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Abstract

We propose a novel approach to the problem of false belief
revision in epistemic planning. Our state representations are
pointed Kripke models with two binary relations over possible
worlds: one representing agents’ necessarily true knowledge,
and one representing agents’ possibly false beliefs. State tran-
sition functions maintain S5n properties in the knowledge
relation and KD45n properties in the belief relation. When
new information contradicts an agent’s beliefs, belief revi-
sion draws new possible worlds from the agent’s knowledge
relation. Our method also improves upon prior work by ac-
commodating false announcements. We develop our system as
an extension to the mA∗ action language, presenting transition
functions for ontic, sensing, and announcement actions.

1 Introduction
Epistemic planning is an approach to decision making for
multi-agent task scenarios involving not only objective facts
about the environment, but also agents’ knowledge and be-
liefs, including iterated knowledge and belief. A popular and
powerful EP paradigm is Dynamic Epistemic Logic (DEL)
(Gerbrandy 1997; Bolander 2017), where states are repre-
sented as pointed Kripke models and actions are represented
as structures called update-models. However, update models
encode a specific execution instance of an action, including
observability for each agent. The planning language mA∗
(Baral et al. 2019) overcomes this limitation with compact
action definitions that are dynamically instantiated to state-
specific update models. Thus, it is particularly suited to use
in epistemic planners. However, a limitation of mA∗ is that
it handles false belief revision (when an agent corrects a false
belief) by granting the agent perfect correct beliefs, even
about things not informed by the revision event. In contrast,
our belief revision approach maintains an agent’s uncertainty
about facts that are not informed by a revision event.

Following Kraus and Lehmann (1988) and others, we
employ Kripke structures that have two binary relations on
worlds for each agent: one relation to represent knowledge
and one relation to represent belief. Thus we maintain two
tiers of information, a lower (belief) tier, and a strictly more
general higher (knowledge) tier, for each agent. We assume
that agents have access to a source of information about the
environment that can reliably inform knowledge (e.g. non-
noisy sensors), as well as less reliable sources that can only

inform belief (e.g. possibly-false announcements). An agent
accepts the most recent information received into the ap-
propriate tier, except that lower tier information does not
override higher tier information, e.g. an agent rejects an
announcement that she knows to be untrue.

Belief revision draws on an agent’s knowledge, adding to
the set of worlds which the agent believes possible all worlds
not previously known by the agent to be impossible. We refer
to this process as belief reset. These representations can be
used by multi-agent epistemic planning systems to explore
problems involving false announcements, false beliefs, and
recovery from false belief.

2 Motivation and Related Work
The 2017 Dagstuhl Seminar on Epistemic Planning (Baral et
al. 2017) identified the need to explore the relationships be-
tween knowledge and belief, specifically because DEL does
not allow agents to recover from false belief. The predecessor
of mA∗ (Baral et al. 2015) could not handle recovery from
false belief. When an agent observes some fact ϕ to be true,
the agent’s beliefs are updated by removing from the set of
worlds which the agent considers possible all worlds where ϕ
is false. If the agent had wrongly believed ¬ϕ, then no possi-
ble worlds remain, and the agent is left “ignorant”, believing
all propositions to be trivially true. To address this, mA∗
adds to the accessibility relation a reflexive connection on the
designated world and removes all other connections from the
designated world when an agent’s false beliefs are corrected
by a sensing or announcement action. At least one planner
(Le et al. 2018) implements this method. The limitations of
that approach with respect to this work are that it removes all
of an agent’s uncertainty, even about things unrelated to the
belief being revised, it does not allow agents to make false
announcements, and it only revises beliefs that are corrected
directly by sensing or announcement actions, not indirectly
as when an agent observes an action whose preconditions
violate the agent’s beliefs.

We refer the reader to van Benthem and Smets (2015) for
a discussion of the development of logical systems of belief
change. Baral et al. (2017) describes several belief revision
approaches in EP. Most directly relevant to the present work
are doxastic epistemic action models (Ditmarsch 2005), prob-
abilistic action models (Baltag and Smets 2008a), syntactic
revision (Huang et al. 2017), Proper Epistemic Knowledge



Base update (Miller and Muise 2016), and action plausibility
models (Baltag and Smets 2008b). Some of these are more
powerful and flexible than our approach in terms of the kinds
of belief changes that can be represented. In particular, An-
dersen, Bolander, and Holm Jensen (2013) develop a frame-
work and algorithms for single-agent Epistemic Planning
with plausibility models. All of these approaches, however,
lack the previously-mentioned qualities that make mA∗ par-
ticularly useful. We therefore focus on extending mA∗ and
leave to future work the integration of features from these
richer techniques.

3 Epistemic States
Given a set of Boolean fluentsF , a fluent formula is a formula
built using f ∈ F and the propositional operators ∨,∧,→,¬.
A fluent atom is a fluent formula containing a single element
f ∈ F . A fluent literal is either f or ¬f where f is a fluent
atom.

Consider a set of n agents A = {1, · · · , n}. We de-
fine a bimodal Kripke model as a Kripke model with
two accessibility relations for each agent, a 4-tuple M =
(W,V,B1, . . . ,Bn,K1, . . . ,Kn), where

• W is a non-empty finite set of worlds,

• V : W → 2F is a valuation function assigning a set of
fluents to each world,

• Bi ⊆ W × W is an accessibility relation representing
agent i’s belief, and

• Ki ⊆ W × W is an accessibility relation representing
agent i’s knowledge.

Following (Kraus and Lehmann 1988), we will assume that
Bi satisfiesKD45n, thatKi satisfies S5n, and that Bi andKi

satisfy the KB1 (Kiφ → Biφ) and KB2 (Biφ → KiBiφ)
(Hintikka 1962) properties. In Section 7 we show that our
state transitions preserve these properties. We will say that
Bi (resp. Ki) contains an edge from world u to world v if
(u, v) ∈ Bi (resp. Ki), or between worlds u and v if (u, v) or
(v, u) ∈ Bi (resp. Ki), or from a set of worlds X to a set of
worlds Y if Bi (resp. Ki) contains any (u ∈ X, v ∈ Y ), or
between sets of worlds, similarly.

An epistemic-doxastic state, or ed-state, is a pair (M, d),
whereM is a bimodal Kripke model, and d ∈W is the desig-
nated world, representing the actual state of the environment.
Given a set of agents A, for i ∈ A, a belief formula is either
a fluent formula or a formula of one of the following forms:
φ ∨ ψ, φ ∧ ψ, ¬φ, Biφ, or Kiφ, where φ and ψ are belief
formulae. Intuitively, Biϕ means that agent i believes ϕ and
Kiϕ means that agent i knows ϕ.

(M, d) |= ϕ if ϕ is a fluent formula and
ϕ |= ∧f∈V (d)

(M, d) |= ¬ϕ iff (M, d) 6|= ϕ

(M, d) |= ϕ ∧ ψ iff (M, d) |= ϕ and (M, d) |= ψ

(M, d) |= ϕ ∨ ψ iff (M, d) |= ϕ or (M, d) |= ψ

(M, d) |= Biϕ iff ∀ v | (d, v) ∈ Bi : (M, v) |= ϕ

(M, d) |= Kiϕ iff ∀ v | (d, v) ∈ Ki : (M, v) |= ϕ

4 State Transitions
Following Baral et al. (2015), we define state transition
functions for three type of actions: ontic actions that cause
changes in the real world, sensing actions, representing obser-
vations that change agents’ knowledge, and announcement
actions, representing communication between agents. Each
action type is a 4-tuple, the first three elements of which
are a.pre, a.obs, and a.aware. The fourth element of the
tuple will be defined for each action type. Belief formula
a.pre is the action’s precondition, a.obs is a set of agent-
fluent-formula pairs defining conditional full observability,
and a.aware is a set of agent-fluent-formula pairs defining
conditional partial observability.

The execution of an action a in ed-state (M, d) assigns
agents to one of three sets, F , P , and O for agents who
are fully-aware of, partially-aware of, and oblivious to the
action’s occurrence:
F = {i ∈ A | (i, ϕ) ∈ a.obs, (M, d) |= ϕ}
P = {i ∈ A | i 6∈ F, (i, ϕ) ∈ a.aware, (M, d) |= ϕ}
O = {i ∈ A | i 6∈ F ∪ P}

Fully- and partially-observant agents know that the action
has occurred and update their knowledge and belief to reflect
that the action’s preconditions hold. Furthermore, in the case
of sensing and announcement actions, fully-observant agents
become aware of the sensed or announced information.

Oblivious agents do not know or believe that the action has
occurred, but do know that it might have. Thus, an oblivious
agent’s belief relation is not altered. However, an oblivious
agent’s knowledge relation is updated to express that the
agent comes to know that the action might have occurred.
This is in order to maintain the S5n property that agents
do not have false knowledge, which is necessary for belief
reset. On the contrary, an agent will not come to know that
an action of which she is oblivious, and that did not in fact
occur, might have occurred.

When an action a is applied in ed-state (M, d)
where M = (W,V,B1, . . . ,Bn,K1, . . . ,Kn), the re-
sult is a new ed-state, (M′, d′), where M′ =
(W ′, V ′,B′1, . . . ,B′n,K′1, . . . ,B′n). The worlds W ′ of the
new ed-state include the worlds of the previous ed-state W
corresponding to the beliefs of oblivious agents, and a set
of new worlds W+ corresponding to the beliefs of full and
partial observers. The new worlds W+ only include worlds
that satisfy a.pre because full and partial observers of a
learn that a.pre must be true. Let Pre(M, a) = {w ∈ W |
(M, w) |= a.pre}. We construct a new world w+ ∈ W
from each world w ∈ Pre(M, a). Instead of defining addi-
tional worlds by writing “for any u ∈ W+, there is some
world w such that u = w+ and w ∈ Pre(M, a),” when dis-
cussing worlds in W+, we will immediately refer to them as,
e.g., w+ where w ∈ Pre(M, a).

Let W+ = {w+ | w ∈ Pre(M, a)}. For all action types,
W ′ =W ∪W+

V ′(w) =

{
V +(w) if w ∈W+

V (w) otherwise

d′ = d+
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Figure 1: The ed-state before the example ontic action open door is
applied.

We will define V +, Bi′, and Ki
′ separately for each action

type.

4.1 Ontic Actions
An ontic action is a 4-tuple, (a.pre, a.obs, a.aware, a.eff),
where a.eff is a set of fluent literals. We make the closed-
world assumption that fluents not explicitly altered by the
action remain unchanged. For an ontic action executed in
ed-state (M, d), the valuation of the new worlds W+ reflects
the action’s effects on the environment:

V +(w+) = (V (w) \ {f | ¬f ∈ a.eff})
∪ {f | f ∈ a.eff}

We define temporary relationsRi representing agents’ be-
liefs after they have possibly been reset (updated with infor-
mation from Ki) due to observing an action whose precondi-
tion contradicts the agents’ belief. For i ∈ A:

Ri = {(u, v) | (u, v) ∈ Bi
∨ ((u, v) ∈ Ki ∧ (M, u) |= Bi¬a.pre)}

We update Bi to reflect changes to agents’ beliefs after any
possible belief reset and the influence of the action’s precon-
ditions and effects. The beliefs of fully- and partially-aware
agents are determined according toRi. For i ∈ F ∪ P :

B′i = Bi ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ri}

The beliefs of oblivious agents are not reset. For i ∈ O:

B′i = Bi ∪ {(u+, v) | u ∈ Pre(M, a), (u, v) ∈ Bi}

We update Ki to reflect changes to agents’ knowledge result-
ing from the action’s preconditions and effects. Fully- and
partially-aware agents know that the action occurred. For
i ∈ F ∪ P :

K′i = Ki ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ki}

Oblivious agents do not know whether or not the action
occurred. For i ∈ O:

K′i = Ki ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ki}
∪ {(u+, v), (v, u+) | u ∈ Pre(M, a), (u, v) ∈ Ki}
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Figure 2: The ed-state after agent A performs the example ontic
action open door.

Example Ontic Action This example demonstrates three
ways that an ontic action can affect an agent’s beliefs: fully-
and partially-observant agents are aware of changes to the
world caused by the action, and also learn that the action’s
preconditions must be true, while the beliefs of ignorant
agents may become false due to world changes caused by the
action. Consider the ed-state illustrated in Figure 1. Graph
nodes represent worlds. The designated world has a double
border. Fluents true in a world are listed within its node.
Solid arrows represent Ki and dashed arrows represent Bi.

Three agents, A, B, and C, are in a room with a door. The
door is closed (represented by the fluent c) but not locked
(¬l). Everyone believes (and knows) that the door is closed.
Agents A and B are watching the door, but C is not. For
each agent i let the fluent watch(i), express that i is watch-
ing the door. The fluents watch(A) and watch(B) are true
in all worlds, but are not shown in the figure due to space
constraints. Agents A and C know that the door is not locked
but agent B does not, and believes that it is locked (l). Agent
A performs the ontic action open door:

open door.pre = c ∧ ¬l
open door.obs = {(A,>), (B,watch(B)), (C,watch(C))}
open door.aware = ∅
open door.eff = {¬c}

Figure 2 shows the ed-state resulting from executing
open door. Agents A and B have beliefs updated to reflect
that the door is now open. Furthermore, agent B now knows
that the door is unlocked. Agent C, who was not looking,
still believes (but does not know) that the door is closed.

4.2 Sensing Actions
A sensing action is a 4-tuple, (a.pre, a.obs, a.aware,
a.det), where a.det is a set of fluent atoms indicating flu-
ents whose truth value is detected by an action. Since sensing
actions do not change the actual environment, we have:

V +(w+) = V (w)
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Figure 3: The ed-state before the sensing action look in box is
applied.

Let S(w) be a fluent formula expressing the values of the
fluents in a.det when a is executed in world w:

S(w) =
∧

f∈a.det

{
f if f ∈ V (w),

¬f otherwise

The temporary relation Ri is populated by Ki instead of
Bi in worlds where the action preconditions (for full or partial
observers) or the sensed facts (for full observers) violate an
agent’s beliefs. For i ∈ F :

Ri = {(u, v) | ((u, v) ∈ Bi)
∨ ((u, v) ∈ Ki ∧ (M, u) |= Bi¬(a.pre ∧ S(u)))}

For i ∈ P :

Ri = {(u, v) | ((u, v) ∈ Bi)
∨ ((u, v) ∈ Ki ∧ (M, u) |= Bi¬a.pre)}

For full observers, the update to Bi removes edges between
worlds that distinguish the sensed information. For i ∈ F :

B′i = Bi ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ri,

S(u) = S(v)}
Partial observers update their beliefs to reflect the precondi-
tions. For i ∈ P :

B′i = Bi ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ri}
Oblivious agents do not reset their beliefs. For i ∈ O:

B′i = Bi ∪ {(u+, v) | u ∈ Pre(M, a), (u, v) ∈ Bi}
The update to Ki mirrors that of Bi, except that oblivious

agents add edges expressing that they know the action could
have occurred. For i ∈ F :

K′i = Ki ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ki,

S(u) = S(v)}
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Figure 4: The ed-state after agent A performs the sensing action
look in box.

For i ∈ P :

K′i = Ki ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ki}
For i ∈ O:

K′i = Ki ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ki}
∪ {(u+, v), (v, u+) | u ∈ Pre(M, a), (u, v) ∈ Ki}

Example Sensing Action We adapt the coin-in-the-box
problem (Baral et al. 2015), to involve the correction of false
belief. This example demonstrates two ways that a sensing
action can correct a false belief: directly, when an agent
senses the true value of a fluent about which she had had
a false belief, and indirectly, when an agent observes or is
aware of an action whose preconditions contradict a false
belief.

Consider the ed-state illustrated in Figure 3. There are two
agents, A and B, in a room with a box containing a coin,
which lies tails-up (t). The box is locked and can only be
opened with a key. Agent A has a key (k), and knows it, but
believes wrongly that the coin lies heads-up (¬t). Agent B
does not believe that the coin is heads-up or that it is tails-up,
but believes that Agent A does not have a key. Agent A
performs the sensing action look in box:

look in box.pre = k

look in box.obs = {(A,>)}
look in box.aware = {(B,>)}
look in box.det = {t}

Figure 4 shows the state resulting from the look in box
action. Due to space constraints, only part of the state is
illustrated: the new worlds created by the action (W+) are
shown, but none of the original worlds (or relations between
them) are shown. This truncated state is equivalent with
respect to formula entailment because there are no edges
from W+ to W in B′i or K′i for i ∈ {A,B}. Agent A knows
that the coin is tails-up. As a partial observer, agent B is
aware that the action has occurred, so now knows that agent
A has the key and that agent A knows whether the coin lies
tails-up. However, agent B still does not know (or have any
belief about) whether the coin is tails-up.

4.3 Announcement Actions
An announcement action is a 4-tuple, (a.pre, a.obs,
a.aware, a.ann), where a.ann is a belief formula that is
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Figure 5: The ed-state before agent A performs the announcement
action tell raining.

asserted by the announcement. Like sensing actions, an-
nouncement actions do not affect the environment itself:

V +(w+) = V (w)

An agent will reject an announcement in world u if she
knows it to be false, i.e. (M, u) |= Ki¬a.ann. In this case,
the agent’s belief will still be affected by the fact that the
action has occurred (she will know its preconditions to be
true), but not by what is announced. Full observers learn
both the content of the announcement and that the action’s
preconditions hold. For i ∈ F :

Ri = {(u, v) | ((u, v) ∈ Bi)
∨ ((u, v) ∈ Ki ∧ (M, u) |= Bi¬a.pre)
∨ ((u, v) ∈ Ki ∧ (M, u) 6|= Ki¬(a.pre ∧ a.ann)
∧ (M, u) |= Bi¬(a.pre ∧ a.ann))}

Partial observers learn that preconditions hold. For i ∈ P :

Ri = {(u, v) | (u, v) ∈ Bi
∨ ((u, v) ∈ Ki ∧ (M, u) |= Bi¬a.pre)}

For full observers, the update to Bi removes edges to worlds
where the announced information does not hold, unless the
agent rejects the announcement. For i ∈ F :

B′i = Bi ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ri,

((M, u) |= Ki¬(a.pre ∧ a.ann) ∨ (M, v) |= a.ann)}

For i ∈ P :

B′i = Bi ∪ {(u+, v+) | u, v ∈ Pre(M, a), (u, v) ∈ Ri}

For i ∈ O:

B′i = Bi ∪ {(u+, v) | u ∈ Pre(M, a), (u, v) ∈ Bi}.

Even though fully-observant agents know that the action’s
preconditions hold, they do not know the announcement
holds, even if they do not reject it, because it could neverthe-
less be untrue. Thus, for i ∈ F ∪ P :

K′i = Ki ∪ {(u+, v+) | (u, v) ∈ Ki, u, v ∈ Pre(M, a)}

For i ∈ O:

K′i = Ki ∪ {(u+, v+) | (u, v) ∈ Ki, u, v ∈ Pre(M, a)}
∪ {(u+, v), (v, u+) | u ∈ Pre(M, a), (u, v) ∈ Ki}
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Figure 6: The ed-state after agent A performs the announcement
action tell raining.

Example Announcement Action This example demon-
strates how a lie can induce a false belief, or can be rejected
by an agent who knows that it cannot be true. Consider the
ed-state illustrated in Figure 5. There are three agents, A, B,
and C. It is not raining (¬r). Agents A and B know that it is
not raining. Agent C believes that it is not raining but does
not know this. Agent A performs the tell raining action:

tell raining.pre = >
tell raining.obs = {(A,>), (B,>), (C,>)}
tell raining.aware = ∅
tell raining.ann = r

Figure 6 shows the ed-state after agent A has performed
the tell raining action. As with the sensing action example,
only the new worlds (W+) and the edges between them are
shown. Again, this truncated state is equivalent with respect
to formula entailment because there are no edges from W+

to W in B′i or K′i for i ∈ {A,B,C}. Agent C now has the
false belief that it is raining. Agent B, however, who knew
that it was not raining, rejected the announcement and still
does not believe that it is raining.

5 Discussion
The state transitions defined in mA∗ produce counterintuitive
outcomes when applied to our examples. Figures 7 and 8
show the resulting epistemic states for our ontic and sensing
action examples. We omit the announcement example be-
cause mA∗ assumes that announcements are truthful. The
relation Ki is ignored. In the ontic example, agent B is left
in a state of ignorance. In this case, a minor adjustment to
mA∗ produces the same result as our technique: perform
false belief revision when an agent observes an action whose
preconditions violate the agent’s beliefs, just as is done in the
case of belief-correcting sensing and announcement actions.
The second, sensing example is more problematic. Agent
B’s observation of the open box action has left her in a state
of ignorance, but if we try to correct this by again adding a
reflexive connection to the designated world, agent B will
come to believe that the coin lies tails-up, even though she
was only a partial observer of the action.

One limitation of our approach is that an agent’s knowl-
edge is altered by an event even if the agent is oblivious to
its occurrence. For that reason, applications of our technique
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Figure 7: The result of applying the mA∗ ontic action transition in
the open door example. Not shown are the fluents w(A) and w(B),
which are true in all worlds.

may choose to rely primarily upon the belief relation to rep-
resent mental state, using the knowledge relation mainly for
the purpose of belief reset. Another limitation is that belief
reset can relax beliefs that are not informed by an event. If
an agent believes φ and ψ, but doesn’t know whether φ and
doesn’t know whether ψ, and learns that ¬ψ, then she will no
longer believe φ, even though she ideally should only relax
her belief that ψ.

As illustrated by the various examples, our proposed rep-
resentations can express plans that involve deceit, recovery
from false belief, and distinctions between agent belief and
knowledge, e.g. in goals. A multi-agent epistemic planner us-
ing these representations could use the algorithm offered by
Son et al. (2014) to construct an initial ed-state from a plan-
ning problem description. That algorithm builds a pointed
Kripke model that satisfies S5n from a so-called finitary S5n
theory. This can be extended to a bimodal pointed Kripke
model by simply duplicating the accessibility relation to pro-
duce the relations Bi and Ki, with both relations satisfying
S5n and thus also KD45n.

6 Conclusion
This work has defined state and transition representations
for multi-agent epistemic planning that incorporate agents’
knowledge as well as belief. Transitions include ontic, sens-
ing, and announcement actions. We have illustrated these
dynamics with examples of state transitions for each action
type, and shown how our approach improves upon prior work.
Our methods can be used by an epistemic planner to make
plans that involve false beliefs, false announcements (includ-
ing deceit), and recovery from false belief, with belief and
knowledge interacting in complex multi-agent scenarios.

7 Proofs
In this section we prove that for agents i ∈ A actions preserve
S5n properties inKi, KD45n properties in B, andKB1 and
KB2 properties in Ki and Bi.

7.1 Preliminaries
RelationsRi for i ∈ A on worlds W satisfy KD45n if they
are serial (∀ u ∈ W : ∃ v ∈ W, (u, v) ∈ Ri), transitive

t, k

A

Figure 8: The result of applying the mA∗ sensing action in the
look in box example. Only the designated world is shown because
the accessibility relation has no edges leaving the designated world.

((u, v) ∈ Ri ∧ (v, z) ∈ Ri → (u, z) ∈ Ri), and Euclidean
((u, v) ∈ Ri ∧ (u, z) ∈ Ri → (v, z) ∈ Ri). They satisfy
S5n if they are reflexive (∀ u ∈W : (u, u) ∈ Ri), transitive,
and symmetric (∀(u, v) ∈ Ri : (v, u) ∈ Ri). Between a
knowledge relation Ki and a belief relation Bi over a set
W of worlds, the KB1 property specifies that Bi ⊆ Ki.
The KB2 property specifies that for every u, v, z ∈ W , if
(u, v) ∈ Ki and (v, z) ∈ Bi, then (u, z) ∈ Bi.

For each of these proofs we will assume that S5n and
KD45n hold for Bi and Ki respectively, and that KB1 and
KB2 hold between them. We will show inductively that the
new relations B′i and K′i satisfy these properties over W ′.

We will use R+
i to refer to Ri\Bi (the portion of Ri

corresponding to a belief reset). In many proofs, neither
B′i nor K′i have any edges between W and W+. In such
cases, it will suffice to show the properties hold over B+i or
K+

i , since the induction hypothesis shows they hold over Ki

and Bi. Only the proofs for oblivious agents (i ∈ O) do not
make use of this principle.

7.2 Ontic Actions, i ∈ F ∪ P
Ki Reflexivity Consider any u+ ∈ W+ where u ∈
Pre(M, a). By reflexivity of Ki, (u, u) ∈ Ki. Since
u ∈ Pre(M, a), (u+, u+) ∈ K+

i .

Ki Symmetry Suppose (u+, v+) ∈ K+
i . Then u, v ∈

Pre(M, a) and (u, v) ∈ Ki. By symmetry of Ki, (v, u) ∈
Ki. Since v, u ∈ Pre(M, a), (v+, u+) ∈ K+

i .

Ki Transitivity Suppose that (u+, v+), (v+, z+) ∈ K+
i .

Then u, v, z ∈ Pre(M, a) and (u, v), (v, z) ∈ Ki. By transi-
tivity of Ki, (u, z) ∈ Ki. Since u, z ∈ Pre(M, a), it follows
that (u+, z+) ∈ K+

i .

Bi Seriality Suppose u+ ∈ W+. Then u ∈ Pre(M, a).
Either there is some v ∈ Pre(M, a) such that (u, v) ∈ Bi,
or there is not. If such a v exists, then (u, v) ∈ Ri, so
(u+, v+) ∈ B+i . Otherwise, there is no such v, and thus
(M, u) |= Bi¬a.pre by definition. In this case, {(u, v) :
v ∈ W, (u, v) ∈ Ki} ⊆ Ri, and by reflexivity of Ki, we
have that (u, u) ∈ Ri. Thus (u+, v+) ∈ B+i with u = v.

Bi Transitivity Suppose that (u+, v+), (v+, z+) ∈ B+i ,
with u, v, z ∈ Pre(M, a) and (u, v), (v, z) ∈ Ri. There
are four cases: (a) (u, v), (v, z) ∈ Bi; (b) (u, v) ∈ R+

i ,
(v, z) ∈ Bi; (c) (u, v), (v, z) ∈ R+

i ; and (d) (u, v) ∈ Bi,



(v, z) ∈ R+
i . In case (a), transitivity of Bi implies that

(u, z) ∈ Bi ⊆ Ri. Since u, z ∈ Pre(M, a), it follows that
(u+, z+) ∈ B+i . In cases (b) and (c), (u, v) /∈ Bi, it must
be that (M, u) |= Bi¬a.pre. Since we know by definition
of R+

i that (u, v) ∈ Ki and (v, z) ∈ Ki, by transitivity of
Ki we have that (u, z) ∈ Ki. Because (M, u) |= Bi¬a.pre,
we have that (u, z) ∈ Ri. Thus, since u, z ∈ Pre(M, a),
it follows that (u+, z+) ∈ B+i . Case (d) cannot occur.
Since Bi is serial and (M, v) |= Bi¬a.pre, there must
be some w ∈ W\Pre(M, a) such that (v, w) ∈ Bi. Be-
cause Bi is transitive and (u, v), (v, w) ∈ Bi, we have
(u,w) ∈ Bi; because Bi is Euclidean and (u,w), (u, v) ∈ Bi,
we have (w, v) ∈ Bi; and finally, because Bi is transitive
and (v, w), (w, v) ∈ Bi, we have (v, v) ∈ Bi. But since
(M, v) |= a.pre, (M, v) 6|= Bi¬a.pre, a contradiction.

Bi Euclideanness Suppose (u+, v+), (u+, z+) ∈ B+
i , so

u, v, z ∈ Pre(M, a), (u, v), (u, z) ∈ Ri. There are two
cases: either (a) (M, u) |= Bi¬a.pre, or (b) (M, u) 6|=
Bi¬a.pre. In case (a), KB2 property for Ki,Bi implies that
(M, u) |= KiBi¬a.pre. Thus for any world w ∈ W such
that (u,w) ∈ Ki, (M, w) |= Bi¬a.pre. Since (u, v) ∈
Ri ⊆ Ki, it must be that (M, v) |= Bi¬a.pre. Further,
since Ki is Euclidean, we must have (v, z) ∈ Ki. These
two facts imply that (v, z) ∈ Ri. In case (b), it must be that
(u, v), (u, z) ∈ Bi. By Euclideanness of Bi, it follows that
(v, z) ∈ Bi ⊆ Ri. In either case, because (v, z) ∈ Ri and
v, z ∈ Pre(M, a), we have that (v+, z+) ∈ B+i as desired.

KB1 Suppose that (u+, v+) ∈ B+i where u, v ∈
Pre(M, a), (u, v) ∈ Ri. By KB1, Ri ⊆ Ki, so (u, v) ∈
Ki. Since u, v ∈ Pre(M, a), (u+, v+) ∈ K+

i as desired.

KB2 Suppose that (u+, v+) ∈ K+
i and (v+, z+) ∈ B+

i .
Then u, v, z ∈ Pre(M, a), (u, v) ∈ Ki, and (v, z) ∈ Ri.
Either (a) (M, u) |= Bi¬a.pre, or (b) (M, u) 6|= Bi¬a.pre.
In case (a), we know (v, z) ∈ Ri ⊆ Ki, so by transitivity of
Ki, (u, z) ∈ Ki. Since the assumption was that (M, u) |=
Bi¬a.pre, we thus have that (u, z) ∈ Ri. Since u, z ∈
Pre(M, a), it follows that (u+, z+) ∈ B+i as desired. In
case (b), it must be that (v, z) ∈ Bi. Since (u, v) ∈ Ki, by
KB2 on Ki,Bi it follows that (u, z) ∈ Bi ⊆ Ri. Since
u, z ∈ Pre(M, a), it follows that (u+, z+) ∈ B+i as desired.

7.3 Ontic Actions, i ∈ O
For the knowledge relation on oblivious agents, we split K+

i
into three distinct sets:

KL
i := {(u+, v) : u ∈ Pre(M, a), v ∈W, (u, v) ∈ Ki}
KR

i := {(v, u+) : u ∈ Pre(M, a), v ∈W, (u, v) ∈ Ki}
KB

i := {(u+, v+) : u ∈ Pre(M, a), v ∈W, (u, v) ∈ Ki}

Ki Reflexivity Consider any u ∈ W ′. If u ∈ W , then
(u, u) ∈ Ki ⊆ K+

i by reflexivity of Ki. Otherwise, u = w+

where w ∈ Pre(M, a), and by reflexivity of Ki, (w,w) ∈
Ki, and thus (u, u) = (w+, w+) ∈ KB

i ⊆ K′i.

Ki Symmetry Suppose (u, v) ∈ K′i. If u, v ∈ W then
(u, v) ∈ Ki, and by symmetry of Ki, (v, u) ∈ Ki ⊆ K′i.
If u, v ∈ W+ then (u, v) ∈ KB

i , so (u, v) = (w+, z+) for
some w, z ∈ Pre(M, a) with (w, z) ∈ Ki. By symmetry of
Ki, (z, w) ∈ Ki and thus (z+, w+) ∈ KB

i . If u ∈ W, v ∈
W+ then (u, v) ∈ KL

i , and we can see that (v, u) ∈ KR
i . By

the same logic, if (u, v) ∈ KR
i then (v, u) ∈ KL

i .

Ki Transitivity Suppose (u, v), (v, z) ∈ K′i. We define
û, v̂, ẑ such that for x̂ ∈ {û, v̂, ẑ}, x̂ = x if x ∈ W,w ∈
Pre(M, a) | w+ = x otherwise. Thus (û, v̂), (v̂, ẑ) ∈ Ki

and it follows by transitivity of Ki that (û, ẑ) ∈ Ki, and by
definition of K+

i that (u, z) ∈ K+
i as desired.

Bi Seriality For u ∈W , seriality of Bi implies that there
is some v ∈ W ⊆ W ′ such that (u, v) ∈ Bi ⊆ B′i as
desired. For u ∈ W ′, there is some w ∈ Pre(M, a) such
that u = w+. Since Bi is serial, there is some v ∈ W such
that (w, v) ∈ Bi. Thus by definition (w+, v) ∈ B+i ⊆ B′i.

Bi Transitivity Suppose that (u, v), (v, z) ∈ B′i. Note
that for every pair (w, x) ∈ B′i, x ∈ W . Thus v, z ∈ W
and by definition of B′i it must be true that (v, z) ∈ Bi. If
also u ∈ W then by definition of B+i (u, v) ∈ Bi, and
it follows by transitivity of Bi that (u, z) ∈ Bi ⊆ B′i as
desired. Otherwise, u = w+ for some w ∈ Pre(M, a),
and (w, v) ∈ Bi. By transitivity of Bi, (w, z) ∈ Bi, so
(u, z) = (w+, z) ∈ B+i ⊆ B′i as desired.

Bi Euclideanness Suppose that (u, v), (u, z) ∈ B+i . Cer-
tainly v, z ∈ W . Either u ∈ W or u ∈ W+. If u ∈ W ,
then (u, v), (u, z) ∈ Bi, so since Bi is Euclidean we have
that (v, z) ∈ Bi ⊆ B′i as desired. Otherwise, there is some
w ∈ Pre(M, a) such that u = w+, and (w, v), (w, z) ∈ Bi.
Again by Euclideanness of Bi, (v, z) ∈ Bi ⊆ B′i as desired.

KB1 Suppose that (u, v) ∈ B′i. Either (u, v) ∈ Bi, in
which case (u, v) ∈ Ki ⊆ K′i as desired, by KB1 on Ki,Bi,
or u = w+ for some w ∈ Pre(M, a), and (w, v) ∈ Bi.
Thus (w, v) ∈ Ki by KB1 on Ki,Bi, and it follows that
(u, v) = (w+, v) ∈ KL

i ⊆ Ki as desired.

KB2 Suppose that (u, v) ∈ K′i and (v, z) ∈ B′i. Since by
definition of B′i, z ∈W , there are four cases: (a) u, v ∈W ;
(b) u ∈W, v ∈W+; (c) v ∈W,u ∈W+, or (d) u, v ∈W+.
In case (a), (u, v) ∈ Ki and (v, z) ∈ Bi, and by KB2 for
Ki,Bi we have that (u, z) ∈ Bi ⊆ B′i as desired. In case
(b), (u, v) ∈ KR

i and (v, z) ∈ B+
i . Here v = w+ for some

w ∈ Pre(M, a), where (w, u) ∈ Ki, (w, z) ∈ Bi. By KB2
for Ki,Bi it follows that (u, z) ∈ Bi ⊆ B′i as desired. In
case (c), (u, v) ∈ KL

i and (v, z) ∈ Bi. Here u = w+ for
some w ∈ Pre(M, a), where (w, v) ∈ Ki, (v, z) ∈ Bi. By
KB2 for Ki,Bi it follows that (w, z) ∈ Bi, so by definition
(u, z) ∈ B+i ⊆ B′i as desired. In case (d), (u, v) ∈ KB

i

and (v, z) ∈ B+
i . Here (u, v) = (w+, x+) for some w, x ∈

Pre(M, a), where (w, x) ∈ Ki, (x, z) ∈ Bi. By KB2 for
Ki,Bi it follows that (w, z) ∈ Bi, so by definition (u, z) ∈
B+i ⊆ B′i as desired.



7.4 Sensing Actions, i ∈ F
Ki Reflexivity Consider u+ ∈ W+, where u ∈
Pre(M, a). By reflexivity of Ki, (u, u) ∈ Ki. Since
u ∈ Pre(M, a) and certainly S(u) = S(u), it follows that
(u+, u+) ∈ K+

i as desired.

Ki Symmetry Suppose (u+, v+) ∈ K+
i . Then u, v ∈

Pre(M, a), (u, v) ∈ Ki, and S(u) = S(v). By symmetry
of Ki, we have that (v, u) and certainly S(v) = S(u), so
(v+, u+) ∈ K+

i as desired.

Ki Transitivity Suppose (u+, v+), (v+, z+) ∈ K+
i . Then

u, v, z ∈ Pre(M, a), (u, v), (v, z) ∈ Ki, S(u) = S(v) and
S(v) = S(z). By transitivity ofKi, we have that (u, z) ∈ Ki

and certainly S(u) = S(z), so (u+, z+) ∈ K+
i as desired.

Bi Seriality Suppose u+ ∈ W+ where u ∈ Pre(M, a).
Either (M, u) |= Bi¬(a.pre ∧ S(u)) or not. If (M, u) |=
Bi¬(a.pre ∧ S(u)), then it follows that for all v ∈ W
such that (u, v) ∈ Ki, (u, v) ∈ Ri. By reflexivity of Ki,
(u, u) ∈ Ki. Thus (u, u) ∈ Ri, so since S(u) = S(u) triv-
ially and u ∈ Pre(M, a) we have that (u+, v+) ∈ B+i as
desired, with v = u. Otherwise, by seriality there must
exist some v ∈ W such that (u, v) ∈ Bi ⊆ Ri and
(M, v) |= a.pre ∧ S(u). The entailment of the conjunc-
tion implies that (M, v) |= a.pre (so v ∈ Pre(M, a)) and
(M, v) |= S(u) (so S(u) = S(v)). By definition it follows
that (u+, v+) ∈ B+i as desired.

Bi Transitivity Suppose (u+, v+), (v+, z+) ∈ B+i . Then
u, v, z ∈ Pre(M, a) with (u, v), (v, z) ∈ Ri, S(u) =
S(v) = S(z). Suppose (u, v) ∈ Bi (rather thanR+

i ). By se-
riality of Bi, there exists some world w such that (v, w) ∈ Bi.
By transitivity of Bi, we have that (u,w) ∈ Bi, and by the
Euclidean property of Bi we thus have that (w, v) ∈ Bi.
By the transitive property since (v, w), (w, v) ∈ Bi, it fol-
lows that (v, v) ∈ Bi. Since v ∈ Pre(M, a), it cannot be
the case that (M, v) |= ¬(a.pre ∧ S(v)). Thus, it must
be that (v, z) ∈ Bi. By transitivity of Bi, we thus have
(u, z) ∈ Bi ⊆ Ri, and since S(u) = S(z) we then have that
(u+, z+) ∈ B+i as desired. Otherwise, it must be the case
that (u, v) ∈ Ki and (M, u) |= Bi¬(a.pre ∧ S(u)). Since
(v, z) ∈ Ri ⊆ Ki, we thus have (u, z) ∈ Ki by transitivity of
Ki, and because the entailment property still holds over u, it
follows that (u, z) ∈ Ri. Since we know u, z ∈ Pre(M, a)
and S(u) = S(z), it follows that (u+, z+) ∈ B+i as desired.

Bi Euclideanness Suppose (u+, v+), (u+, z+) ∈ B+i .
Then S(u) = S(v) = S(z), and u, v, z ∈ Pre(M, a), and
(u, v), (u, z) ∈ Ri. Either (M, u) |= Bi¬(a.pre∧S(u)), or
not. If so, then since (M, u) |= Bi¬(a.pre ∧ S(u)), we can
deduce by KB1 on Ki,Bi that (M, u) |= KiBi¬(a.pre ∧
S(u)). Thus, any w ∈ W such that (u,w) ∈ Ki must
be such that (M, w) |= Bi¬(a.pre ∧ S(u)). In particu-
lar, since (u, v) ∈ Ri ⊆ Ki, we must have (M, v) |=
Bi¬(a.pre∧S(v)) since S(v) = S(u). By Euclideanness of
Ki (which follows from symmetry and transitivity of Ki), we

must have that (v, z) ∈ Ki, and by the aforementioned entail-
ment property it follows that (v, z) ∈ Ri. Since S(v) = S(z)
and v, z ∈ Pre(M, a), we have that (v+, z+) ∈ B+i as de-
sired. Otherwise, it must be that (u, v), (u, z) ∈ Bi, so
by Euclideanness of Bi it follows that (v, z) ∈ Bi ⊆ Ri.
Since v, z ∈ Pre(M, a) and S(v) = S(z), we have that
(v+, z+) ∈ B+i as desired.

KB1 Suppose (u+, v+) ∈ B+
i . Then u, v ∈ Pre(M, a),

(u, v) ∈ Ri, and S(u) = S(v). Since Ri ⊆ Ki,
(u, v) ∈ Ki (by the KB1 assumption on Ki,Bi). Since
u, v ∈ Pre(M, a) and S(u) = S(v), we thus have that
(u+, v+) ∈ K+

i as desired.

KB2 Suppose (u+, v+) ∈ K+
i , (v

+, z+) ∈ B+i . Then
u, v, z ∈ Pre(M, a), S(u) = S(v), S(v) = S(z), (u, v) ∈
Ki and (v, z) ∈ Bi. Suppose (v, z) ∈ Ri. Then by KB2
on Ki,Bi, we have that (u, z) ∈ Bi ⊆ Ri. Since u, z ∈
Pre(M, a) and S(u) = S(z), it follows that (u+, z+) ∈ B+i
as desired. Otherwise, it must be that (v, z) ∈ Ki and
(M, v) |= Bi¬(a.pre ∧ S(v)). By KB2 on Ki,Bi it fol-
lows that (M, v) |= KiBi¬(a.pre ∧ S(v)). By symmetry
of Ki and since (u, v) ∈ Ki, we have that (v, u) ∈ Ki.
Thus, it must be that (M, u) |= Bi¬(a.pre ∧ S(u)) since
S(u) = S(v). Also, by transitivity of Ki, we have that
(u, z) ∈ Ki. These two facts imply that (u, z) ∈ Ri. Since
S(u) = S(z) and u, z ∈ Pre(M, a), we thus have that
(u+, z+) ∈ B+i as desired.

7.5 Sensing Actions, i ∈ P ∪O
Updates to Ki and Bi for sensing actions with i ∈ P and
i ∈ O are identical to those for ontic actions with i ∈ P and
i ∈ O, respectively (Sections 7.2 and 7.3).

7.6 Announcement Actions, i ∈ F
Ki S5n Updates to Ki for announcement actions with
i ∈ F are identical to those for ontic actions with i ∈ F
(Section 7.2).

Bi Seriality Consider u+ = W+ where u ∈ Pre(M, a).
Suppose (M, u) 6|= Ki¬(a.ann ∧ a.pre), but (M, u) |=
Bi¬(a.ann ∧ a.pre). We will call these conditions respec-
tively C1 and C2. By C1, there exists some v ∈ W such
that (u, v) ∈ Ki and (M, v) |= a.ann ∧ a.pre. This im-
plies that v ∈ Pre(M, a) and (M, v) |= a.ann. Because
{(u,w) : (u,w) ∈ Ki ∧ C1 holds ∧ C2 holds} ⊆ Ri,
we have that (u, v) ∈ Ri. Thus, since u, v ∈ Pre(M, a)
and (M, v) |= a.ann, we have that (u+, v+) ∈ B+i as de-
sired. Next, suppose that (M, u) 6|= Bi¬(a.ann ∧ a.pre).
This implies that there must be some v ∈ W such that
(u, v) ∈ Bi ⊆ Ri and (M, v) |= a.ann ∧ a.pre. Then
v ∈ Pre(M, a) and v |= a.ann, so (u+, v+) ∈ B+

i as de-
sired. Next, suppose that (M, u) |= Ki¬(a.ann∧a.pre) but
(M, u) 6|= Bi¬a.pre. Because (M, u) 6|= Bi¬a.pre there
must be some v ∈ W such that (u, v) ∈ Bi ⊆ Ri. Further,
since (M, v) |= a.pre, v ∈ Pre(M, a). Therefore, since
(M, u) |= Ki¬(a.ann ∧ a.pre), (u+, v+) ∈ B+i as desired.
Finally, suppose that (M, u) |= Ki¬(a.ann ∧ a.pre) and



(M, u) |= Bi¬a.pre. Because Ki is reflexive, we must have
that (u, u) ∈ Ki. Because {(u, v) : (u, v) ∈ Ki ∧ (M, u) |=
Bi¬a.pre} ⊆ Ri, so (u, u) ∈ Ri. Because (u, u) ∈ Ri,
u ∈ Pre(M, a), and (M, u) |= Ki¬(a.ann ∧ a.pre), it
follows that (u+, u+) ∈ B+i as desired.

Bi Transitivity Suppose (u+, v+), (v+, z+) ∈ B+i . Then
u, v, z ∈ Pre(M, a), (u, v), (v, z) ∈ Ri. Suppose that
(M, u) |= Ki¬(a.ann∧a.pre) (call this C1) and (M, u) |=
Bi¬a.pre (call this C2). Certainly (u, v), (v, z) ∈ Ki. By
transitivity of Ki, it follows that (u, z) ∈ Ki. Because
{(u, v) : (u, v) ∈ Ki,∧C2 holds} ⊆ Ri, we have that
(u, z) ∈ Ri. Since u, z ∈ Pre(M, a) and (M, u) |=
Ki¬(a.ann ∧ a.pre), we thus have that (u+, z+) ∈ B+i .
Next, suppose C1 and ¬C2. C1 and ¬C2 imply that
(u, v) ∈ Bi (since (u, v) cannot be in R+

i ). ¬C2 implies
that there is some w ∈ W such that (u, v) ∈ Bi and
(M, w) |= a.pre. Since Bi is Euclidean, (v, w) ∈ Bi, and
thus (M, v) 6|= Bi¬a.pre. If there was x ∈ W such that
(v, x) ∈ Ki and (M, x) |= a.ann ∧ a.pre, then by the tran-
sitivity of Ki we have that (u, x) ∈ Ki and thus that C1 is
false, a contradiction. Thus (M, v) |= Ki¬(a.ann ∧ a.pre),
and (since C1 and ¬C2 hold at v) we must have (v, z) ∈ Bi.
By transitivity of Bi, (u, z) ∈ Bi ⊆ Ri. Since C1 holds
and u, z ∈ Pre(M, a), (u+, z+) ∈ B+i as desired. Oth-
erwise, (M, u) 6|= Ki¬(a.ann ∧ a.pre), so by definition
of B+i we must have that (M, v) |= a.ann. Thus, since
v ∈ Pre(M, a), we must have (M, v) |= a.ann ∧ a.pre.
Since Ki is reflexive, (M, v) 6|= Ki¬(a.ann ∧ a.pre). Thus
(M, z) |= a.ann, again by definition of B+i . If (M, u) |=
Bi¬(a.ann ∧ a.pre), note that (u, z) ∈ Ki by transitivity
of Ki and thus (u, z) ∈ Ri. Otherwise, (u, v) ∈ Bi. By
seriality of Bi, there is some world w such that (v, w) ∈ Bi.
By transitivity of Bi, we have that (u,w) ∈ Bi, and by the
Euclidean property of Bi we thus have that (w, v) ∈ Bi. By
the transitive property since (v, w), (w, v) ∈ Bi, (v, v) ∈ Bi.
Since v ∈ Pre(M, a) and (M, v) |= a.ann, it cannot be the
case that (M, v) |= ¬(a.ann ∧ a.pre). Thus, (v, z) ∈ Bi.
By transitivity of Bi, we thus have (u, z) ∈ Bi ⊆ Ri. In
either case, since u, z ∈ Pre(M, a) and (M, z) |= a.ann
we have that (u+, z+) ∈ B+i as desired.

Bi Euclideanness Suppose (u+, v+), (u+, z+) ∈ B+
i , so

u, v, z ∈ Pre(M, a), (u, v), (u, z) ∈ Ri. Suppose that
(M, u) |= Ki¬(a.ann ∧ a.pre). If there were w ∈ W
such that (M, w) |= (a.ann∧ a.pre) and (v, w) ∈ B+i then
by transitivity of Bi (u,w) ∈ B+i , which cannot occur be-
cause (M, u) |= Bi¬(a.ann ∧ a.pre). Thus it must be that
(M, v) |= Ki¬(a.ann ∧ a.pre). If (M, u) 6|= Bi¬a.pre,
then (u, v), (u, z) ∈ Bi (since neither pair is in R+

i ), so
(v, z) ∈ Bi ⊆ Ri as well. Otherwise, (M, u) |= Bi¬a.pre.
In this case, suppose that for some x ∈ W we had that
(M, x) |= a.pre and (v, x) ∈ Bi. Then by KB2 on Ki,Bi
we have that (u, x) ∈ Bi, and thus (M, u) 6|= Bi¬a.pre,
a contradiction. Thus (M, v) |= Bi¬a.pre, and thus
{(v, v′) : (v, v′) ∈ Ki} ⊆ Ri. By Euclideanness of
Ki, (v, z) ∈ Ki, so (v, z) ∈ Ri. In either case, because
v, z ∈ Pre(M, a) and (M, v) |= Ki¬(a.ann ∧ a.pre)

we have that (v+, z+) ∈ B+i as desired. Now suppose
that (M, u) 6|= Ki¬(a.ann ∧ a.pre) (call this C1) but
(M, u) |= Bi¬(a.ann∧a.pre) (call this C2). C1 implies that
there is some w ∈ W such that (u, v) ∈ Ki and (M, w) |=
a.ann∧a.pre. Since Ki is Euclidean, (v, w) ∈ Ki, and thus
(M, v) 6|= Ki¬(a.ann ∧ a.pre). Suppose there was some
x ∈ W such that (v, x) ∈ Bi and (M, x) |= a.pre. Then
by transitivity of Bi we have that (u, x) ∈ Bi and thus that
C2 is false, a contradiction. Thus (M, v) |= Bi¬a.pre, and
(since C1 and C2 hold at v) we must have (v, z) ∈ Ri. Since
C1 is true and (u, z) ∈ B+i , it must be that (M, z) |= a.ann.
Thus we have that since v, z ∈ Pre(M, a), (v+, z+) ∈ Ri.
Otherwise, (M, u) 6|= Bi¬(a.ann ∧ a.pre). By KB1 on
Ki,Bi it follows that (M, u) 6|= Ki¬(a.ann ∧ a.pre), and
thus (by definition of B+i ) that (M, z) |= a.ann. Because
(M, u) 6|= Bi¬(a.ann∧a.pre), by definition ofRi we must
have that (u, v), (u, z) ∈ Bi. By Euclideanness of Bi, we
have that (v, z) ∈ Bi ⊆ Ri and since v, z ∈ Pre(M, a) and
(M, z) |= a.ann it follows that (v+, z+) ∈ B+i as desired.

KB1 Suppose (u+, v+) ∈ B+
i . Then u, v ∈ Pre(M, a)

and (u, v) ∈ Ri ⊆ Ki. Thus (u+, v+) ∈ K+
i as desired.

KB2 Suppose that (u+, v+) ∈ K+
i , (v

+, z+) ∈ B+i . Then
u, v, z ∈ Pre(M, a), (u, v) ∈ Ki, and (v, z) ∈ Ri. Suppose
that (M, u) |= Ki¬(a.ann ∧ a.pre) (call this C1), and that
(M, u) |= Bi¬a.pre (call this C2). By transitivity of Ki,
it follows that (u, z) ∈ Ki. Since {(u,w) : (u,w) ∈ Ki ∧
C2 holds} ⊆ Ri, it follows that (u, z) ∈ Ri. If C1 holds
but C2 does not, then there is w ∈ W such that (u, v) ∈ Bi
and (M, w) |= a.pre. Since Bi is Euclidean, (v, w) ∈ Bi,
and thus (M, v) 6|= Bi¬a.pre. Suppose there was some
x ∈W such that (v, x) ∈ Ki and (M, x) |= a.ann ∧ a.pre.
Then by the transitivity of Ki we have that (u, x) ∈ Ki

and thus that C1 is false, a contradiction. Thus (M, v) |=
Ki¬(a.ann ∧ a.pre), and (since C1 holds at v and C2 does
not) we must have (v, z) ∈ Bi. By KB2 on Ki,Bi, we must
have that (u, z) ∈ Bi ⊆ Ri. In either case, since C1 holds
and u, z ∈ Pre(M, a), it follows that (u+, z+) ∈ B+i as
desired. Otherwise, (M, u) 6|= Ki¬(a.ann ∧ a.pre) (call
this C3), and there exists some worldw such that (u,w) ∈ Ki

and (M, w) |= a.ann ∧ a.pre. By Euclideanness of Ki,
(v, w) ∈ Ki. Thus (M, v) 6|= Ki¬(a.ann ∧ a.pre). Thus,
since (v, z) ∈ B+

i , it must be true that (M, z) |= a.ann.
If (M, u) |= Bi¬(a.ann ∧ a.pre) (call this C4) then since
(u, v) ∈ Ki we have by C4 that (u, v) ∈ R+

i . By transitivity
of Ki, (u, z) ∈ Ki and since C3 and C4 continue to hold,
(u, z) ∈ Ri. Otherwise, we can apply the same logic as
before to show that (M, v) 6|= Bi¬(a.ann ∧ a.pre), and so
it must be that (v, z) ∈ Bi. By KB2 on Ki,Bi, it follows
that (u, z) ∈ Bi ⊂ Ri. In either case, because (u, z) ∈ Ri,
(M, z) |= a.ann, and u, z ∈ Pre(M, a), it follows that
(u+, z+) ∈ B+i as desired.

7.7 Announcement Actions, i ∈ P ∪O
Updates to Ki and Bi for announcement actions with i ∈ P
and i ∈ O are identical to those for ontic actions with i ∈ P
and i ∈ O, respectively (Sections 7.2 and 7.3).
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Finitary s5-theories. In Fermé, E., and Leite, J., eds., Logics
in Artificial Intelligence, 239–252. Cham: Springer Interna-
tional Publishing.
van Benthem, J., and Smets, S. 2015. Dynamic logic of belief
change. In van Ditmarsch, H.; Halpern, J.; van der Hoek, W.;
and Kooi, B., eds., Handbook of Logics for Knowledge and
Belief. College Publications. chapter 7, 299–368.


	Introduction
	Motivation and Related Work
	Epistemic States
	State Transitions
	Ontic Actions
	Sensing Actions
	Announcement Actions

	Discussion
	Conclusion
	Proofs
	Preliminaries
	Ontic Actions, i FP
	Ontic Actions, i O
	Sensing Actions, i F
	Sensing Actions, i PO
	Announcement Actions, i F
	Announcement Actions, i PO


