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Abstract

Building robots, even for performing simple tasks, requires
the designer to assess performance using various parameters.
However, sometimes the best solution is not the one that per-
forms best on average. Hence, other ways of evaluating per-
formance are necessary. We ran a broad parameter sweep
for an agent-based simulation of a robotic area coverage task
with very simple agent controllers in four different task envi-
ronments. Analysis of the results emphasizes the importance
of considering the entire distribution across randomized start-
ing conditions, and not just the mean overall performance,
when assessing the effectiveness of parameter settings. Our
findings indicate the potential for robotic system designers to
constrain or specify the qualities of system performance dis-
tributions.

Introduction

Due to the complex and often unforeseen interactions be-
tween robotic systems and their environments, analytic
methods may be insufficient to parameterize optimally the
controllers of such systems. Even for extremely simple sys-
tems, computer simulations can help to determine the effects
of various parameter settings, in particular, performance ac-
cording to some metric. However, evaluating the perfor-
mance of the system with some parametrization by mea-
suring its mean performance over multiple simulation runs
might give a skewed picture of the performance profile. We
argue that when a system is evaluated over many different
initial conditions, consideration of the performance distri-
bution can yield important insight beyond what is indicated
by the performance mean.

In order to study this proposal, we have constructed a sim-
ulation of a simple robotics task. By conducting a suite of
experiments with this simulation, we attempt to gain insight
into the relevance of distribution analysis to assessing robot
performance. Our results offer evidence of the importance
of considering the entire distribution of results when eval-
uating a robotic system whose behavior varies across some
conditions.

Our simulation is a discrete-time, continuous-space, on-
line, agent-based model of a generic Area Covering Prob-
lem (ACP) task. The ACP requires agents to move within

some domain area until the entire area has been explored.
The agents in our simulation have very simple controllers.
An agent moves in a straight line for § timesteps, changes
its heading by a random angle, drawn uniformly from
{—0...0} radians and then repeats. If the agent collides
with a wall or obstacle, it selects a new heading uniformly
from {0, 27} radians. This continues for all agents until ei-
ther entire arena has been completely explored or 10,000
timesteps have elapsed. We ran simulations across a broad
parameter sweep to analyze the effect of varying d, 0, and
the number of agents deployed, n, in three different arenas.

Related Work

Experimenters in diverse fields have benefited from analyz-
ing system performance distributions instead of just mean
performance. For example, Ramsli (1991) analyzed the re-
peatability of actuator positioning in industrial robots. He
found that, despite the common assumption of normality, re-
peatability usually does not follow a Gaussian distribution.

In the field of artificial life, Schneider et al. (2015) com-
pared the distributions of performance metrics between sim-
ulated and physical systems to determine how well simula-
tion predicts performance in a physical environment. That
model assumes that performance metrics follow normal dis-
tributions, and the authors suggest that future work should
consider non-normal distributions and outliers.

Thill and Pearce (2007) ran a stochastic optimization al-
gorithm 50 times with a biological model of C. elegans gra-
dient navigation. They used the distribution of the scores of
the resulting solutions to construct a definition of solution
optimality. They then applied the optimization algorithm to
recursively selected subspaces of the model parameter space
and analyzed the resulting solutions to identify features that
are common to optimal solutions from across the parameter
space.

Nevertheless, we are unaware of previous work that ex-
plicitly cautions against relying on performance mean and
motivates the analysis of performance distributions across
repeated stochastic simulation runs when evaluation robotic
simulations.



Previous work (Zhu and Ting, 2000) developed a gen-
eral design technique for analytically describing system per-
formance with respect to parameter variations. A design
was considered robust when perturbations to parameters
did not significantly alter system performance. Assuming
known analytical relationships between parameters and per-
formance, this technique was shown to obtain robust sys-
tems. However, the relationships between parameters and
behavior are often unknown, or cannot be described analyt-
ically. This is the case, for example, in stochastic robotic
systems. Therefore, our discussion of Future Work will con-
sider how system parameters can be determined according
to specifications about the desired distribution of outcomes
when the relationships between parameters and behaviors
are determined only experimentally.

Area Coverage Problem

How best to cover a two-dimensional area is a computational
problem that arises in many practical applications in agricul-
ture (Oksanen and Visala, 2009), industrial painting (Atkar
et al., 2005), planetary exploration, floor cleaning (Schmidt
and Hofner, 1998), and military uses such as de-mining
(Acar et al., 2003). Two surveys provide excellent back-
ground on coverage path planning methods. Choset (2000)
presented an overview of theory and techniques. More re-
cently, Galceran and Carreras (2013) reviewed the various
approaches to area coverage and presented several relevant
works.

The ACP is also known as the “Lawn Mowing Problem”,
the “Geometric Milling Problem”, the “Covering Tour Prob-
lem”, and “Coverage Path Planning”. While the importance
of different task and performance aspects vary depending on
the application domain, the ACP can generally be defined as
follows: Given a two-dimensional spatial environmental E
(possibly non-contiguous and possibly containing obstacles
and regions not to be covered) and a set of agents a € A
each having a two-dimensional fixed-shape effector, deter-
mine paths p, for each a such that there no is no point in £
that is not bound by f, for some a at some time. The ef-
fector f, could be the body of the agent as in the case of a
vacuum cleaner, a component or appendage of the agent as
in the case of a harvesting machine, or the range of a sensor.
Agents thus have to move through the environment so that
their fixed shape effector explores all points in E.

Randomized control algorithms have proved successful in
many practical ACP settings, e.g., commercial floor clean-
ing robots such as Roomba by iRobot, RC3000 by Karcher,
and Trilobite by Electrolux (Palacin et al., 2005). However,
they can be inefficient, especially for large areas, wasting
time and energy resources on redundant exploration. It has
been argued that randomized approaches may not scale ef-
fectively to vast areas (Galceran and Carreras, 2013). Nev-
ertheless, randomized approaches that do not rely on sensors
for localization or detection and require only minimal stor-

age and computational capacities may admit robots that are
much simpler than those used in other approaches. These
robots may be cheaper, smaller, lighter, less fragile, or more
disposable, and they do not suffer the dead-reckoning er-
ror associated with the simultaneous localization and map-
ping (SLAM) problem. Thus, our simulation uses sim-
ple randomized controllers because the advantages of such
approaches may outweigh the disadvantages of decreased
speed or efficiency.

Methods

In this section we first describe how we set up our simula-
tion and specify the experiments we conducted. Then we ex-
plain how we evaluated performance and how we compared
performance distributions to test our hypothesis that perfor-
mance distributions can distinguish experimental conditions
even when performance means cannot.

Our simulation is intentionally simple: robots move with
constant speed, there is no inter-agent collision detection,
etc. The simulation is not intended as a realistic simulation
of a physical robotic system, but as a computer implementa-
tion of an abstract multi-agent area coverage problem. Given
bounded computational resources and time, we have limited
the computational complexity of the simulation in order to
conduct a broad sweep of the parameter space with enough
repetition to produce reliable performance distributions.

Agents

In our model, agents have square bodies of area S4 and
fixed speed v. An agent’s effector f, always covers the same
space as its body. The values of S4 and v, constant within
each experiment and shared by all agents, are determined
according to the total area of the Sg:

Sy = Sp/1000

v=0.15\/2S5

Thus, agent behavior is normalized by arena area. We chose
the constant 0.15 to be large enough for feasible simulation
speed but small enough to avoid collision detection anoma-
lies.

Agents store the coordinates (x,, y,) of the center of their
body at a given time in relation to the 2-dimensional envi-
ronment. Agent controllers are parameterized by two val-
ues. The running distance, 9, is how many timesteps the
agents move in a straight line before setting a new heading.
The turning angle range, 6, bounds in radians the headings
from which the agent’s new heading is drawn. Algorithm 1
specifies the operation of the simulation, including the agent
controllers.

Arena Environments

We used three different arenas, shown in Figure 1. The Sim-
ple arena is an empty square. The other arenas were selected



Algorithm 1 Simulation agent control
Simulation(seed, F, 0, 6, n)

1 A+ {}

2: foralli e (1,...,n)do

3: a4 new agent

4:  randomly select (x,y) in F
5: Ty ¢ T

6 Ya Y

7. A+ AuU{a}

8 mg+ 0

9: end for

10: forallt € (1,...,100,000) do
11:  if ratioCovered == 1.0 then

12: return (ratioCovered,t)

13:  end if

14: foralla € Ado

15: newx < xq, + (v-coshy)

16: newy < Yo + (v-sinh,)

17: if (newx, newy) is not in E then
18: he < uniform(0,2w)

19: mg < 0

20: else

21: T, ¢ newx

22: Yq < NEwy

23: Mg ¢ Mg + 1

24: if m, == ¢§ then

25: ha < uniform(hg — (0/2), ha + (0/2))
26: mg < 0

27: end if

28: end if

29:  end for

30: end for

31: return (ratioCovered,t)

from a range of relevant works in order to construct a di-
verse test suite. We selected the Walls (Wagner et al., 2000)
arena because we expected the tight corridor that partitions
the arena into two regions to be difficult for our agents to
navigate. If all agents start in the same region, then in order
to cover the entire arena some agents must enter and pass
through the corridor to the other region. We selected the
Spiral arena (Wagner et al., 2008) for it’s circumnavigable
obstacles and spiral-shaped wall.

Experiments

Each experiment we ran is described by a tuple (E, 6, 6, n)
where E € {Simple,Spiral, Walls} is the arena, § €
{0.125,0.25,0.375,...,2.0} is the turning angle range,
0 € {20,40,60,80,100} is the running distance, and n €
{1,2,3,4,5,10} is the number of agents. We created an
experimental condition for each combination of parameters.
For each experimental condition we ran the simulation 100
times, each time randomizing the starting positions of the

Simple Walls

Spiral

Figure 1: The environmental arenas. Note that because
agents are scaled by the arena’s area, the three arenas are
effectively equal in area.

agents. Therefore, we ran the simulation with 144,000 dif-
ferent initial conditions.

Performance Metrics

We use two metrics to assess the performance of a set of
simulation parameters. The performance sum metric Ps ex-
presses how much of the area is covered at each timestep,

and is defined as
100,000

Py = Z Ct
t=1

where C} is the total area that has been covered at timestep
t. The performance timestep metric P; expresses how long
it takes to cover half of the arena, and is defined as

Py = argming (' <tACy /S > 0.5ACy_1/SE < 0.5)
Yt >0

where C} is the total area that has been covered at timestep ¢
and Sg is the total area. Note that higher P, values indicates
better performance than lower Ps values, while the inverse
is true for P;.

As shown in Table 1, there were 17 experimental condi-
tions, all of which place a single agent in the Walls arena, for
which one or more runs had undefined P; because the arena
did not become 50% covered within 100,000 timesteps.

Pairwise Tests

In order to assess the value of using result distributions in-
stead of just result means when determining optimal param-



Experiment Number of runs
(walls, 1.25,20,1) 2
(walls, 1.75,40, 1) 1
(walls,0.5,40, 1) 1
(walls,1.625,20,1) 3
(walls, 1.75,20,1) 5
(walls, 1.25,60, 1) 1
(walls, 2.0,20,1) 4
(walls, 1.5,20,1) 3
(walls,0.875,60,1) 1
( 1
( 1
( 1
( 1
( 2
( 1
( 2
( 1

walls, 0.125, 40, 1)
walls,0.25,100, 1)
walls, 1.5,40, 1)
walls, 1.125, 20, 1)
walls, 1.875, 20, 1)
walls, 0.375,20, 1)
walls,0.875,20, 1)
walls, 1.375,100, 1)

Table 1: Experimental runs having undefined P, values.

eters, we conducted pairwise statistical tests of the Ps results
of all experiments in arenas E € {Simple, Spiral, Walls}.

For each pair of experiments, we ran a paired two-sample
t-test with the null hypothesis that the means of the popula-
tions from which the two P, samples were drawn have the
same mean, and a two-sample Kolmogorov-Smirnov (KS)
test with the null hypothesis that the samples were drawn
from populations having the same probability density func-
tion (pdf). We conducted these tests to identify pairs of ex-
periment results for which the #-test did not find a difference
in the means but the KS-test did find a difference in the dis-
tributions. It was not possible to apply this approach to the
P, metric because the standard KS-test is only valid for con-
tinuous distributions.

We define the function f(x) to be the set of experiment
pairs that differ only by the single environmental parameter
z such that the #-test finds no difference in the P, perfor-
mance mean but the KS-test does find a difference in the
performance pdf.

X ={FE,0,0,n}
A= (Eq, 00,00, m0)
B = (Ey, 0y, 0p,np)
x e X U{0}

f@)={(A,B) : Yo = yoVy € X \{x} AD;_esi(ap) = @
A Phetest(a,p) < @ Vo € {0.001,0.01,0.05,0.1}}

Thus, for any one of the four system parameters, repre-
sented by the variable x, the function f(x) represents all
of the pairs of experimental conditions, represented by the
variables A and B, for which the following three conditions
hold:

1. The values of all parameters except for x are the same for
Aand B.

2. Our KS-tests using each value of « all indicate that the

performance distributions of A and B are different.

3. Our t-tests using each value of « all indicate that the per-

formance means of A and B are not different.

Results

We have ranked the arenas according to relative difficulty
by comparing the overall mean performance for experiments
in each arena (Table 2). For both metrics, we can rank the
arenas from easiest to hardest as Simple< Spiral< Walls.

Arena P, P

Simple 1259.493 +4.650 98161.03 + 6.692
Spiral  2236.093 + 13.170  96533.97 + 17.650
Walls 2948.231 + 31.414 94501.48 + 35.047

Table 2: Average results in all three arenas for both evalua-
tion metrics, = 1 standard deviation.

However, what constitutes a difficult environment may
depend not only on the metric of evaluation but also on
n. Figure 2 shows how the relative difficulty of two are-
nas changes as n increases. Each point in the figure is the
average performance of a set of n agents in the Walls arena
divided by the average performance of the same number of
agents in the Spiral arena. Thus, for the P; metric a value
above 1 means that on average, that number of agents took
more time to cover 50% of the Walls arena than to cover the
same area in the Spiral arena. On the other hand, for the
P, metric a value below 1 represents that this set of agents
covered, on average, a smaller area at each timestep of the
simulation in the Walls arena than in the Spiral arena. With
n < 3, Walls is harder than Spiral according to both met-
rics. However, for n > 3 the Walls arena produced better
P, results than Spiral (depicted as the red line crossing the
cutoff of 1). We hypothesize that this divergence is caused
by the increasing likelihood that some agents will start off in
the larger region of the Walls arena as n increases.

According to the P; metric, on the other hand, Walls per-
sists as being harder than Spiral across all values of n, al-
though the difference lessens as n increases. In general, as
the number of agents deployed increases, the performance
distribution gets tighter, a phenomenon that is most pro-
nounced in the more difficult arenas.
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Figure 2: Ratio of performance in the Walls arena to that in
the Spiral arena across all values of n.

Table 3 shows the results of the pairwise statistical test
comparison. The first column indicates which pairs of
experiment were tested by listing the parameter that var-
ied between pairs. The second column shows the num-
ber of experiment pairs that differed by only one of the
parameters in {E,6,5,n} where the KS-test rejected the
null hypothesis but the t-test did not for all values of « in
A = {0.001,0.01,0.05,0.1}. There were 35,869 experi-
ment pairs in total where the ks-test rejected the null hypoth-
esis but the t-test did not for all & € A. The third column
shows the total number of pairs whose parameters differed
only by the given parameter, and the fourth column is the
ratio of the second and third columns. Figure 3 shows four
comparisons of experiment pairs that differed by only one
parameter with P, results having the same mean but differ-
ent distributions.

x_|f(z)] N |[f(@)l/ N
E 5 1440 0.0035
6 131 10800 0.0121
5 19 2880 0.0066
n 10 3600 0.0278
0 35869 1,036,080 0.0346

Table 3: Number and ratio of experiment pairs that differed
by only one of the parameters in {F, §,d, n} where the KS-
test rejected the null hypothesis but the t-test did not for all
values of @ in A = {0.001,0.01,0.05,0.1}.

We performed an analysis of variance (ANOVA) for each

evaluation metric. With the P; metric, we found significant
main effects for all independent variables as well as for two,
three and four way-interactions. With the P; metric, there
were significant main effects for all variables, and for two-
way and three-way interactions, but not for a four-way inter-
action.

Discussion

Our results emphasize the benefits of considering the entire
distribution of results when evaluating a parametrization of
our simulation. Our ANOVA results demonstrate that £, 0,
d, and n all influence performance. What optimal values
should be assigned to these variables, given our simulation
results? The value of n may be determined partly by fac-
tors like cost, i.e., there may be material limits to how many
agents can be deployed. The values of # and ¢, on the other
hand, should be determined according to performance.

One option is to consider the performance averaged across
the 100 runs of each experiment. However, deeper insight
may be gained by analyzing the distribution of results for
each experimental condition. For example, a distribution
could contain outliers with performance significantly worse
than the mean. In that case, the overall performance could
be considered unacceptable due to the worst-case outliers,
even though mean performance is satisfactory.

We do not know to what extent our methods and results
will generalize to other multi-agent systems. However, our
findings indicate that it may be fruitful to analyze the per-
formance distributions of other systems in order to gain in-
sight into the relationships between performance pdfs, per-
formance means, and system parameters.

Pairwise Distribution Comparisons with P

When do changes to a single simulation parameter alter the
distribution, but not the mean, of performance results? Our
pairwise statistical tests address this question by identifying
pairs of experiments that differ by a single parameter for
which a 7-test found no significant difference in means but a
KS-test did find a significant difference in pdfs. Overall, the
ratio of pairs differing by a single parameter that caused this
divergence was small, less than 3% of for any parameter.

For each parameter, we selected for further analysis one
pair of experiments identified by the pairwise distribution
comparisons. Our goal is to identify qualities of the simula-
tion performance that would be missed by only considering
performance means.

Figure 3a shows histograms for the P, metric for
(Walls, 1.125, 20, 5) and (Spiral, 1.125, 20, 5). Performance
is similar in the two different arenas, Walls and Spiral. How-
ever, there are some runs in the Walls arena with very bad
performance. By visually observing the simulation during
some of these runs we have found that agents often remain
on one side of the separating wall for a long time before
crossing to the other area, leading to long completion times.



60-

40-
[}
3
(2] )
C
820"
®
g
= 0,
Nso-
o
—
(0]
£
€ 40-
P s
5
»
20-
O, — — ——l
75000 80000 85000 90000 95000 100000
Ps

a
o
|

N
o
)

w
o
|

n
o

—_
o
|

SSERE

0- | —

75000 80000 85000 90000
Ps

Number of Simulations
N w H (63}
o o o o o

—_
o
|

95000 100000

(a) Histograms for P, metric in (Spiral,1.125,20,5) (top) and (b) Histograms for P, metric in (Walls, 1.25, 20, 4) (top) and

(Walls, 1.125, 20, 5 (bottom)
80-

60-

B
o
G290

N
o
|

[o]
oo
]

Number of Simulations
S (2]
o o

G280

n
o
|

|
i

85000 90000 95000 100000
Ps

0

75000 80000

(Walls, 1.25, 20, 5) (bottom)

60-

n N
) S
0¢

o
|

Numl:()Der of Simulations
o

N
o
oy

n
o
|

0- =— -

75000 80000 85000 90000
Ps

95000 100000

(c) Histograms for Ps metric in (Walls, 0.625, 20, 5) (top) and (d) Histograms for P, metric in (Walls, 1.875, 20, 5) (top) and

(Walls, 0.875, 20, 5) (bottom)

(Walls, 1.875, 40, 5) (bottom)

Figure 3: Example of distribution pairs with only one distinct parameter for which the KS-test rejected the null-hypothesis but

the t-test did not.

How robust is the performance distribution to a decrease
in the number of agents assigned to the task, or to the fail-
ure of a subset of the agents? In the majority of compar-
isons between experiments where only n differs, mean per-
formances were significantly different: decreasing the num-
ber agents lowers performance. However, there were ten ex-
periment pairs for which varying n altered the performance

distribution, but not the mean. Figure 3b depicts the dis-
tributions from one of those cases. The KS-test found a
difference in the result distribution for (Walis,1.25, 20, 4)
and (Walls, 1.25, 20, 5), but the #-test found no difference in
their means. Visual examination of the distribution reveals
not only that (Walls, 1.25,20, 5) had more simulation runs
at the very top of the performance distribution, but also that



(Walls, 1.25,20, 4)had a poorly performing outlier. Thus,
there is a notable difference in performance as n changes
between these two experiments, even though the means are
not statistically different.

Although we ran simulations in arenas with and with-
out obstacles, agents in general performed better with more
straight movements and less turning. Specifically, low val-
ues of 0, with agents making small changes to their head-
ing, tended to result in better performance. High values of §
tended to improve performance as well, with agents moving
for a longer distance before changing heading.

We  visually compared the distributions of
(Walls,0.875,20,5) and (Walls,0.625,20,5) because
their result means were not significantly different.
Figure 3c shows that there were 5 simulations of
(Walls,0.625,20,5) that performed performed better
than any run in (Walls,0.875,20,5). This corroborates
our general findings that smaller values of 6 improve
performance.

Figure 3d shows histograms for a pair of experiments that
vary only in the § parameter. In this case, increasing § does
not significantly change mean performance. However, three
of the runs (Walls, 1.875, 40, 5) performed better than all of
the runs of (Walls,1.875,20,5), corroborating our general
finding that straighter movement is generally better. Never-
theless, a single outlier in (Walls, 1.875, 40, 5) has extremely
poor performance.

Distribution Comparison with P;

Even though we were unable to use the pairwise statisti-
cal tests to examine results according to P, a comparison
of the P; results for experiments (Walls,0.625,60,1) and
(Walls, 0.625, 100, 1) provides another example. Figure 4
shows histograms of P, for both experiments.

The mean P; across all 100 runs of (Walls, 0.625, 60, 1)
is 7548.99. However, one run performed much worse than
the mean, with P, = 86,982. Figure 5 and Figure 6 com-
pare the progress of the best and worst runs from this ex-
periment. In the best-performing case, the agent started in
the large open region and 50% of the arena was covered by
timestep 2833. Between timesteps 2000 and 3000 the agent
moved to the smaller region and covered it almost entirely,
returning to the bottom region before timestep 20,000. By
timestep 30,000, the agent in the best run had almost com-
pletely covered the arena, with only small spots remaining,
while the agent in the worst run had not yet entered the lower
region. Between timesteps 30,000 and 40,000 the agent in
the worst run entered the lower region, covered a small part
of it, but then returned to the upper region, remaining there
until timestep 60,000.

With 6 = 100 instead of 6 = 60, (Walls, 0.625,100, 1)
achieved a mean P, of 7840.27, worse than
(Walls,0.625,60,1). However, in this case there were
fewer outliers with exceptionally poor performance. Thus,
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Figure 5: Time series showing a single evaluation of
(Walls, 0.625, 60, 1). The top row shows the worst solution,
with P, = 86982. The bottom row shows the solution with
the lowest P;, 2833.
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Figure 6: Timeseries every 1000 timesteps for the worst
(top row) and the best (bottom row) runs for experiment
(Walls, 0.625, 60, 1).

analysis of the experimental distributions suggests that the
best parameters for a given arena might not be those with
the best performance on average.



Generalization of Techniques

Our simulation was simple enough to permit the evaluation
of a broad parameter sweep over many repetitions using rea-
sonable computational resources. Such a comprehensive ex-
ploration of the relationships between parameter space and
performance distribution may not be possible in all scenar-
ios. With physical robotic systems, or with simulations that
have more parameters or demand more computational re-
sources than ours, it may be infeasible to collect all the
necessary data. Nevertheless, it is possible even in many
such cases to devise techniques for performance analysis
that go beyond a comparison of means to consider distri-
butions of performance. For example, as discussed in our
Related Work section, Thill and Pearce (2007) used a recur-
sive technique to explore performance distributions over a
12-dimensional parameter space.

For some systems, analysis of performance distributions
may yield little insight beyond that offered by their means.
However, that cannot be determined without some knowl-
edge or assumptions about the shape of those distributions,
begging the original question: What is the distribution of
performance results across multiple iterations of the system?

As another example of how our findings may apply more
broadly, we propose that system specifications with respect
to performance pdfs could guide the selection of system
parameters, either by a parameter sweep like the one we
conducted or by a search process. These specifications
could take the form of explicit constraints on the distribu-
tion, bounding, for example, the mean, minimum, variance,
skewness, or kurtosis. Alternatively, it could be specified
that the distribution should be unimodal, or should fit some
closed form pdf, such as a uniform, normal, or Poisson, dis-
tribution. Finally, one could specify constraints on the re-
lationships between parameters and the performance distri-
bution. For example, a robustness specification could re-
quire a decrease in the number of agents deployed not to
significantly alter the performance pdf. As evidenced by
our results, such specifications could distinguish sets of sys-
tem parameters whose average performances are statistically
equivalent.

Conclusions

We have described a simulation of the area coverage prob-
lem with agents controlled by a simple, randomized algo-
rithm. The results of a suite of experimental runs over a
broad parameter sweep indicate the significance of all of our
simulation parameters. Analysis of these results has shown
that some parameter changes alter the distribution of the
simulation performance over many starting conditions, even
if the mean performance does not change. Thus, using the
entire distribution of behaviors to assess the effectiveness of
a set of simulation parameters can provide insight beyond
what is possible by simply comparing averages.
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