social norms such as polite-
ness, people frequently use so-called indirect speech acts (ISAs), in which the speech act’s literal
meaning does not match its intended meaning. For example, since it is often rude to use a direct
command such as “Bring me coffee,” one might instead use the indirect request “Could you get me a
coffee?”, which is literally a request for information yet indirectly communicates the speaker’s true
intention: a request to be brought coffee. In such cases, human listeners automatically and without
contemplation understand the indirect interpretation to be the intended one. Hence, if humans were
to use the same kinds of indirect speech acts with robots—as we will show—robots interacting with
humans will need to take social norms into account if they are to properly understand the intentions
implied by human utterances.

We believe that one of the primary obstacles for enabling truly interactive taskable robots is the
lack of general, integrated, and architectural mechanisms for understanding the intentions behind
directives, regardless of how these directives are expressed. In this paper, we present mechanisms
integrated into a cognitive robotic architecture that make strides toward addressing this obstacle and
demonstrate that the proposed mechanisms can handle all common indirect speech acts found in
an empirical study specifically designed to probe the extent to which ISAs will actually be used
in human-robot dialogue. To ensure terminological clarity, we will use the following definitions
throughout the paper.

Indirect speech act: an utterance whose literal meaning does not match its intended meaning.
Direct speech act: an utterance whose literal and intended meanings match.

Illocutionary point: the category of an utterance, such as statement, question, suggestion, or
command. An utterance has both a literal illocutionary point (which is
directly reflected in the utterance’s form) and an intended illocutionary
point. For direct speech acts, these match. For indirect speech acts, they
may or may not.

Directive: an utterance intended to cause the addressee to perform some action.
Direct request: a direct directive whose literal illocutionary point is that of a question.

Direct command: a direct directive whose literal illocutionary point is that of a command.
Indirect request: any indirect directive. Thus, an indirect request is an indirect speech act

with the literal illocutionary point of a statement, question, or suggestion,
and the intended illocutionary point of a question or command.

The rest of the paper will proceed as follows. In Section 2, we begin by discussing the com-
putational challenge of indirect speech act understanding. In Section 3, we then present the results
of an HRI study intended to probe the extent to which humans will use indirect speech acts in their
NL interactions with robots. The results of this experiment provide the first evidence for the need to
develop mechanisms in cognitive robot architectures for handling indirect requests. After discussing
these results, we use them to present design recommendations for robot architecture designers. In
Section 4, we introduce an architectural framework that makes significant progress toward address-
ing the interaction challenge for taskable robots. Specifically, we discuss data representations and
inference algorithms that use contextual knowledge to allow a robot to understand commands and
indirect requests. In Section 5, we demonstrate the proposed mechanisms integrated in a cognitive
robotic architecture and show how they handle the variety of utterances observed in our human-
subject experiment. Finally, in Sections 6 and 7, we discuss the significance of our results and
propose directions for future work.
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2. Computational Motivation
The capabilities necessary for understanding indirect speech acts (or any other form of speech act)
can be thought of as a subset of those necessary for achieving common ground, (i.e., mutual under-
standing, between interactants). Theoretical work in conversation and dialogue has construed the
establishment of common ground as a multi-stage process (Clark, 1996). In the attentional stage,
interactants must attend to each another in a conversational context. In the perceptual stage, the
addressee must successfully perceive a communicative act directed to him/her by the speaker. In the
semantic understanding stage, the addressee must abduce some literal meaning from this perceived
act. Finally, in the intentional understanding stage, which Clark 1996 terms uptake, the addressee
must abduce some intention from this literal meaning given the joint context.

While Clark’s multi-stage model of establishing common ground is valuable in conceptualizing
the challenges involved, it can be even further refined. Schlöder 2014 proposes that uptake be
divided into both weak and strong forms. Weak uptake can be associated with Clark’s intentional
understanding process, whereas strong uptake denotes the stage where the addressee may either
accept or reject the proposal implicit in the speaker’s action. A proposal is not strongly “taken up”
unless it has been accepted as well as understood (Schlöder, 2014). This distinction is important
as the addressee can certainly understand the intentions of an indirect request such as “Could you
deliver the package?”, but this does not necessarily mean that the addressee will actually agree to
the request and carry it out. In order for the proposal to be accepted, a set of felicity conditions must
hold. For a directive, the addressee must have the knowledge, capacity, obligation, and permission
necessary to carry out the intended action before he or she (or it) will accept that directive.

Uptake in human-robot interaction requires mechanisms that either implicitly or explicitly deal
with the previous stages in Clark’s model of mutual understanding (attentional, perceptual, and
semantic), and there have indeed been several prior attempts at implicitly enabling human-robot
interaction at these levels. For instance, work at the attentional level includes the development of
mechanisms to detect when an interactant is engaged with the robot (e.g. Rich, Ponsler, Holroyd,
& Sidner, 2010). Work at the perceptual level includes projects seeking to enable robust speech
and gesture recognition (e.g. Gomez, Kawahara, Nakamura, & Nakadai, 2012). Finally, work at
the semantic understanding level includes developing mechanisms to tackle challenges, such as
reference resolution (e.g. Tellex et al., 2013). A much smaller body of work, however, has focused
on explicit intentional understanding in human-agent interactions (weak uptake), which we discuss
next.

In order to handle common linguistic forms of directives, robot architectures require a number
of additional mechanisms, as directives can come in both literal and non-literal forms. Often these
non-literal forms (i.e., indirect requests) are considered to be tightly associated with their intended
meanings, as is the case in conventionalized (or idiomatic) ISAs (Clark & Schunk, 1980; Searle,
1975). Conventionalized ISAs include questions used as pre-requests to remove potential obstacles
toward a desired action or outcome (e.g., “Can I get a coffee?”) (Gibbs Jr, 1986) and assertions of
needs or desires (e.g., “I would like a coffee”).

Some robot architectures have enabled ISA understanding by using rule-based systems that rea-
son over conventionalized forms (Wilske & Kruijff, 2006). This approach stands in contrast to
the plan-reasoning, or inferential approach, where each utterance is viewed as an action within the
speaker’s larger dialogue plan (Perrault & Allen, 1980).

There are advantages and disadvantages to both strategies. The idiomatic approach, while less
computationally expensive, can only detect and handle indirect speech acts that have (known) con-
ventionalized forms. The inferential approach, while more general, requires computationally ex-
pensive goal and plan abduction mechanisms. As such, some researchers have proposed hybrid
architectures, which combine the idiomatic and inferential forms of pragmatic reasoning (Briggs &
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Scheutz, 2013; Hinkelman & Allen, 1989). These approaches first attempt to identify whether an
utterance fits a conventionalized form given the current context. If the utterance does not fit any
known conventionalized form, a more expensive plan-reasoning process is utilized.

The choice to develop ISA-understanding mechanisms presupposes that ISAs will be used in
human-robot dialogues because they are used in human-human dialogues. However, it is not imme-
diately obvious whether this assumption is warranted. It would be reasonable for one to suspect, for
example, that humans might talk to robots the way they typically talk to dogs: by issuing simple,
direct commands. This should be especially true for simple tasks that lack their own conventional-
ized social norms. And although we have some evidence from previous HRI studies suggesting that
the opposite might be true—that people make frequent use of indirect speech acts when instruct-
ing robots, even in the simplest of tasks—there is currently no formal HRI study that verifies this
transfer of human social norms to robot interactants.

In the next section, we thus present the results of a human-subjects experiment intended to
investigate the extent to which humans will actually use ISAs when interacting with robots through
natural language in task-based settings. The context of the experiment is a simple, novel task, for
which conventionalized social norms do not exist beyond those of everyday life, and which is simple
enough that it can be achieved solely through simple, direct commands. If, indeed, ISAs come so
natural to people that they will even use them in a novel, non-conventionalized task as the one we
will explore in the experiment, then this will provide firm evidence for the need to handle ISAs in
robotic architecture capable of task-based natural language interactions with humans.

3. Experiment: ISA Use in Simple Task-Based Dialogues
In our experiment, we investigated whether subjects would use ISAs at all in a simple, novel task
where the robot could be easily instructed using direct commands. Furthermore, we investigated
whether subjects would use ISAs when the robot repeatedly demonstrated an inability to understand
ISAs.

Figure 1. Augmented iRobot Create used in the experiment.

3.1 Design

For this experiment, we chose one of the simplest tasks we could find in the HRI literature; a human
instructor must command a robot to knock over colored towers built out of cans (Briggs & Scheutz,
2014). This is an interaction so simple that one would only expect direct language to be used by
participants; the task can be easily accomplished using only instructions of the form “knock over the
<color> tower.”

Participants were told that the experimenters were developing natural language interaction capa-
bilities for robots and that their task would be to interact with a “tower-toppling robot.” Participants
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were given a list of three towers (i.e., “Red tower,” “Yellow tower,” and “Blue tower”) and were told
that, after being introduced to the tower-toppling robot, they were to command the robot to knock
over those three towers, one at a time, in whatever order they wished.

After this briefing, the experimenter left the room through one door, and the tower-toppling robot
(an iRobot Create, as seen in Fig. 1) entered through a different door and introduced itself. This robot
was teleoperated by a trained confederate through a Cognitive Wizard-of-Oz (WoZ) interface (Baxter,
Kennedy, Senft, Lemaignan, & Belpaeme, 2016) created with the ADE implementation (Scheutz
et al., 2013) of the DIARC architecture (Schermerhorn, Kramer, Middendorff, & Scheutz, 2006),
with video data being streamed to the confederate through a GoPro camera affixed to the robot.
Utterances made by the robot were prerecorded using the open source MaryTTS text-to-speech
package. A simple diagram of this setup can be seen in Fig. 2.

Figure 2. Diagram demonstrating the experimental setup and positioning of par-
ticipant, robot, and towers in the tower-toppling experiment.

Participants were randomly assigned to two experimental conditions: an understanding condi-
tion and a misunderstanding condition, which determined how the robot responded to participants
when they used indirect speech acts. In both conditions, if the participant used a direct speech act to
command the robot (e.g., “Knock down the red tower”) or a bare noun phrase (e.g., “Red tower”),
the robot would simply knock over the denoted tower. Similarly, in the understanding condition,
the robot would also knock over the denoted tower if the participant used an indirect speech act
(e.g., “Could you knock down the red tower?”). In the misunderstanding condition, however, if the
participant used an indirect speech act, the robot took their utterance at face value and responded
according to Table 1. This table shows the responses that are given for ISAs with different combi-
nations of direct illocutionary point, condition of focus, and direction of focus, aspects derived from
Searle’s Speech Act Theory (Searle, 1975, 1976). For example, “Could you knock down the red
tower?” has the illocutionary point of a question, focuses on a preparatory condition (i.e., ability
of the robot to perform the desired action), and focuses on the agent (i.e., the robot performing the
action, as opposed to the tower that is the patient of the action).

3.2 Measures

In order to assess the extent to which participants used ISAs, participants’ utterances were recorded
and transcribed; all task-relevant utterances were classified by independent annotators as either
direct or indirect. Difference in rate of ISA use in task relevant utterances was analyzed using
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Point Cond Dir Example Response
Q P A “Could you X?” “Yes, I am able to do that. Please tell me your

order.”
S S A “I need you to X .” “Thank you for sharing that interesting fact.

Please tell me your order.”
S P A “You can X .” “Thank you, but I am already aware of my ca-

pabilities. Please tell me your order.”
S[Su] P A “You should X .” “Thank you for your suggestion. Please tell me

your order.”
Q P P “Could X be knocked down?” “Yes, that is permissible. Please tell me your

order.”
S S P “I’d like you to X .” “Thank you for sharing that interesting fact.

Please tell me your order.”
S P P “X will be knocked down.” “Thank you for sharing that interesting predic-

tion. Please tell me your order.”
S[Su] P P “X should be knocked down.” “Thank you for your suggestion. Please tell me

your order.”

Table 1: Responses given for different categories of ISAs. Direct (Direct Illo-
cutionary) Point: Q = Question, S = Statement, S[Su] = Suggestive Statements;
Cond(ition): P = Preparatory, S = Sincerity; Dir(ection): A = Agent, P = Patient.

a Welch two-sample TOST with dialogue condition (understanding vs misunderstanding) as the
independent variable. In addition, analyses of variance (ANOVAs) were used to rule out age and
gender effects.

3.3 Population

Participants were recruited online and through flyers posted near a university campus. All partic-
ipants (11 male, 13 female) were between the ages of 19 and 69 (M = 32.04, SD = 15.96).
Participants were paid $10 each for their participation and provided informed written consent be-
fore beginning the experiment. While most participants were beyond college age, we asked them
for their current or previous college major, if any. Three reported studying mathematics, computer
science, or engineering; six reported studying a natural science or medicine; five reported studying
a social science; four reported studying a branch of the arts or humanities; two reported studying
some other field; and four reported no previous or current major.

3.4 Results

The demographic ANOVAs revealed no age (F (1, 46) = 2.24, p > .1) or gender (F (1, 47) =
0.79, p > .3) effects. Given that there were no gender effects, we can treat the subjects as a uniform
group that has sufficient size for the purposes of this experiment.

We hypothesized that even in this simple scenario, some participants would use ISAs. In fact,
over half of all participants (n=14) used ISAs and 27.97% of all task-relevant utterances were ISAs.
We found this striking, particularly because of the task’s lack of conventionalized social norms that
would have necessitated the use of ISAs. What is more, participants used roughly this number of
ISAs even when the robots repeatedly demonstrated an inability to understand ISAs: ISAs comprised
29.41% of task-relevant utterances in the understanding condition, and 26.87% of task-relevant ut-
terances in the misunderstanding condition. Mean ISA use was found to be statistically equivalent
using a Welch two-sample TOST analysis (Schuirmann, 1981; Westlake, 1981) (p < .001).
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. . .
Subject: Can you knock over the yellow tower please?

Robot: Ok. ... I have knocked down the yellow tower.
Subject: Thank you. Can you please knock down the blue tower now, please?

Robot: Ok. ... I have knocked down the blue tower.
Subject: And can you knock down the red tower now?

Robot: Ok. ... I have knocked down the red tower.

Figure 3. In-Task Human-Robot Dialogue

Overall, one might expect participants to rely on direct commands for a variety of reasons: (1)
the task used in this experiment is a novel and unfamiliar one for which there exist no convention-
alized social or politeness norms; (2) the task is straightforward, and there is nothing of interest
for participants to talk to the robot about beyond the task at hand, and thus, casual conversation or
small-talk is unlikely; and (3) the task is simple enough that it could be completed solely by issuing
low-level metric commands (e.g., “drive forward one meter”).

However, our results show that not only did most participants use ISAs in this scenario, but
that some relied almost exclusively on them, as seen in Fig. 3. In order to more fully examine this
phenomenon, we decided to examine ISA use across a set of experiments we have previously run. In
addition to the experiment presented in this paper, we examined two additional interaction corpora
collected from previously conducted but unpublished pilot experiments: (1) an experiment similar
to the understanding condition of the presented experiment, differing only in that an Aldebaran
Nao was used, and (2) an experiment similar to the misunderstanding condition of the presented
experiment, but in which the iRobot Create delivered meals instead of demolishing towers.

While the data from those experiments cannot be directly compared to the data from the pre-
sented experiment due to different experimental designs, we can broadly compare ISA use across
the interaction data from all three experiments, to get a sense as to whether or not the ISA use seen in
the presented experiment should be regarded as typical. As shown in Table 2, ISA use was common
across all three experiments. Fig. 4 shows a dialogue drawn from the first of these two interaction
corpora (Row 2 in Table 2); Fig. 5 shows a dialogue drawn from the second of these two interaction
corpora (Row 3 in Table 2).

Table 2: Meta-Analysis of Indirect Speech Act Use Across Experiments.

# Robot Used Understanding n Total Task-Relevant Utterances % Indirect
1 iRobot Create Conditional 24 118 28.0%
2 Aldebaran Nao Yes 13 167 10.2%
3 iRobot Create No 21 160 42.0%

58 351 33.33%

3.5 Discussion and Implications for NL-Enabled Robots

Our results showed that most participants used ISAs, and that they were used a significant percent of
the time, even in an unconventional, non-social, simple scenario, and even when the robot repeatedly
displayed an inability to understand ISAs. Furthermore, our meta-analysis of these results within
the context of a set of similar experiments suggests that these results are not out of the ordinary.
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Subject: Oh let’s see here. I have to do something. I would like you to go to the blue tower of cans to
your left.

Robot: Ok.
Subject: And I would like you to knock down the top can on the blue tower.

Robot: Ok.
Subject: You can knock down all of the cans if you like.

Robot: Ok.
Subject: Very good, thank you so much. Nice job!

Figure 4. In-Task Human-Robot Dialogue from Additional Interaction Corpus 1
(Aldebaran Nao capable of understanding ISAs in a tower toppling scenario)

Robot: Hello my name is Waiterbot. I am taking care of you today. Please tell me what drink I should
bring you.

Subject: Uh, I’d like a water.
Robot: That is nice. Please tell me what drink I should bring you.

Subject: Uh could I have a water?
Robot: You could order that. Please tell me what drink I should bring you.

Subject: Um I would like to have a glass of water please.
Robot: That is interesting. Please tell me what drink I should bring you.

Subject: Uh, I need a water.
Robot: Okay. Please tell me what drink I should bring you.

Subject: Um could I have a water?
Robot: You could order that. Please tell me what drink I should bring you.

Subject: Water.

Figure 5. In-Task Human-Robot Dialogue from Additional Interaction Corpus 2
(iRobot Create incapable of understanding ISAs in a restaurant scenario)

Broadly, this suggests that participants are likely to bring their social norms into interactions
with robots. What is more, participants will bring these politeness norms into contexts even when
the robot’s sole purpose is to fulfill participant’s requests (i.e., it does not purport to have its own
goals, desires, and intentions), and when the robot is distinctly non-humanoid. We suspect that the
frequency of ISA usage might have been even higher had the robot expressed its own goals, which
the participants would have been overriding with their requests, or if a more humanoid robot had
been used (given that previous research has suggested that humans treat humanoid robots more
politely than they treat mechanical robots (Hinds, Roberts, & Jones, 2004)). Overall, the results of
this experiment suggests some high-level design and application principles, which, if followed by
robot architecture designers, should improve task-based dialogue interactions of natural-language
enabled robots with humans.

Language-enabled robots engaging in dialogue-based human-robot interactions must be able
to understand ISAs in some application areas and situations:
If a language-enabled robot is expected to be used in any situation with dialogue-based interaction
with humans, designers should expect the robot to misinterpret upwards of 10% of commands if they
are unable to understand ISAs. What is more, this level of miscomprehension is likely to occur even
with non-humanoid robots, with robots under clear obligations to satisfy interactants’ requests, in

71



Briggs et al., Enabling Robots to Understand Indirect Speech Acts

contexts for which conventionalized social norms do not exist, and even when the robot repeatedly
demonstrates an inability to understand indirect speech acts.

If a robot is expected to interact with naı̈ve users, this error rate is clearly unacceptable: In such
cases, we believe that it would thus be inappropriate to use a language-enabled robot incapable
of understanding at the very least, common conventionalized ISAs such as those concerned with
capabilities, permissions, and desires. In cases where interaction with naı̈ve users is not expected to
be common, this error rate may be less problematic, as users may be explicitly or implicitly trained
to avoid using indirect language. But this avoidance of natural, polite communication is likely to
come at a cost with respect to humans’ perceptions of the robot: If it is important to robot designers
that human teammates be able to engage in natural, human-like dialogue with a robot, then this
constrained communication style and its associated interaction costs may prove to be unacceptable.
We thus suggest that language-enabled robots engaging in dialogue-based human-robot interactions
must be able to understand ISAs if the robots are expected to commonly engage with naı̈ve users,
or if natural, human-like dialogue is of paramount importance.

Language-enabled robots engaging in dialogue-based human-robot interactions should be able
to learn new ISA forms:
We have thus far suggested that language-enabled robots expected to be used in dialogue-based
interactions should be able to understand ISAs. However, this does not mean that robot designers
are expected to explicitly design rules to capture every possible way in which one might use indirect
speech acts. Instead, it may be sufficient for a robot to be able to learn new ISA forms as they
are encountered. Robot designers may expect human perception of robots without the ability to
learn new ISA forms to suffer. We would thus suggest that it would be useful for researchers to
develop mechanisms allowing language-enabled robots to automatically learn new ISA forms. It is
outside the scope of this paper to present and evaluate methods for learning such new ISA forms;
however, we argue that some pragmatic reasoning system with a generalized representation of direct
and indirect speech acts would enable such learning to occur.

Finally, we can analyze the types of ISAs observed in these experiments in order to determine
how robot designers might predict the types of ISAs they may expect in their own experiments.
According to Searle’s theory of speech acts, an illocutionary act has four components: (1) its propo-
sitional content, (2) its essential condition (i.e., what it “counts as”), (3) its sincerity condition (e.g.,
for a request, that the speaker actually wants the listener to perform the requested action), and (4)
a set of preparatory conditions (e.g., for a request, that the hearer is able to perform the requested
action, that the speaker believes the hearer able to perform the requested action, and that it is not
obvious to both the speaker and hearer that the hearer is already planning to perform the requested
action).

From the range of ISAs found in our experiment, as well as those observed in our additional
interaction corpora (as seen in the previously presented dialogues), we can infer how ISAs are com-
monly constructed: by simultaneously calling attention to (1) either the preparatory or sincerity
condition of the intended utterance form, and (2) part of the requested action (e.g., the action’s agent
or patient). Examples of each observed combination of literal illocutionary point, condition of focus,
and action aspect can be seen in the table below.1 All indirect requests observed in the presented ex-
periment or in the additional interaction corpora can be accounted for by the taxonomy represented
by this table.

Notice that there exists no column for the combination of either Question or Suggestion as literal
illocutionary point and Sincerity as condition of focus. This is because it generally does not make

1The final parenthetical item is a form we did not observe in our experiment or additional interaction corpora, but which
fits the presented framework.

72



Briggs et al., Enabling Robots to Understand Indirect Speech Acts

Table 3: Taxonomy of Observed Indirect Requests

Direct Point Question Statement Statement Suggestion
Condition Preparatory Sincerity Preparatory Preparatory
Agent Could you X? I need you to X . You can X . You should X .
Patient Could X happen? I’d like X . X will happen. (X should happen.)

sense to draw attention to your own mental states by asking what they are, as your interlocutor
cannot assess them, or to draw attention to your own desires by suggesting what they can be, as your
interlocutor cannot change them.

Similarly, it does not always make sense to make statements about the abilities of others, espe-
cially when they are the presumed domain experts. Consider the third column of Table 3. Here, the
examples seen in the second row call attention to the preparatory condition of requests concerning
whether or not the action is going to happen anyway. Another subcategory of such patient-directed
preparatory statements would be to call attention to the preparatory condition of capability (e.g.,
“The red tower can be knocked down”). While such an utterance makes sense, it runs the risk of
coming off as rude if the hearer is the presumed domain, as it appears to assert that the speaker
knows something that the hearer does not. Calling attention to either capability or inevitability for
agent-directed preparatory statements runs a similar risk; the speaker calling attention to capability
seems to presume a lack of knowledge on the hearer’s part, whereas calling attention to inevitability
runs the risk of asserting dominance.

The discussion in this section suggests that robot designers should consider (at least) the follow-
ing criteria when deciding what types of ISA forms their system must be prepared to handle: (1) The
likely illocutionary points users will need to convey (e.g., requests, suggestions, and statements); (2)
the relationship between agent and patient in actions users might desire to be performed; and (3) the
relationships between the robot and user which might make some utterance forms presumptive or
rude.

4. Pragmatic Interpretation Mechanisms
We have identified different categories of ISAs used in actual HRI scenarios and made the case that
in many contexts, language-enabled robots will need to understand such indirect speech acts if they
are to successfully interact with humans. How this capability could be realized is demonstrated
in the subsequent sections. As previously discussed, language understanding is a multi-stage pro-
cess. Successfully understanding ISAs is an intention understanding challenge, which builds upon
other necessary capabilities such as speech recognition and semantic processing. In this section, we
present a rule-based framework for understanding both direct and indirect speech acts within a given
context. Because this rule-based framework derives meaning based on both observed utterances and
context, it implements a form of pragmatic interpretation. We begin by discussing our utterance
representation.

4.1 Utterances

For defining pragmatic rules and inference mechanisms, we adopt the representations from (Briggs
& Scheutz, 2011) and consider utterances of the following form:

U = UtteranceType(α, β,X,M)

where UtteranceType denotes the speech act classification, α denotes the speaker, β denotes the
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addressee, X denotes an initial semantic analysis, while M denotes a set of sentential modifiers
(e.g., “now,” “still,” “really,” “please”).

Below we specify the different utterance types that have been currently implemented in the
dialogue component:

Stmt(α, β,X,M) - denotes a statement by α to β asserting that X is true.

Ack(α, β,X,M) - denotes an acknowledgment by α to β with additional semantics that X is
true.

AskYN(α, β,X,M) - denotes a question by α to β inquiring whether or not X is true.

AskWH(α, β,X,M) - denotes a question by α to β asking β to resolve the reference specified
by X (e.g., location, identity, etc.).

ReplyY(α, β,X,M) - denotes a positive response by α to β to a yes-no question with addi-
tional semantics X .

ReplyN(α, β,X,M) - denotes a negative response by α to β to a yes-no question with addi-
tional semantics X .

Instruct(α, β,X,M) - denotes an instruction by α to β to perform action or obtain world state
X .

Accept(α, β,X,M) - denotes an instruction acceptance by α to β with additional semantics
X (e.g., acceptance reason).

Reject(α, β,X,M) - denotes an instruction rejection by α to β with additional semantics X
(e.g., rejection reason).

Note that each of the utterance types we described also contains a set of sentential modifiers M .
These modifiers do not generally alter the core semantics of the utterance (primarily indicated by the
utterance type and X), but rather, they usually alter other facets of how the utterance is understood
or chosen during generation, including politeness information and additional semantics regarding
the belief state of the interlocutor.

4.2 Pragmatic Rules

For the pragmatic rule representation, we build on Briggs and Scheutz (2013):

[[U ]]C := 〈Blit,Bint, θ〉

Each rule associates a particular utterance form U in context C with a tuple containing the set
of beliefs Bint to be inferred based on the intended meaning of the utterance, the set of beliefs to
be inferred based on the literal meaning of the utterance Blit, as well as the degree θ to which the
utterance can be considered a face-threatening act (FTA) in context C (Brown & Levenson, 1987).
The double-brackets [[...]] with subscript denote the context of the utterance, such that [[U ]]C can
be interpreted as, “the utterance U in the context described by C.” To distinguish the implication
from other, stricter forms (e.g., logical), we use “:=” to denote pragmatic implication. As such,
the rule form can be read in the following way, “The utterance U in context C can be pragmatically
interpreted as entailing the set of beliefs Bint.” Both belief sets are represented in order to determine
whether or not the pragmatic rule corresponds to a literal form, which affects NLG modulation based
on politeness considerations.
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It is sometimes the case that interlocutors expect that both the literal and non-literal aspects of
utterances to be addressed and acknowledged. In addition to appropriately reacting to the intended
illocutionary point of an utterance, there are also expectations regarding the linguistic form of the
response. Utterances with the literal illocutionary point of a question, for instance, generally demand
answers at some point, while utterances with the literal illocutionary point of a command require
either acceptance or rejection. Consider an ISA such as, “May I have a coffee?”, which has the
literal illocutionary point of a question (i.e., as to the permissibility of the speaker obtaining and
having coffee) but has the intended illocutionary point of a command to the addressee to serve coffee
to the speaker. It is clear that in this context the addressee should serve coffee to the speaker, but
in addition, the addressee is prompted by discourse obligations to provide a yes or no answer to the
query. Indeed, previous studies on politeness have demonstrated that people prefer and consider it
more polite when both the literal and intended illocutionary points of an indirect request are attended
to in responses (Clark & Schunk, 1980; Gibbs Jr. & Mueller, 1988).

As such, there should be at least two pathways of interpretation in the dialogue component. The
updates to the agent’s beliefs about the world and the intentions of the speaker should be modified
only by an utterance’s intended meaning, although the literal meaning should also be tracked and
handled.

4.3 Example Rules

To more easily specify rules, we use some notational shorthand that reduces the amount of informa-
tion that needs to be specified for each rule. For instance, in cases where the intended meaning and
the literal meaning are equal, it would be redundant to have to specify two equal sets of conjoined
belief predicates. Therefore, in the case were two sets of semantics are not specified, it is assumed
that Bint = Blit. And because θ is primarily used for NLG purposes beyond the scope of this paper,
we elide it from the rule representations found in the following sections.

4.3.1 Direct Utterances
A direct command from agent α to agent β to do φ (e.g., “Get me a coffee!”) can be represented by
the following context-independent (i.e., C = ∅) rule:

[[Instruct(α, β, do(β, φ), {})]]∅ := 〈{want(α, φ)}〉

Likewise, direct statements and questions can also be simply represented. A direct statement
from agent α to agent β that φ is true (e.g., “The coffee is in the breakroom”) can be represented by
the following context-independent rule:

[[Stmt(α, β, φ, {})]]∅ := 〈{want(α, bel(β, φ))}〉 (1)

A direct question from agent α to agent β asking whether or not φ is true (e.g., “Is the coffee
in the breakroom?”) can be represented by the following context-independent rule, where itk(α, φ)
denotes the intention of agent α to know the true value of φ:

[[AskYN(α, β, φ, {})]]∅ := 〈{itk(α, φ)}〉 (2)

4.3.2 Indirect Requests
Below we present several examples of pragmatic rules designed to handle different ISA forms. When
a speaker α asks an addressee β whether or not β has a name, this has the literal interpretation that
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α wants to know whether or not β possess a name. The non-literal (i.e., intended) interpretation is
that α wants to know β’s name.

AskYN(α, β, have(β, name), {}) :=
〈{bel(β, itk(α, have(β, name)))},
{bel(β, itkRef(α, nameOf(β)))}〉

When a speaker α asks an addressee β whether or not β “can turn φ,” this has the literal
interpretation that α wants to know if β has the ability of turning in direction φ, whereas the
non-literal interpretation is that α wants β to turn in direction φ:

AskYN(α, β, capableOf(β, turn(β, φ)), {}) :=
〈{bel(β, itk(α, capableOf(β, turning(β, φ))))},

{bel(β,want(α, turning(β, φ)))}〉

4.4 Dialogue Mechanisms

The rule-based framework and its constituent representations for pragmatic interpretation presented
above must next be embedded in a larger dialogue component responsible for handling and respond-
ing to incoming utterances (as well as necessary turn-taking behaviors). Fig. 6 illustrates how both
the literal and intended meanings of an incoming utterance are handled as part of dialogue interac-
tions. In addition to asserting the belief updates based on the intended meaning (which may or may
not differ from the literal meaning of the utterance) in the robot’s belief state, a robot’s dialogue
component must also handle and generate responses based on expectations generated by the literal
illocutionary point of the utterance.

Different response processes to literal illocutionary point occur for: generating acknowledg-
ments, generating answers to yes-no questions, generating answers to non-polar questions, and
finally, for generating responses to explicit commands/instructions.

Generating Acknowledgments: When an acknowledgment is expected (e.g., after a statement or
after a response to a directive), a simple acknowledgment can be generated (e.g., “okay”).

Generating Yes-No Responses: The intention of the speaker to know whether or not a proposition φ
holds is represented as an intention-to-know predicate itk(α, φ), which the dialogue component can
use to query the belief component to see if φ holds. If φ holds a ReplyY utterance is constructed
and communicated, otherwise a ReplyN utterance is constructed and communicated.

Generating Answers: In this case, the speaker’s intention is to know some information denoted
by a referring expression (e.g., location of the robot). This can be represented by the intention of
the speaker to want the robot to inform him or her as to the information denoted by the referring
expression (e.g., want(α,informref (β, α, ρ)), where β denotes the robot, α denotes the human in-
terlocutor, and ρ denotes the reference), or an intention-to-know-reference predicate itkRef(α, ρ).
The dialogue component contains a function that searches belief for an appropriate fact that satisfies
the referring expression specified by ρ. If such a fact can be found, it is communicated in a
statement. In the case when no such answer can be found in belief, a general statement that states
the ignorance of the robot is generated (e.g., “Sorry, I do not know that”).
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Figure 6. Process diagram for handling and responding to utterances in the dia-
logue component that handles the extended pragmatic representation, addressing
both the literal and non-literal aspects of incoming utterances.

Generating Responses to Directives: When people give directives, they expect feedback as to
whether these directives are either accepted or rejected. However, to answer appropriately, a robot
must be able to reason about the appropriateness of adopting the goal/directive. This depends on
reasoning about the various felicity conditions that need to be satisfied in order to accept a proposed
course of action (the strong uptake process). This reasoning process is beyond the scope of this
paper but is discussed in (Briggs & Scheutz, 2015).

5. Evaluation
In Section 3, we presented evidence of robot-directed ISAs from a human-subject experiment. We
then analyzed the indirect requests seen in this experiment as well as those found in two additional
interaction corpora, producing the taxonomy seen in Table 3. In this section, we verify that the
computational mechanisms introduced in Section 4 can handle the utterance forms associated with
each category in that taxonomy. We first show in Section 5.1 how the mechanisms can be inte-
grated into the natural language procession system of a robot architecture and then demonstrate how
these mechanisms can handle the ISAs in our experimental data. Specifically, in Section 5.2, we
verify coverage of utterance forms seen in Experiment 1, and in Section 5.3, we verify coverage of
utterance forms seen in two additional interaction corpora. Finally, in Section 5.4, we verify cover-
age of utterance forms captured by the proposed taxonomy but not observed in the experimental or
additional corpus data.

77



Briggs et al., Enabling Robots to Understand Indirect Speech Acts

5.1 Architectural Integration

In this section, we give an overview of the various architectural components related to NL under-
standing and generation in the DIARC architecture (Schermerhorn et al., 2006; Scheutz et al., 2013).
However, we should note that the rule-based pragmatics framework introduced in Section 4 can be
implemented in any belief-desire-intention (BDI)-paradigm architecture (Bratman, 1987). The pro-
posed pragmatic and dialogue mechanisms were integrated into the natural language processing
system of the DIARC architecture, as shown in Fig. 7.

Figure 7. Architectural diagram highlighting components involved in the DIARC
NL channel, where nodes in the dotted region are the focus of this work. The
significance of each component is described in Table 4. Here, the Vision com-
ponent is included as an example of how non-linguistic information enters the
architecture.

The NL information channel in DIARC consists of a sequence of components that allow for both
the understanding (Fig. 7, Component 1) and generation of spoken language (Component 11). The
key components in the NL information channel that allow for NL understanding are as follows: the
automatic speech recognition (ASR) component, the natural language processing (NLP) component,
the dialogue component, and the belief component. The ASR sends detected natural language text
to the NLP component (see 2), which performs parsing, reference resolution, and initial semantic
analysis. The results are sent to the dialogue component (see 3), which makes pragmatic inferences
to ascertain speaker intent and passes the final semantic analysis to the robot’s belief component
(see 4). These results specify how the robot should update its own beliefs about the world, as well
as beliefs about other agents and their beliefs.

It is worth noting how the component divisions in DIARC appear to nicely correspond to Clark’s
theoretical stages of joint understanding. The ASR component is responsible for the process of
perceptual understanding, while the NLP component is responsible for the process of semantic
understanding. Weak update (intentional understanding) is carried out primarily by the pragmatics
reasoning process in the dialogue component (which also factors in contextual knowledge stored in
the belief component), whereas strong uptake is a process that is started in the belief component but
involves interactions between a number of components.
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Table 4: Description of the principle data being communicated between compo-
nents.

Diagram Number Data Description
1 Acoustic signal from microphone.
2 Recognized text string (e.g., “walk forward”).

3
Inferred surface semantics and speech act classification
(e.g., Instruct(S,H, do(H,walk(H, forward)), {})).

4
Inferred intentional semantics/belief updates
(e.g., {want(S,walking(H, forward))}).

5
Contextual knowledge.
Interaction relevant beliefs:
(e.g., goal(self, walking(self, forward)))

6
Belief updates regarding visual perception
(e.g., see(self, face)).

7
Predicates representing goals to be adopted (to GM).
NLG requests (from GM).

8 Utterance form (similar to 3) to be translated to string.
9 Surface realization of utterance form (string, as in 2).
10 Text to be spoken by TTS system.
11 Speech output.
12 Visual input from camera.

In summary, in the context of DIARC, the process of NL understanding can then be thought
of as a multi-stage process that transduces an acoustic speech signal into a set of first-order-like
logical predicates, representative of the interlocutor’s intention, which are asserted into the belief
component. Once this predicate is asserted into the belief component, it is up to a variety of other
mechanisms to determine the appropriate reaction. In the following section, we describe a set of
pragmatic rules that allow the described architectural components to achieve full coverage over the
set of task-relevant utterance forms observed in Section 3.

5.2 Coverage of Utterance Forms Observed in the Presented Experiment

As described in Section 3, the presented experiment used a simple tower-toppling scenario in which
a robot was obligated to find and knock down towers for a human participant. To verify coverage
of utterance forms observed in this experiment, we thus provided the robot with (1) the contextual
knowledge that, in the current tower toppling scenario, the robot is in the role of the tower-toppler
and the human interlocutor is in the role of the instructor (represented in the robot’s initial set of be-
liefs by predicates role[self, towerToppler] and role[commX, towerInstructor], respectively),
(2) rules defining the role-based obligations found in the tower toppling scenario:

role(α, towerToppler) ∧ role(β, towerInstructor) ∧ want(β, γ)
∧γ ∈ Atower ⇒ oblRtower(α, β, γ)

where Atower denotes a set of task-relevant actions/effects for the tower toppling task (e.g.
knockedDown(α, τ) – that a tower τ is knocked down by agent α), and (3) rules defining when an
agent is potentially obligated to perform an action or achieve some goal state, such as:

role(α, towerToppler) ∧ φ ∈ Atower ⇒ potentiallyObl(α, φ)
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Note, we distinguish between whether or not an agent is potentially obligated to perform an
action or achieve a goal state (potentiallyObl(α, φ)) from whether they are currently obligated
(e.g. oblRtower(α, β, γ) as seen above). This is because current obligation requires conditions to be
met such as the speaker wanting the addressee to perform some action, which will not be inferred
in the system until after the directive has undergone pragmatic interpretation as an ISA. As such,
determining whether or not an utterance should be tried as an ISA should depend on whether or not
the addressee is potentially, rather than currently, obligated.

To use the nomenclature defined in Section 3.5, participants in this experiment used agent-
directed preparatory-pertaining questions (i.e., “Could/can/would/will you X”) and agent-directed
sincerity-pertaining statements (i.e., “I need/want/would like you to X”). Given the information
described above, the following rules were sufficient to handle the observed set of utterance forms in
a contextually appropriate manner.

5.2.1 Agent-Directed Preparatory-Pertaining Questions
Questions of the form “Can you X” were handled by the following rule, where c =
{potentiallyObl(H,X)}:

[[AskYN(S,H, can(H,X), {})]]c := want(S,X)

The general non-ISA interpretation case (no contextual constraints) is handled by:

[[AskYN(α, β, can(α, φ), {})]]∅ := itk(α, capableOf(α, φ))

Using these rules, the utterance “Can you knock down the red tower?” is processed in the
following manner:

Parse Result:
DIARC’s NLP component performs syntactic analysis, semantic analysis, and literal illocu-
tionary point recognition to transduce the given sentence into the following utterance form:

AskYN(commX,self,can(self,knockedDown(self,red(tower))), {})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
itk(commX, capableOf(self,knockedDown(self,red(tower))))

Questions of the form “Could you X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[AskYN(S,H, could(H,X), {})]]c := want(S,X)

The general non-ISA interpretation comes from the rule:

[[AskYN(α, β, could(α, φ), {})]]∅ := itk(α, per(α, φ))

Using these rules, the utterance “Could you knock down the red tower?” is processed in the
following manner:
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Parse Result:
AskYN(commX,self,could(self,knockedDown(self,red(tower))), {})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
itk(commX, per(self,knockedDown(self,red(tower))))

5.2.2 Agent-Directed Sincerity-Pertaining Statements
Statements such as “I need you to X” were handled through the following rule:

[[Stmt(S,H, need(S,X), {})]]∅ := want(S, bel(H,want(S,X))))

Using this rule, the utterance “I need you to knock down the red tower” is handled in the follow-
ing manner:

Parse Result:
Stmt(commX,self,need(commX,knockedDown(self,red(tower))),{})

Derived Belief Updates and Goals:
want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

5.3 Coverage of Utterance Forms Observed in Additional Interaction Corpora

As described in Section 3, we examined ISA use in a set of corpora previously collected in the course
of conducting a set of unpublished pilot experiments. These experiments either used tower-toppling
contexts or a restaurant scenario in which a robot was obligated to bring requested dishes to the hu-
man participant. To verify coverage of utterance forms observed in these experiment, we thus pro-
vided the robot with, depending on the context, either the previously discussed tower-toppling con-
textual knowledge and rules, or (1) the contextual knowledge that, in the current service scenario, the
robot is the role of the server and the human interlocutor is in the role of the customer (represented
in the robot’s initial set of beliefs by predicates role[self, server] and role[commX, customer],
respectively), (2) rules defining the role-based obligations found in the restaurant scenario:

role(α, server) ∧ role(β, customer) ∧ want(β, have(β, γ))
∧onMenu(γ) ⇒ oblRfoodService(α, β, have(β, γ))

role(α, server) ∧ role(β, customer) ∧ want(β, served(α, β, γ))
∧onMenu(γ) ⇒ oblRfoodService(α, β, served(α, β, γ))

where γ denotes the item being requested, and (3) rules defining when an agent is potentially obli-
gated to perform an action or achieve some goal state, such as:
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role(α, server) ∧ role(β, customer) ∧ onMenu(γ)

⇒ potentiallyObl(α, served(α, β, γ)) ∧ potentiallyObl(α, have(β, γ))

In the additional interaction corpora, participants additionally used agent-directed preparatory-
pertaining suggestions (i.e., “You should X”), patient-directed preparatory-pertaining questions
(i.e., “Could/can/may I get/have X”), patient-directed preparatory-pertaining statements (i.e., “I’ll
have/get/take X”), and patient-directed sincerity-pertaining statements (i.e., “I’d like/love X”,
“I need/want X”). agent-directed preparatory-pertaining suggestions (i.e., “Why don’t you X”,
“You’re going to have toX”, “MaybeX”, and “Let’s tryX”), agent-directed preparatory-pertaining
statements (i.e., “Now you can X”, “We’re going to X”).

Given the context provided to the robot, the following rules were sufficient to handle the ob-
served set of utterance forms in a contextually appropriate manner.

5.3.1 Agent-Directed Preparatory-Pertaining Statements
Statements such as “You can X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[Stmt(S,H, can(H,X), {})]]c := want(S,X)

The general, non-ISA interpretation is handled by Rule 1 in Section 4. Using these rules, the
utterance “You can knock down the red tower” is processed in the following manner:

Parse Result:
Stmt(commX,self,can(self,knockedDown(self,red(tower))),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
want(commX,bel(self,can(self,knockedDown(self,red(tower)))))

Statements such as “We’re going to X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[Stmt(S,H, goingTo(we,X), {})]]c := want(S,X)

The general, non-ISA interpretation is again handled by Rule 1 in Section 4. Using these rules,
the utterance “We’re going to knock down the red tower” is processed in the following manner:

Parse Result:
Stmt(commX,self,goingTo(we,knockedDown(self,red(tower))),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
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want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
want(commX,bel(self,goingTo(we,knockedDown(self,red(tower)))))

5.3.2 Agent-Directed Preparatory-Pertaining Suggestions
Suggestions such as “You’re going to have to X” were handled through the following rule, where
c = {potentiallyObl(H,X)}:

Stmt(S,H, goingTo(H, obl(H,X)), {}) := want(S, do(H,X))

The general literal interpretation comes from a general pragmatic rule of the form:

[[Stmt(S,H,X, {})]]∅ := want(S, bel(H,X))

Using these rules, the utterance “You’re going to have to knock down the red tower” is processed
in the following manner:

Parse Result:
Stmt(commX,self,goingTo(self,obl(self,knockedDown(self,red(tower)))),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
want(commX, bel(self, goingTo(self,knockedDown(self,red(tower)))))

Suggestions such as “Why don’t you X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[AskWH(S,H,why(not(X)), {})]]c := want(S,X)

The general, literal interpretation comes from a general pragmatic rule of the form:

[[AskWH(S,H,X, {})]]∅ := want(S, informref(H,S,X))

Using these rules, the utterance “Why don’t you knock down the red tower” is processed in the
following manner:

Parse Result:
AskWH(commX,self,why(not(knockedDown(self,red(tower)))),{})
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Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
want(commX,informref(self,commX,why(not(knockedDown(self,red(tower))))))

Suggestions such as “Maybe X?” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[AskYN(S,H,maybe(X), {})]]c := want(S,X)

The general, non-ISA interpretation is generated by Rule 2 in Section 4. Using these rules, the
utterance “Maybe knock down the red tower?” is processed in the following manner:

Parse Result:
AskYN(commX,self,maybe(knockedDown(self,red(tower))),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
itk(commX,maybe(knockedDown(self,red(tower))))

Suggestions such as “Let’s try X?” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[Stmt(S,H, let(us, try(X)), {})]]c := want(S,X)

The general, non-ISA interpretation is handled by Rule 1 in Section 4. Using these rules, the
utterance “Let’s try knocking down the red tower?” is processed in the following manner:

Parse Result:
Stmt(commX,self,let(us,try(knockedDown(self,red(tower)))),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒ goal(self,knockedDown(self,red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
want(commX,bel(self,let(us,try(knockedDown(self,red(tower))))))
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5.3.3 Patient-Directed Preparatory-Pertaining Statement
Statements of the form “I’ll have X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[Stmt(S,H,will(S, have(S,X)), {})]]c := want(S, have(S,X))

The general, non-ISA interpretation is again handled by Rule 1 in Section 4. Using these rules,
the utterance “I will have a coffee” is processed in the following manner:

Parse Result:
Stmt(commX,self,will(commX,have(commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,have(commX,coffee))):

want(commX,have(commX,coffee))
⇒ goal(self,have(commX,coffee))

If ¬ bel(self,potentiallyObl(self,have(commX,coffee))):
want(commX,bel(self,will(commX,have(commX,coffee))))

Statements of the form “I’ll get X” were handled through the following rule, where c =
{potentiallyObl(H,X)}.

[[Stmt(S,H,will(S, get(S,X)), {})]]c := want(S, have(S,X))

The general, non-ISA interpretation is again handled by Rule 1 in Section 4. Using these rules,
the utterance “I will get a coffee” is processed in the following manner:

Parse Result:
Stmt(commX,self,will(commX,get(commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,have(commX,coffee))):

want(commX,have(commX,coffee))
⇒goal(self,have(commX,coffee))

If ¬ bel(self,potentiallyObl(self,have(commX,coffee))):
want(commX,bel(self,will(commX,get(commX,coffee))))

Statements of the form “I’ll take X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[Stmt(S,H,will(S, take(S,X)), {})]]c := want(S, have(S,X))

The general, non-ISA interpretation is again handled by Rule 1 in Section 4. Using these rules,
the utterance “I will take a coffee” is processed in the following manner:
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Parse Result:
Stmt(commX,self,will(commX,take(commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,have(commX,coffee))):

want(commX,have(commX,coffee))
⇒goal(self,have(commX,coffee))

If ¬ bel(self,potentiallyObl(self,have(commX,coffee))):
want(commX,bel(self,will(commX,take(commX,coffee))))

5.3.4 Agent-Directed Preparatory-Pertaining Questions
Questions of the form “Will you X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[AskYN(S,H,will(H,X), {})]]c := want(S,X)

The general, non-ISA interpretation is handled by Rule 2 in Section 4. Using these rules, the
utterance “Will you get me a coffee?” is processed in the following manner:

Parse Result:
AskYN(commX,self,will(self,served(self,commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,served(self,commX,coffee))):

want(commX,served(self,commX,coffee))
⇒goal(self,served(self,commX,coffee))

If ¬ bel(self,potentiallyObl(self,served(self,commX,coffee))):
itk(commX, will(self, served(self,commX,coffee)))

5.3.5 Agent-Directed Preparatory-Pertaining Suggestions
Suggestions such as “You should X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[Stmt(S,H, obl(H,X), {})]]c := want(S,X)

The general, non-ISA interpretation is handled by Rule 1 in Section 4. Using these rules, the
utterance “You should get me a coffee” is processed in the following manner:

Parse Result:
Stmt(commX,self,obl(self,served(self,commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,served(self,commX,coffee))):
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want(commX,served(self,commX,coffee))
⇒goal(self,served(self,commX,coffee))

If ¬ bel(self,potentiallyObl(self,served(self,commX,coffee))):
want(commX,bel(self,obl(self,served(self,commX,coffee))))

5.3.6 Patient-Directed Preparatory-Pertaining Questions
Questions of the form “Can I X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[AskYN(S,H, can(S,X), {})]]c := want(S,X)

The general, non-ISA interpretation is handled by Rule 2 in Section 4. Using these rules, the utter-
ance “Can I have a coffee?” is processed in the following manner:

Parse Result:
AskYN(commX,self,can(commX,have(commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,have(commX,coffee))):

want(commX,have(commX,coffee))
⇒goal(self,have(commX,coffee))

If ¬ bel(self,potentiallyObl(self,have(commX,coffee))):
itk(commX, capableOf(commX, have(commX, coffee)))

Questions of the form “Could I X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[AskYN(S,H, could(S,X), {})]]c := want(S,X)

The general, non-ISA interpretation is handled by Rule 2 in Section 4. Using these rules, the
utterance “Could I have a coffee” is processed in the following manner:

Parse Result:
AskYN(commX,self,could(commX,have(commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,have(commX,coffee))):

want(commX,have(commX,coffee))
⇒goal(self,have(commX,coffee))

If ¬ bel(self,potentiallyObl(self,have(commX,coffee))):
itk(commX, could(commX, have(commX, coffee)))
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when parsed as AskYN(commX,self,could(commX,have(commX,coffee)), {}), resulted, when
potentiallyObl(self,have(commX,coffee)) is true, in the following goal being adopted:
goal(self,have(commX,coffee)), and resulted, when this potential obligation does not exist, in
the following belief being adopted: itk(commX, per(self, have(commX, coffee))).

Questions of the form “May I X” were handled through the following rule, where c =
{potentiallyObl(H,X)}:

[[AskYN(S,H,may(S,X), {})]]c := want(S,X)

The general, non-ISA interpretation is handled by Rule 2 in Section 4. Using these rules, the
utterance “May I have X” is processed in the following manner:

Parse Result:
AskYN(commX,self,may(commX,have(commX,coffee)),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,have(commX,coffee))):

want(commX,have(commX,coffee))
⇒goal(self,have(commX,coffee))

If ¬ bel(self,potentiallyObl(self,have(commX,coffee))):
itk(commX, may(commX, have(commX, coffee)))

5.3.7 Patient-Directed Sincerity-Pertaining Statements
Statements of the form “I need X” were handled through the following rule:

[[Stmt(S,H, need(S,X), {})]]∅ := want(S, bel(H,want(S,X)))

Using this rule, the utterance “I need coffee” is processed in the following manner:

Parse Result:
Stmt(commX,self,need(commX,have(commX,coffee)),{})

Derived Belief Updates and Goals:
want(commX,have(commX,coffee))
⇒goal(self,have(commX,coffee))

Statements of the form “I want X” were handled through the literal statement case (Rule 1 in
Section 4).

Using this rule, the utterance “I want a coffee” is processed in the following manner:

Parse Result:
Stmt(commX,self,want(commX,have(commX,coffee)),{})

Derived Belief Updates and Goals:
want(commX,have(commX,coffee))
⇒goal(self,have(commX,coffee))
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Statements of the form “I would like X” and “I would love X” were handled through the
following rules, where c = {potentiallyObl(H,X)}:

[[Stmt(S,H,would(want(S,X)), {})]]c := want(S, bel(H,want(S,X)))
[[Stmt(S,H,would(like(S,X)), {})]]c := want(S, bel(H,want(S,X)))
[[Stmt(S,H,would(love(S,X)), {})]]c := want(S, bel(H,want(S,X)))

The general, non-ISA interpretation is handled by Rule 1 in Section 4. Using these rules, the
utterance “I would like a coffee” is processed in a similar manner to the above cases.

5.4 Coverage of Unobserved Utterance Forms

Finally, while we did not observe any Patient-Directed Preparatory-Pertaining Suggestions, these
are a natural category of ISA to expect and complete the taxonomy defined in Section 3.5; we will
thus describe how such ISAs are handled by our approach. Suggestions such as “X should be Y .”
were handled through the following rule, where c = {potentiallyObl(H,Y (X))}:

[[Stmt(S,H, shouldBe(X,Y (X)), {})]]c := want(S, Y (X))

Using this rule, an utterance such as “The red tower should be knocked down” is processed in
the following manner:

Parse Result:
Stmt(commX,self,shouldBe(red(tower),knockedDown(red(tower))),{})

Derived Belief Updates and Goals:
If bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):

want(commX,knockedDown(self,red(tower)))
⇒goal(self,knockedDown(red(tower)))

If ¬ bel(self,potentiallyObl(self,knockedDown(self,red(tower)))):
want(commX,bel(self,shouldBe(red(tower),knockedDown(red(tower)))))

6. General Discussion
Indirect speech acts are an integral part of human-human communication. The ability to commu-
nicate our intentions indirectly allows us, as just one example, to better achieve our goals through
the help of others, without straining our social relationships. As robots’ capabilities increase, so too
will their status as agents be increased in perception. With this increase in perceived agency, it will
become increasingly difficult for us to avoid carrying over behaviors such as ISAs from our social
interactions with humans into our interactions with robots. And it will be just as hard not to make
pejorative inferences about robots when they speak or act in ways that unknowingly violate those
social conventions.

While it has been suspected for some time that we are rapidly approaching this point, the exper-
imental work we have presented provides the first empirical evidence that we have reached it. For
many years, the lack of good speech recognition has been the primary obstacle on the path to natural
human-robot dialogue. This year, for the first time, word error rates on the Switchboard Corpus are
dipping below double digits (Saon, Sercu, Rennie, & Kuo, 2016). While the state-of-the-art word
error rate of 6.9% is still too high for natural human-robot dialogue, it is low enough that speech
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recognition can no longer be considered the main source of error in natural language understanding.
In our second experiment, a robot participating in a restaurant scenario (a domain not far removed
from the domains of interest for many HRI researchers) suffered a 28% utterance error rate due to its
inability to understand indirect speech acts. We take this as evidence that natural-language capable
robots employed in realistic task-based environments will increasingly find not speech recognition
errors, but semantic and pragmatic errors, to be the dominant source of error in their interactions.

6.1 Empirical and Design Contributions

While the space of utterances a human could say during a task-based human-robot interaction is truly
vast, conventionalized indirect requests take up a large proportion of the space of utterances they are
likely to say. We have shown how a simple taxonomy can be used by roboticists to determine the
types of conventionalized indirect requests likely to be used in their task domain, and how a relatively
small number of contextually appropriate pragmatic rules designed with the aid of this taxonomy
enable full coverage over an example task domain.

In Section 3.5, we used our experimental results to present a set of design recommendations
for robot architecture designers: specifically, that language-enabled robots (1) must be able to un-
derstand ISAs if they are to engage in dialogue-based human-robot interactions, and (2) should be
able to learn new ISA forms. In the following subsections, we will discuss the extent to which our
technical contributions allow robot architecture designers to comply with these principles.

6.2 Technical Contributions

The presented algorithms and architectural mechanisms enable robot architecture designers to com-
ply with our first recommendation, as those mechanisms allow robots to engage in the reasoning
processes needed to appropriately recognize both commands and indirect requests. To demonstrate
these mechanisms, we introduced several examples of reasoning rules and showed how these rules
can be instantiated in an integrated robot architecture to achieve the desired capabilities in a simple
HRI scenario. However, it is important to point out that these rules are only for demonstration pur-
poses and not the principle contribution of the present work; rather, the contribution consists in the
algorithms and architectural mechanisms (and their interplay), which together constitute a frame-
work for explicit reasoning about joint interaction between the robot and its interaction partners.

We emphasize this to draw a contrast with many of the popular approaches being transferred
over from dialogue systems to social robotics, such as POMDP-based dialogue/action management
systems (e.g., (Gopalan & Tellex, 2015; Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann,
J., Thomson, B., & Yu, K., 2010)) in which much of the reasoning we describe is made implicitly
(if present at all). Such systems are not only tied to the data they learned from but are limited in
their introspective capabilities due to the lack of structured representations about dialogue structure,
intended meanings, and interlocutor’s mental states. And while it is outside the scope of this paper to
argue for a mixture of statistical and structured representation (as they are employed in the proposed
system compared to statistical approaches without structured representations), it is important to
point out that the present system allows for such feats as explicit dialogues about goals, obligations,
and permissions that essentially rely on the system’s introspective capabilities allowing it to access
its structured representations. Below, we contrast our approach with other systems found in the
literature.

6.2.1 Other HRI NL Systems
There exist a variety of approaches to enabling robots to have basic task-based NL interactions with
human interactants. Some of these approaches include POMDP-based methods (Tellex et al., 2013).
Other architectures include a variety of belief-desire-intention (BDI)-paradigm NL understanding
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and generation systems that facilitate task-based human-robot interactions (Lemaignan, Ros, Sis-
bot, Alami, & Beetz, 2012; She et al., 2014). Some even focus on issues of mental modeling and
perspective-taking (Warnier, Guitton, Lemaignan, & Alami, 2012). However, these architectures do
not address issues such as ISA understanding.

The architectures that do attempt to enable robots to understand ISAs (Williams, Briggs, Oost-
erveld, & Scheutz, 2015; Wilske & Kruijff, 2006), however, do not recognize dialogue obligations
generated by the literal/surface forms of the received utterances in addition to those generated by
non-literal semantics. Instead, they seek only to detect non-literal directives and then respond ac-
cordingly (either answering only the literal non-directive or the non-literal directive). For example,
Wilske and Kruijff (2006) also utilize this behavior pattern to avoid having the robot say “I’m un-
available/busy” in the case when it receives a non-literal directive when it is in “non-servant” mode.
Instead, the robot simply responds to the literal form of the utterance in order to at least satisfy
discourse obligations (Wilske & Kruijff, 2006).

6.2.2 TRIPS
In contrast with many NL approaches implemented in robotic architectures that either ignore or make
implicit many of facets of NL interaction, one of the most prevalent NL architectures that engage in
explicit reasoning about dialogues is the TRIPS architecture. However, making direct comparison
with TRIPS is somewhat tricky, as there are often no particular rules or algorithmic commitments
specified in the relevant literature. For instance, (Allen et al., 2001) describes the handling of an
ISA in which both the literal surface form and non-literal interpretation are processed. However, the
only details given regarding how the literal semantics are processed are that the system recognizes
and processes an obligation to “RESPOND-TO” the surface utterance. Nonetheless, we believe we
can identify at least two points of relative strength.

The two components within the TRIPS architecture responsible for handling ISAs and determin-
ing the type of response entailed by the received utterance are the Interpretation Manager (IM) and
Discourse Context Component (DCC), respectively (Allen et al., 2001). According to the TRIPS
website2, the rules found in the TRIPS-IM are described in more detail in Hinkelman and Allen
(1989). The rules described in Hinkelman and Allen (1989) for identifying potential convention-
alized ISAs are primarily rules pertaining to the surface features of the utterance (e.g., Is “please”
used? Does the utterance align with one of the Searle’s ISA forms?) However, other pieces of ev-
idence can indicate ISAs. For instance, repeated use of the “Can you X?” construction, despite
having been shown that the robot is indeed capable of performing an action such as X . As such,
it would make sense for the pragmatic interpreter to have a rule that formalizes the notion of, “If
A asks B whether or not B is capable of doing X , and A already believes B is capable of doing
X , then interpret this as a directive.” Yet, it is not clear that TRIPS currently has the mechanisms
to do this at the initial, rule-based level. In our architecture, a rule dependent on a belief about the
speaker’s belief is no different than any other rule, as the set of contextual constraints for the rule C
can include terms that indicate the beliefs of other agents (and the dialogue component will query
the belief modeling component to ensure these constraints are satisfied). This direct connection with
the architecture’s belief component also would enable perceptual modulation of ISA understanding
as well. Additionally, the TRIPS architecture does not appear to model the sociolinguistic aspects of
utterances, modeled in our architecture by the θ values. These values are primarily utilized during
NL generation (influencing whether or not to generate literal or non-literal directives) and are not the
focus of this paper (see Briggs and Scheutz (2016) for more information about utterance selection
and politeness values).

2https://www.cs.rochester.edu/research/cisd/projects/trips/architecture/interpretation manager.html
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6.2.3 Summary
In this section, we have compared our rule-based pragmatics framework to other approaches that
seek to enable robotic agents to understand ISAs. While there are various specific and subtle differ-
ences between our architecture and implementation relative to other approaches, we view our key
contribution to be a framework and set of representations that bind utterances (speech act repre-
sentations) with a meaning representation that is much richer than what is found in other systems
and allows for reversing the direction of information flow in a straightforward manner. Not only
are we interested in simply solving the problem of associating the right intended meaning with the
observed utterance in the present context, but we are interested in associating the utterance with
additional semantic information that allows for distinguishing and ranking different utterance forms
during NL generation. The rules and reasoning processes used in other approaches to identify and
interpret ISAs do not inform the generation process (e.g., TRIPS contains a rule to interpret utter-
ances with “please” as directives, but this does not inform when the system should or should not use
this politeness softener).

6.3 Limitations and Future Work

This integrated architectural approach advances the state of the art in taskable robots in HRI and
opens up several directions for future research. For example, given the pragmatic framework intro-
duced in this paper, it is now possible to develop mechanisms for learning new pragmatic rules and
interpretations that can influence where and when the robot will generate both direct and indirect
representations and when it will prefer one over the other (our second design requirement). As a
robot may not be certain of the rules it learns (or, indeed, of the utterances it hears or the contexts
it operates under), the proposed approach may need to be adapted to represent uncertainty and ig-
norance. And indeed, we have already begun to examine this possibility (Williams et al., 2015). In
that work we demonstrated, in part, how pragmatic rules such as those used in this paper can, when
paired with a Dempster-Shafer theoretic uncertainty representation framework (c.f. Shafer 1976), be
adapted based on new information. By integrating this adaptation mechanism into the algorithms
presented in this paper, and by further developing mechanisms allowing entirely new pragmatic rules
to be learned, we should be able to make progress toward our second, learning-oriented, design goal.

Our integrated approach also enables robots to be aware of the explicit use of politeness markers
and thus enables them to use this information to make various inferences about their interlocutor
(e.g., their social roles). Furthermore, the framework provides the building blocks for handling
more advanced interpretations of utterances that require the integration of social norms together
with context-dependent modulators (such as the interlocutor’s social standing).

7. Conclusion
We have presented experimental evidence that humans make frequent use of ISAs when commu-
nicating with robots, even in the simplest of task-based interaction contexts. This use of ISAs,
however, poses a significant challenge for future cognitive robotic architectures as they will have to
be able to make sense of such utterances. To address this challenge, we have presented mechanisms
for automatically understanding ISAs in different HRI contexts. Our findings provide both justifica-
tion for previous and ongoing research in AI and HRI on interpreting ISAs, as well as motivation for
future research. First, it will be important to continue development of ISA understanding algorithms
that increase both the breadth of handled ISA forms as well as the efficiency and accuracy of inten-
tion understanding. Second, it will also be important to develop mechanisms that allow robots to
automatically learn ISA understanding rules, based on an analysis of previous dialogue, reinforce-
ment signals, and direct explanations. Third, future work should determine how to best generate
clarification requests when a robot is unsure if it correctly interpreted an utterance, and how such

92



Briggs et al., Enabling Robots to Understand Indirect Speech Acts

a request might be phrased so as to maximize the information that can be gleaned from an inter-
locutor’s response. Finally, HRI researchers should investigate whether the frequency or variety of
ISAs will differ when using robots with different morphologies, varying capabilities, or in different
experimental contexts.
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