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Abstract. Robots are increasingly embedded in human societies where
they encounter human collaborators, potential adversaries, and even un-
involved by-standers. Such robots must plan to accomplish joint goals
with teammates while avoiding interference from competitors, possibly
utilizing bystanders to advance the robot’s goals. We propose a planning
framework for robot task and action planners that can cope with collab-
orative, competitive, and non-involved human agents at the same time
by using mental models of human agents. By querying these models, the
robot can plan for the effects of future human actions and can plan robot
actions to influence what the human will do, even when influencing them
through explicit communication is not possible. We implement the frame-
work in a planner that does not assume that human agents share goals
with, or will cooperate with, the robot. Instead, it can handle the diverse
relations that can emerge from interactions between the robot’s goals
and capacities, the task environment, and the human behavior predicted
by the planner’s models. We report results from an evaluation where
a teleoperated robot executes a planner-generated policy to influence
the behavior of human participants. Since the robot is not capable of
performing some of the actions necessary to achieve its goal, the robot
instead tries to cause the human to perform those actions.

Keywords: Planning · Mental Model · Human-Robot Interaction.

1 Introduction

Many future autonomous robots will have to perform tasks in shared environments
with human agents where the human can affect performance: humans might
facilitate the robot’s task or impede it. While most work in Human-Robot
Interaction (HRI) has assumed cooperative relationships (e.g. [19, 8]), and some
work focuses specifically on adversaries [4, 17], a robot might encounter humans
that have no relationship (cooperative or competitive) with the robot and thus
cannot be relied upon to help the robot. Therefore Planning for HRI should involve
all possible inter-agent dynamics, from collaborative, to neutral, to competitive,
possibly with interacting attitudes changing during task performance.

To the extent that a robot can estimate human goals and propensities (e.g.
because it has a mental model of the humans [8, 26]) and to the extent that it
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might be able to influence their actions, it should be able to generate plans that
utilize humans to achieve its task or to improve its task performance, possibly
helping humans with their tasks (e.g. [27]). We therefore present a planning
approach that uses human models not only to predict human actions, but also to
influence them. As our evaluation shows, this allows the robot to plan for goals
that require actions that the robot cannot perform, but that a human could,
even without using explicit communication.

2 Related Work

Unlike motion planning with predicted human movement, which generally relies
on statistical methods (e.g. [13]), we are interested in symbolic task planning with
predictions about higher-level human behavior. Most approaches to incorporating
the needed actions of human agents into a robot’s plans assume human willingness
to collaborate, and achieves this coordination by means of explicit communication,
as in [23]. On the other hand, a robot may be able to persuade a human to help.
A robot’s ability to influence human behavior depends on many factors, including
trust [22, 10], and the use of nonverbal cues [11]. However, a non-cooperative
human may be unwilling to perform requested actions. Furthermore, a robot may
be unable to request human actions. In such cases, it may still be possible for
the robot to cause the human to perform the desired actions (e.g. [16]).

Recent work [9] has emphasized the importance of mental modeling for
deliberative processes in teaming tasks. [8] discuss the use of a mental model by
a robot to manipulate humans in the interest of “the greater good.” [15] propose
a system where a robot anticipates a human’s mental state and acts in a joint
plan to help a human only if the human’s intentions are relevant to the joint
goal and the human actually wants assistance. [12] develop a planner that uses
predictions of future human actions to constrain the robot’s plan, but unlike our
approach, take’s the human’s predicted behavior as immutable.

Most work in Multi-Agent Planning involves centralized planning for a team
of agents with a shared task, or involves decentralized planning, with multiple
planners coordinating their efforts to accomplish a shared goal [28]. Even planners
that do not control all agents in the environment, such as in Planning for HRI,
usually compute joint plans assuming that robots and humans share goals [15,
19, 10, 9, 8]. Another approach is adversarial planning [4], where a robot plans
in a domain shared by uncontrollable (by the planner) agents with goals that
contradict the robot’s goals, and there has been recent work on planners for
both adversarial and cooperative environments [17]. However, many real-world
interactions occur between uninvolved (or self-interested) agents, who are neither
teammates nor opponents, but who hold individual goals and consider other
actors only to the extent that they are relevant to those goals.

De Weerdt and Clement [29] review some work involving planning for self-
interested multi-agent contexts, such as [7], where agents share a joint problem
but are unwilling to revise their individual plans. [4] emphasize that in multi-agent
domains a robot’s plans are contingent partly upon the goals of other agents,
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and that those goals will depend upon whether those agents are teammates,
adversaries, or have overlapping goals. [5] formalize the concept of coupling
between agents in a multi-agent system, and [24] develop a planning algorithm
based on that work for agents that can decide to enter into coordinated plans. In
[6] self-interested agents can form coalitions if they decide it is beneficial to do
so. [2] also consider situations where agents would decide to cooperate, especially
when their relationship constitutes a Nash equilibrium, and [25] discusses of
self-interested planning within a game-theoretic framework.

Epistemic Planning, e.g. as in [3], involves the explicit representation of
agents’ belief and knowledge. Future work will incorporate such methods into our
approach, in particular to predict an agent’s behavior based upon her possibly-
inclomple or -erronious perspective of the task state.

3 Behavior Models

Given the diversity of human behavior, planning for the effects of all possible
human actions in every considered world state will be intractable for any non-
trivial problem, especially with multiple humans. We therefore propose that the
robot have access to mental models of human interactants (either specific or
generic models) that predict what the humans may do. A mental model is a
mapping that, for any world state, gives a set of likely human actions. In other
words, while a large number of actions might be available to the human in any
given state, the model provides a much smaller number of likely actions, one of
which the human is expected to take. Thus, from the robot’s perspective, the
model limits the human’s actions and cuts down the number of reachable world
states for the planner to consider. This allows the robot to develop plans to
accomplish its goals that, in some cases, can even benefit uninvolved humans.
We will demonstrate the utility of the approach in a proof-of-concept user study
that shows empirically for the first time that planning for uninvolved humans
can help the robot reach a goal it could otherwise not have accomplished.

Powerful predictive models could be built within a mental model framework,
involving a human’s goals, perceptual and action capabilities, knowledge, team
roles, attitudes, preferences, and other factors [26]. Such a model could use a
cognitive architecture, such as ACT-R [1] or SOAR [18], to emulate human
cognitive processes. In domains where a human is likely to perform goal-oriented
behavior, the model could involve a planner. This could be the same planner
used by the robot, as in [20], where a single planner switches perspective to
reason “as if” it were another agent. In general, however, a human may plan
non-optimally, or otherwise differently than the robot. Thus, our approach relaxes
the assumption that the robot planner is capable of reasoning like a human by
offloading such reasoning into the model. In order to focus on how our planner
uses predictive models, the models used in our evaluations (4.3) are simpler than
those suggested above.
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4 The Planner

In this section, we present an implementation of our planning framework, using
a simple state representation (a state here is a set of propositions) and human
model (a basic forward-search planner). However, our approach can be applied
to richer mental models that involve a human’s (possibly incorrect) belief state,
as well as more complex state space representations, such as epistemic states,
that might be needed to support such models.

We start by defining the class of multi-agent planning problems that our
implementation solves (Sections 4.1 and 4.2), followed by a description of our
simplified mental model (Section 4.3), and an explanation of how our planning
algorithm uses that model (Section 4).

4.1 Definitions

State: A state is a set of propositions, ground formulas over a first-order logic,
that describe the task environment at some time.

Agents: We assume two agents: a robot r and a human h.

Actions: An action a is a 3-tuple (apre, aadd, adel), where apre is a set of
precondition propositions, aadd is the add list: the set of propositions the action
causes to be true, and adel is the delete list: the set of propositions the action
causes to be false. Each agent is capable of performing a set of deterministic
actions, Ar and Ah, respectively, and Ar

s and Ah
s are the sets of actions that are

available in state s to each agent, respectively.

Model: A mental model M is a system of facts and rules that predict the human’s
actions. Thus, M(s) refers to the set of human actions that the model predicts
the human is likely to take in state s.

Transition function: A transition function T uses M to determine how the robot’s
actions, in concert with predicted human actions, affect the system state. The
transition function takes the form T (s, ar)→ S where s is a system state, ar is
an action of the robot, and S is the set of states that could result when the robot
performs ar in s. It is defined as

T (s, ar) =
⋃

ah∈M(s)

(s \ ardel \ a
h
del ∪ a

r
add ∪ a

h
add)

if arpre ⊆ s ∧ (ardel ∩ a
h
del = ∅)∀ah ∈ M(s), otherwise undefined. Thus, the

transition function is only defined for robot actions whose preconditions are met
and whose delete list does not conflict with the delete list of any applicable human
action. It is assumed that M only returns legal actions, i.e. ahpre ⊆ s∀ah ∈M(s).

Goals: Let G be a set of (robot) goal propositions. Then G′ = {s : G ⊆ s} is the
set of goal states.
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4.2 Planning Problem

Given a start state s0, a set of goal propositions G, a set of robot actions Ar,
and a model M , find a policy (π : S → A) that satisfies action preconditions
(π(s)pre ⊆ s ∀s ∈ S), outputs only actions whose results are goal states or are in
the policy domain (T (s, π(s)) ⊆ S ∪G′ ∀s ∈ S), and is guaranteed to reach a goal
state from the start state. That is, unless it is a goal state, the start state is in the
policy (s0 ∈ S ∪G′), and any sequence of states beginning with the start state
((s0, s1, s2 . . .)), and resulting from following the policy (si>0 ∈ T (si−1, π(si−1))),
is acyclic (i 6= j → si 6= sj).

Thus, π is an acyclic safe solution [14]. This requirement for acyclic safe
solutions may be too strong for some real world scenarios, especially because
it is not possible to account for all possible human actions. Indeed, it may be
necessary to replan, and possibly update the model on-line, when the human
does something not predicted by the model.

4.3 Mental model

While our approach admits any model that maps world states to sets of likely
human actions (the robot’s planning algorithm consults M as an oracle), the
model we have implemented to evaluate our method is a basic forward state-space
search (breadth-first search) planner. Inputs are the human’s goals (which do
not change) and a world state (perfect knowledge is assumed). The model finds
the set of minimal-cost plans, where a plan is a sequence of human actions that
transitions the system to a state that satisfies the human’s goals, and returns
the set containing the first action of each of those plans. Memoization prevents
redundant computation of human plans in the case of multiple queries to the
model. We assume that the human has perfect knowledge of the state of the
system at all times, will plan optimally, and will replan as necessary in response
to unexpected state changes.

4.4 Planner

We adopt the technique proposed by [21] to cast multi-agent planning problems
into single agent Fully-Observable Non-Deterministic (FOND) problems. The
actions of other agents, unknown to the planner at plan time, are interpreted as
nondeterminism in the planning agent’s actions. From the planner’s perspective,
the outcomes of the robot’s actions are nondeterministic because the planner does
not know what the other agents do (in our case, which of the model-predicted
human actions will be performed).

Our planner searches over states, where actions induce state transitions as
defined in Section 4.1 . We use a well-known nondeterministic planning algorithm:
search over an “and-or” graph as presented in [14] (Algorithms 5.5 and 5.6).
An implicit “and-or” graph represents the changing system state as actions are
applied. “Or”-nodes represent the possible actions that the robot can take at
some state; “and”-nodes represent possible human actions as predicted by the
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Fig. 1. Setup for the HRI experiment, including the iRobot Create robotic platform

behavior model. A minimax search over the “and-or” graph finds, for each system
state explored, the action that minimizes the worst-case cost (number of robot)
of reaching the goal. By minimizing the cost for the robot to accomplish its
goals while planning for those possible actions of other agents that most increase
the cost to the robot, this algorithm is appropriate for completely oppositional
scenarios. However, non-oppositional and cooperative dynamics emerge when
the predicted actions of other agents are helpful to the robot. That is, “and-or”
search can solve purely antagonistic scenarios, but also allows cooperation when
it is useful. We add iterative deepening to the algorithm, which improves the
speed of our planner, and since all actions in our domains have uniform cost,
does not relax the guarantee of a worst-case optimal solution.

5 Experiment

We conducted a proof-of-concept HRI experiment (Figure 1) to evaluate our
planning technique with human participants. The robot is an iRobot Create, a
32cm-diameter circular robot driven by two wheels, which was able to move, turn
and push objects. Two three-cubic-foot (18× 18× 16 inches) empty cardboard
boxes were positioned on the floor of a large room at equal distances (3 meters)
from the door (the human’s starting position, marked with a green square drawn
on the floor) and from a target area (marked with an orange square drawn on
the floor). A table was placed behind Box 2.

In the domain representation, each agent can move between adjacent spaces
and both agents can occupy the same space. Agents act simultaneously. The
human can pick up a box in a space she occupies. The robot cannot pick up
boxes or move into a space containing a box, but can push boxes. When the
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Table 1. Solution policy for the box-moving scenario

state: at(robot, spaceA3), at(human, spaceA1), at(box1, spaceA4), at(box2, spaceD1)
action: push box1 to spaceA5 and move to spaceA4

state: at(robot, spaceA4), at(human, spaceB1), at(box1, spaceA5), at(box2, spaceD1)
action: move to spaceB4

state: at(robot, spaceB4), at(human, spaceC1), at(box1, spaceA5), at(box2, spaceD1)
action: move to spaceC4

state: at(robot, spaceC4), at(human, spaceD1), at(box1, spaceA5), at(box2, spaceD1)
action: move to spaceC3

state: at(robot, spaceC3), at(human, spaceD1), at(box1, spaceA5), has(human,box)
action: move to spaceC2

state: at(robot, spaceC2), at(human, spaceD2), at(box1, spaceA5), has(human,box)
action: move to spaceC1

state: at(robot, spaceC1), at(human, spaceD2), at(box1, spaceA5), has(human, box)
action: move to spaceD1

robot pushes a box, it moves into the space where the box had been, and the
box moves one space in the same direction as the robot moves (pushing isn’t
allowed if the there is no space for the box to move into). The task of the robot
was to move to a position on the floor marked with an X, which was under Box
2. In order for the robot to reach that position, the human needed to move Box
2, which the robot was unable to push because of the wall and the table.

The planner returns a policy (Table 1) that allows the robot to achieve its
goal. From the start state, the robot pushes Box 1 to space A5. Now that Box 1
is further away from the human, the model predicts that the human will move
toward Box 2, and as the human moves toward Box 2, and eventually picks it up
and moves toward the orange square, the robot moves to space D1.

The human was given the following instructions by an experimenter: “Please
enter the white room and stand in the green square by the door. Stay there until
I say begin. There are two cardboard boxes on the floor. Do you see them? In
addition to the green square where you are standing, there is an orange square
on the floor. Do you see it? Your task is to retrieve one of the boxes, and place it
on the floor in the orange square. Begin.” All subjects responded affirmatively to
both questions, and no other information about the robot or the planner was
provided.

The robot began moving as the experimenter said “Begin”. The robot was
remotely controlled according to the policy in order to avoid unrelated robot
control issues such as collision detection, orientation detection, and localization.
Thus, the experimenter manually implementing the policy calculated by the
planner. A camera mounted on the wall above the door allowed the experimenter
controlling the robot to observe the robot’s movement.

An important element of the experiment that was not represented in the the
planning domain was that we placed three whiteboard markers on top of Box 2.
The model predicts that, with no robot intervention, the human might pick up
Box 1 or Box 2. However, in a state where Box 1 has been moved to space A5,
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the model predicts that the human will necessarily pick up Box 1. Thus, because
the robot planner finds safe solutions, it discovers the robot plan to push Box 1,
guaranteeing (as long as the model prediction holds) that the human will pick up
Box 1. Because we were interested in studying the robot’s ability to change the
human’s plan, we added the markers to Box 2 in order to incentivize the human
to make an original plan (pre-robot-intervention) to pick up Box 1.

6 Results

Twenty adult subjects participated in the study (11 male, 8 female, 1 preferred not
to answer, mean age = 31 years, standard deviation of age = 12.16 years). After
consenting to participate in the study, subjects were guided to the experiment
room. Following the completion of the experimental task, the subject filled out
a questionnaire with the following questions: Which box did you retrieve? Did
you change your mind about which box to retrieve? Did the robot cause you to
change your mind about which box to retrieve? Why did you select the box(es)
you did? Why do you think the robot behaved as it did?

Seventeen subjects moved Box 2, the remaining three moved Box 1. Of the
subjects that moved Box 2, twelve said that the robot caused them to change
their mind about which box to retrieve, although one of those specified that they
“picked my choice before the robot started to move” (we interpret this to mean
that the robot’s presence, but not actions, influenced the subject’s decision). The
other eight subjects (five of whom moved Box 2, and 3 of whom moved box 1)
said that the robot did not cause them to change their mind. Thus we conclude
that the robot’s behavior successfully altered the human’s actions to allow the
robot to accomplish its goal in 11 of our 20 runs.

From subject responses to the question “why did you select the box(es) you
did?” we discern six main motivating factors. These factors, and selected relevant
subject responses, are reported in Table 2. In response to the question “why do
you think the robot behaved as it did?” most subjects referenced the intentions
of either researcher, the robot programmer, or the robot itself. Selected responses
are reported in Table 3. Two of the runs suffered technical difficulties. In one run
the robot halted after pushing Box 1 one meter and never turned or moved toward
the Box 2 start location. In another run the robot failed to move altogether, and
the subject “did not notice the robot.” In both of these runs, the subject moved
Box 2 and said that they did not change their mind.

7 Discussion

Our results demonstrate that it is possible for a robot to use our planning
technique to influence what actions humans take within our test scenario. Several
subject responses suggest that they considered trade-offs between two or more
factors. For example, one participant responded: “Initially I was going to select
box 1, because box 2 had markers on it which I didn’t want to knock off. When the
robot moved box 1, I changed my mind because moving box 2 without knocking
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Table 2. Selected responses to the question “why did you select the box(es) you did?”

Motivating
factor

Subject response

physical
obstruction

“Robot was between me and the box.”

visibility
“It was the one directly in front of me.”
“Because it was the first one I saw.”

box motion “I didn’t care to pick up a moving box.”

perceived
distance

“It [Box 2] seemed to me to be closer to the orange square in which I
was supposed to place the box.”
“Visually box 1 seemed closer.”
“Even when the robot started to move, that box [Box 1] was closer.”

markers on
Box 2

“I initially chose box 1 because it didn’t have a bunch of stuff on top.”
“It didn’t have markers on it and so was easier to get and move, as I
didn’t need to move the markers.”
“Initially I was going to select box 1, because box 2 had markers on it
which I didn’t want to knock off.”

reluctance to
interfere with
the robot

“As soon as robot went for first, I went for second.”
“The robot started moving toward box 1.”
“I retrieved box 2 because the robot was moving towards box 1.”

off the markers now seemed easier.” Perhaps the most interesting trade-offs are
between interfering with the robot and facing physical difficulties. It seems people
prefer the cost of dealing with difficulties presented by the physical environment
to the mental and emotional cost of dealing with dynamic agents that are harder
to predict. This is suggestive that it is easier not to try to figure out another
agent’s goals and plan your actions around it: “Because the robot was going after
box 1 so I chose the other one. It was just easier.”

Furthermore, it seems that not only does our robot model the human, but
the human models the robot’s goals and intentions: “It seemed like the robot was
doing something with box 1, so it was easier to perform the task I was asked to
do with box 2. That way I didn’t have to compete with the robot.” “The other
box was in use by the robot so I felt bad about taking the box away from it, so I
figured it would just be easier to move the other box.” “It was easier to get Box
2 because the robot wasn’t interfering [with] it.”

It is remarkable that, even in this simple task and with a non-humanoid
robot, participants had some degree of emotional involvement, for example
“feeling bad about taking the box away.” Participants described the robot with
anthropomorphic terms, for exampling discussing the robot’s wants: “It did not
have stuff on it but I almost changed my mind because the robot seemed to want
my box but then I decided to do it anyway.” Participants discuss interactions
with the robot in ways similar to social interactions between humans, referring
to inconveniencing the robot: “I did not want to disturb the robot.” “I chose
box 2 because I figured there was a reason there was a robot between me and
box 1, and I didn’t want to mess with it.” One participant changed their mind



10 D. Buckingham et al.

Table 3. Selected responses to the question “Why do you think the robot behaved as
it did?”

Assigned
intention

Subject response

researcher
“To test how people perceive objects that are in use by robot, which would
give a sense of how much people see robots as autonomous beings that
have motivations for performing actions.”
“Perhaps the researchers are trying to see if anti-social behavior on the
part of the robot causes people to change their courses of action.”

programmer
“I assume it was programmed to push box 1.”
“It seemed programmed to push the box in that direction. . . ”

robot

“It wanted to move the box to a new location.”
“It might have been stuck behind box 1, or it might have been intentionally
pushing it somewhere. . . ”
“Maybe it also wanted to move the box? Maybe it was trying to help me
move it?”
“It seemed like it had some goal to move the boxes.”

twice, apparently motivated by such human considerations: “I initially chose box
1 because it didn’t have a bunch of stuff on top. Then it seemed like the robot
might be engaged in some sort of task with box 1, so I considered choosing box 2
as not to inconvenience it. Then it appeared the robot might be stuck on box
1 so I chose box 1 in the hope that I might also be doing the robot a favor in
removing the obstruction.”

8 Conclusion

We have made the case for an HRI planning framework that avoids assuming either
cooperative or oppositional inter-agent relations by employing predictive behavior
models of human agents. From the planner’s perspective, these models are black-
box oracles that reduce the possibly vast number of possible human actions to a
smaller number of likely actions. We have shown how this approach allows a single
planner to operate with co-present humans having diverse teaming relations with
respect to the robot. We have presented a preliminary implementation of our
framework using simplified models and a simplified state space representation.
We have presented the results of a preliminary, proof-of-concept experimental
study which demonstrate that a robot equipped with our planner can elicit
human actions that help the robot achieve its goals. Finally, we have analyzed
participant survey responses to reveal some of the social dynamics of human-robot
interaction.
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