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Abstract—Natural human-robot interaction requires different
and more robust models of language understanding (NLU) than
non-embodied NLU systems. In particular, architectures are
required that (1) process language incrementally in order to be
able to provide early backchannel feedback to human speakers;
(2) use pragmatic contexts throughout the understanding process
to infer missing information; and (3) handle the underspecified,
fragmentary, or otherwise ungrammatical utterances that are
common in spontaneous speech. In this paper, we describe
our attempts at developing an integrated natural language
understanding architecture for HRI, and demonstrate its novel
capabilities using challenging data collected in human-human
interaction experiments.
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I. INTRODUCTION

Most approaches to natural language understanding on
robots (e.g., [1]–[4]) are sequential, make limited use of
context, task knowledge, and goal structures, and ignore
physical aspects of language users. In contrast, converging
evidence from psycholinguistics suggests that human lan-
guage understanding is incremental and parallel, depends on
the speaker’s and listener’s contexts, utilizes task and goal
knowledge, and involves the perceptions and perspectives of
situated, embodied agents. While this difference in processing
style may not matter for many NLU applications, it is critical
in situations where humans and robots interact naturally as
embodied agents co-located in the same environment [5].

In this paper, we describe our architecture for robust natural
language understanding, which is a first attempt at meeting
the functional requirements stated in the abstract. We start by
briefly motivating our research and reviewing related work.
Next, we describe an HRI task for which we have previously
collected spoken dialogue data from human-human interac-
tions, and describe several challenges for spoken language
understanding on robots. We then provide an overview of the
proposed robust NLU architecture for HRI, and demonstrate
how it can handle various challenges of natural dialogue
interactions. We give examples showing in detail how the
system works, using the experimental data. Finally, we discuss
current limitations and provide an outlook for future work.

II. MOTIVATION AND RELATED WORK

Spoken natural language understanding on robots in HRI
contexts has two critical components that distinguish it from
other NLU applications, due to the way humans interact in
natural language: Component 1 (C1) human speakers expect

interlocutors to produce backchannel feedback (e.g., in the
form of eye gaze, verbal acknowledgments such as “okay”
or “mhm”, or through actions like head nodding) in order
to communicate understanding during the utterance (e.g., [6],
[7]); and Component 2 (C2) when listeners and speakers are
co-located in the same environment, speakers expect them to
rapidly and incrementally integrate perceptual context (e.g.,
in the resolution of reference, [8], [9]). While there is no
current robotic system that even comes close to natural HRI,
several recent efforts have tackled different aspects of these
challenges and advanced the state of the art in natural language
interactions of robots with humans.

C1 requires partial semantic interpretations and action exe-
cution based on partial meanings, and thus incremental NLU
that respects human timing. Several recent NLU systems
have addressed incremental processing at both syntactic and
semantic levels [10]–[12], possibly even including pragmatic
constraints [13], even though most of them have not been
integrated into robotic architectures. And there are recent
attempts to limit processing time to allow for fast natural
language understanding (e.g., [14] propose a perceptron-based
learning approach that allows an incremental parser to prune
the set of possible parse trees after each word, addressing the
real-time aspects of parsing on robots). Similarly, [15] tightly
integrates natural language processing and action execution,
which, in conjunction with incremental processing [16], is a
prerequisite for backchannel feedback.

C2 requires incremental multi-modal information integra-
tion during utterance processing to constrain possible in-
terpretations and intended meanings, again while respecting
human timing – [17], for example, introduce a semantics-
based approach on a robot to overcome errors by the speech
recognizer, addressing the robustness aspect (both for disflu-
encies and speech recognition errors), and [18] integrate gaze
information into an NLU system in order to disambiguate
deictic expressions that are accompanied by a pointing gesture
of the human, addressing some of the perceptual aspects.

While the above efforts have made significant advances
in situated natural language understanding, there is currently
no integrated HRI architecture that combines multiple of the
above aspects together with handling common disfluencies.
Yet, any robotic system that intends to allow for natural
HRI in spoken language will have to meet the above human
expectations, while simultaneously handling disfluencies that
naturally occur in spontaneous speech.



III. CHALLENGES FOR SPOKEN LANGUAGE
UNDERSTANDING ON ROBOTS

While no HRI architecture is currently capable of handling
completely unrestricted natural language, we will show that
it is reasonable and possible to handle fairly unconstrained
natural language produced by humans by constraining the
task. The advantage of a constrained task is that both the
number of concepts and skills required to perform it, as well
as the number of words and linguistic expressions needed to
coordinate activities with other humans, are very limited.

We conducted experiments in which subjects performed
a team search task [19] in order to collect data about the
types of natural language exchanges that humans are likely
to produce in a task of relevance to HRI. In this task, two
humans, the director and the member, located in different
physical spaces, were required to coordinate their actions
using natural language via a wireless audio link in order to
accomplish several goals within a limited amount of time: (1)
the director had a partial map of the search environment and
was to direct the member (located in the search environment)
through the environment to the location of a cardboard box,
which the member was to retrieve; (2) the director was to assist
the member with finding 8 blue boxes located in the search
environment by giving directions based on the information on
the map; (3) the member was then to empty colored blocks
contained in the blue boxes into the cardboard box, leaving the
blue boxes in their location; (4) in parallel, the member was
to tell the director the location of each of 8 green boxes that
were also positioned within the search environment (but not
indicated on the director’s map); (5) five minutes into the task,
a new goal was communicated to the director that required the
member to place one yellow block from the cardboard box into
each of the 8 pink boxes (also located in the environment). The
task ended after 8 minutes.

12 dialogues from the human interactions in the search task
have been transcribed, totalling 2,683 utterances (with 1,637
if repetitions are removed), comprising 17,783 tokens and 712
types. Analysis of the data clearly demonstrates the need in
HRI for a robust NLP system that can handle the following:

• ungrammatical sentences (incomplete referential phrases,
missing verbs, corrections, and others)

• wrong word substitution for intended target words (e.g.,
“block” and “book” for “box”)

• underspecified directions, referents, and directives (which
require shared task-knowledge and knowledge of sub-
goals)

• “ums” and “uhs” (that indicate cognitive load)
• coordinating “okays” and other forms of verbal backchan-

nel feedback (that indicate dialogue moves)

IV. FUNCTIONAL REQUIREMENTS FOR ROBUST
LANGUAGE UNDERSTANDING IN THE SEARCH TASK

In this section, we describe some of the important functional
requirements concerning disfluencies, navigational directions,
omissions, anaphora resolution, and back-channel feedback

that a robotic NLU system will have to deal with, even in
a limited HRI domain such as our search task. All examples
are taken from the human-human dialogue corpus described
above.

A. Disfluencies

First and most obvious, the system must recover from
disfluencies, including:

• non-lexical fillers (e.g. um let me get that
green box)

• lexical fillers (e.g. I ’m just like next to the
door frame)

• abandoned utterances (e.g. next to the in h-)
• and repairs or corrections (e.g. so how many b- how
many box- blue boxes do we have?)

These disfluencies cause several problems. First, they
severely impact speech recognition, as speech recognizers
must recognize vocabulary items, but the number of possible
disfluent words is much too great to include in such a vo-
cabulary. Without those words in the vocabulary, however, the
recognizer will attempt to recognize these out-of-vocabulary
words as vocabulary words (not only may it recognize them
as separate words themselves, they are often recognized as
being part of a larger incorrect word, and thus their influence
spreads even to non-disfluent items).

Second, they can prevent correct semantic interpreta-
tion, particularly in cases of abandoned utterances and
repairs/corrections. E.g., the utterance I’m just like
next to the door frame could be (wrongly) inter-
preted as containing the preposition like, indicating that the
speaker is in a situation similar to being next to the door frame.

B. Navigational directions

While it is fairly straightforward to keep track of
named locations such as “the room” or “the hallway”, the
human-human data indicates that participants tend to use
descriptions based on observed landmarks: so go back
into the room um right- go r- go where
you’re right between the cubicle and the
filing cabinet. Correctly processing an utterance like
this requires significant perceptual abilities (and conceptual
knowledge), as well as tight integration of the NLU and
perceptual systems.

C. Omissions

Humans often omit or condense information. For example,
in well get the yellow block from there and
then in that room the robot needs to understand that
there are two yellow blocks to get: one from there and one
from that room.

D. Grounding of referents

In the previous example, the robot needs to understand the
referent of that room. There are two parts to this problem:
anaphora resolution and real-world grounding. In this context,
anaphora resolution refers to the connection of different verbal



references to the same abstract entity, while grounding refers
to the connection of that abstract entity to an entity in the
world. In this paper, we focus on the second part, to allow
the robot to carry out activities on real-world entities using
abstract information from the verbal domain.

In the instruction so now you have to get the
blue things right, the term things must be resolved
as referring to boxes because the only blue items were boxes,
and the speaker had been told they were to collect blue
boxes. However, blue boxes are not previously mentioned in
the dialogue, thus ordinary anaphora resolution techniques of
attempting to connect this phrase to previous references to the
same entity will fail. Instead, task-based information must be
used in order to correctly resolve the reference.

E. Back-channel feedback
For robust natural language processing, it is essential that

a system be able to continue listening and processing while it
is speaking. For example, in the following dialogue:
M: two yellow blocks?
D: yeah there should be-
M: can they be from different boxes?
D: well there should just be one yellow

block in each blue box
the member interrupted the director in order to ask a ques-
tion, and the director stopped in mid-utterance to answer the
question. If the director had continued speaking, ignoring
the question, the interaction would not have been effective.
Similarly, the robot should be able to speak while it is
listening. Humans often provide verbal feedback in order to
show that they are understanding what is being said:
D: so turn right
M: kay
D: and walk a little bit and turn right

again
M: kay
D: walk down that

The member responded after each segment of the instructions
as the director was providing them. When this feedback is
not provided, humans become unsure of whether they are
communicating effectively. In the dialogue sequence:
M: and then the second green box the

number two
D: yeah
M: um is on the second step of the

wooden platform
the director provides feedback after the noun phrase as the
member describes the location of a box. In some cases, the
director’s response is complete before the member’s query
finishes:
M: do we back track to the pink in the

hallway where I was?
D: yeah

While it is probably not necessary for a robot to be capable
of replicating the most extreme examples of backchannel
feedback, it should be able to provide some cues to indicate
that it is following the conversation.

V. AN INTEGRATED ARCHITECTURE FOR ROBUST SPOKEN
INSTRUCTION UNDERSTANDING

Our proposed architecture integrates speech recognition,
incremental parsing, incremental semantic analysis, disfluency
analysis, and situated reference resolution components into
our robotic DIARC architecture [5], which provides mecha-
nisms for integrating incremental natural language processing
components with action execution [16], [20]. The present
work expands the capabilities of the previous work with
the inclusion of a more sophisticated parsing mechanism,
allowing greater flexibility and more robust natural language
understanding.

A. Speech recognition

In current speech recognition systems, there is a trade-off to
be made: one must either train on individual users to be able
to recognize a wider range of utterances, or one may keep
speaker-independence at the cost of being able to recognize a
much smaller range of utterances. We have chosen the latter
approach, using the CMUSphinx speech recognition system,1

in conjunction with a CMU acoustic model (WSJ) and a hand-
crafted finite-state grammar to reduce word error rates.

It should be noted that the use of a finite-state grammar in
the speech recognizer is limiting, especially when it comes to
handling natural disfluencies. In order for the speech recog-
nizer to pass on those disfluencies, they must be included in the
grammar. But it is difficult to enumerate all possible (or even
probable) disfluencies, which limits the extent to which we
can evaluate the handling of natural disfluencies in subsequent
processing stages (e.g., syntactic and semantic approaches). In
the future, we will explore such options as using a speaker-
dependent model and an n-gram language model, which would
allow for a much larger array of possible utterances, and tuning
our disfluency handling for speech recognition data, including
recognition errors.

B. Incremental parsing

We selected an incremental, data-driven dependency parsing
algorithm because it is fast and works by creating links
(dependencies) between individual words (the head and the
dependent), rather than forming and linking phrases. Operating
at the level of words makes it ideal for translating each
head-dependent relationship into a lambda-logical semantic
expression taking an argument (as described below). The algo-
rithm was adapted from MaltParser, a shift-reduce dependency
parser [21] that maximizes the probability over individual
actions (rather than over a full utterance). Incrementality refers
to the notion that the parser should always have a complete
working parse of whatever has been input. So, while most
parsers (including MaltParser) produce no output until the
entire sentence has been analyzed, an incremental parser has a
parse even in the middle of a sentence. Using this intermediate
parse, we can begin semantic analysis even before the entire
sentence has been uttered.

1http://cmusphinx.sourceforge.net/sphinx4/



Nivre showed that the dependency parsing algorithm was
ideal for incremental parsing [22]. Our implementation, Mink,
is the first actual incremental implementation we know of. The
algorithm itself is much like its constituent-based forerunner.
The shift and reduce actions are the same, and two new
actions, left-arc and right-arc, are introduced. Left-arc creates
a dependency arc pointing from the head on the input to
the dependent on the stack, whereas right-arc creates an arc
pointing from the head on the stack to the dependent on the
input. The Logistic machine learning algorithm from the Weka
library2 is used to decide the most probable next action.

We trained our parser on 90 percent of the experimental
corpus, and tested on the 10 remaining percent. The data
had been filtered for disfluencies. Our accuracy was 90%.
We also tested the full system with the incremental parser vs.
the full system with a non-incremental parser using the same
algorithm, and showed that the incremental version took, on
average, 35% of the time taken by the nonincremental version.
A preliminary description and evaluation of Mink is presented
in [23].

C. Incremental semantic analysis

The semantic analysis performed during syntactic parsing
uses lambda conversions to attach logical forms to lexical
items, forming semantic interpretations of sentence fragments.
In order to facilitate the conversion, we used the well-
established connection between lambda representations and
combinatorial categorial grammar (CCG) [24]. As each de-
pendency arc was added, we constructed CCG tags consisting
of each predicate’s return type and arguments, and then used
the combinatorial properties of the CCG grammar to perform
lambda reduction. Note that CCG tags give significantly more
information than simple part-of-speech tags, namely return
type and arguments. The return type is basically the part-
of-speech tag, while the arguments are similar to phrasal
constituents. Our method of constructing CCG tags from
dependency arcs, therefore, involves two steps: determining
the return type and finding the arguments.

When a new token input arrives, an “empty” CCG tag
is created, including the return type and a (possibly empty)
list of arguments. Currently, the return type is determined
immediately upon creation of the new tag in order to reduce
the complexity of the computation. This is posed as a classi-
fication problem. The features used to make the classification
are currently the token and the WSJ POS tag returned by a
tagger. Whenever a dependency arc is discovered with a given
token as the head, the dependent’s return type is added as an
argument to the head’s CCG tag.

For example, the phrase the blue box might be tagged
and parsed as follows by a constituent parser using the WSJ
tagset:

(NP (theDT blueJJ boxNN )).

However, with a CCG parser, it would be tagged and parsed
as

2http://www.cs.waikato.ac.nz/ml/weka/

(NP (theNP/NP (NP blueNP/NP (NP boxNP ))).

The CCG representation of the parse graph is then used in
the semantic conversion to logical form. This conversion uses
a semantic dictionary to translate from parse trees to semantic
representations: each lexical entry in the dictionary consists of
a word, its possible CCG tags, and all of its lambda-logical
expressions for each word/CCG tag combination. The goal of
the conversion is to do the following:

• translate instructions into appropriate actions that can be
carried out by the robot

• generate semantically meaningful units that can be incre-
mentally grounded

• in conjunction with (2), identify points where backchan-
nel feedback in the form of verbal acknowledgments or
eye movements is appropriate

Our previously developed semantic analysis component
could, based on the order dictated by the CCG grammar, com-
bine temporal and dynamic logic formulas with λ-expressions
to create λ-free temporal and dynamic logic expressions repre-
senting the goals and actions specified by the natural language
instructions [25]. The present work builds on that two-pronged
approach of extracting both goals and actions at the same
time. Performing semantic processing incrementally provides
many advantages (beyond what we are able to discuss here):
(1) it allows the robot to respond quickly when it does not
understand an expression (cp. [16]); (2) it enables the robot to
check the consistency of the new goals from the directives with
existing goals; (3) it gives the robot an (at least partial) action
sequence to achieve the goals (which can be further refined
via standard task planners if necessary); and (4) it allows
the robot to detect and react quickly to important syntactic,
semantic, and pragmatic ambiguities in the instruction (e.g., it
could initiate a head movement if referents mentioned in the
utterance are not currently visible). We will give examples of
the conversion process in the Demonstration section.

D. Disfluency analysis

Disfluencies are targeted for correction or repair by a
specific method based on their types.

• Non-lexical disfluencies are removed by a regular
expression-based filter.

• Lexical disfluencies require that the system be able to suc-
cessfully differentiate between meaningful and disfluent
uses of words (e.g., “like”). Our system uses a trigram
statistical model that labels such words as disfluent or not
based on a language model.

• Abandoned utterances (e.g., when a speaker begins a
particular utterance, then abandons it to switch to a differ-
ent conversational segment) are challenging to detect and
recover from, particularly when using a robust statistical
parser. In our system, these tend to fall out simply by not
being fully semantically parsable.

• Repetitions are handled similarly to non-lexical disfluen-
cies, using simple rule-based methods to remove repeated
strings of words up to a maximum length of 5 words.



• Repairs and corrections in utterances are sometimes
made distinct by repair markers such as “I mean” or
“wait”, but that is often not the case. A set of repair mark-
ers was extracted from the human-human experiment
corpus; when a word or phrase of one type is separated
from another word or phrase of the same type by one
of these markers, the latter is taken to be a replacement
for the former. Repairs that are not signaled by a marker
typically lead to failed semantic parsing, as in the case
of abandoned utterances.

These methods chained together constitute the disfluency
analysis subsystem. First, non-lexical disfluencies are removed
by a regular expression filter. Next, lexical disfluencies are
identified by the trigram language model and removed (Ta-
ble I).

TABLE I
REMOVING LEXICAL AND NON-LEXICAL DISFLUENCIES

Input Output
um let me get that green box hold
on

let me get that green box hold on

so now you have to get the blue
things right

you have to get the blue things

i ’m just like next to the door frame
like right in front of it

i ’m just next to the door frame
right in front of it

well get the yellow block from
there and then in that room

get the yellow block from there and
then in that room

When repair markers are identified, the system checks for
matching phrase types on either side to treat as replacements.
In each of the phrases

• there ’s a blue kit I mean a blue box
at the end of the table

• go back to the hallway er that little
room

• go into that first small room that
would be on your righthand er your
lefthand side

the repair marker signals the disfluency module to replace the
first bold-face phrase with the second. While this method is
effective in many cases, it does have limitations. For example,
“yes” is generally used as a positive emphasizer, as in
a stack of boxes yes get that one
cart yes there is a cart.
However, in so there are no blue boxes oh

yes there is there ’s a blue box behind
the door it is part of a repair marker, but is unique in the
corpus and hence not included in the list of repair markers.
Replacement would, therefore, not be triggered, and the
system would have no way of resolving the conflict without
asking the speaker.

Finally, the parser attempts to identify CCG tags that
have been generated with extra and doubled arguments. For
example:
how many b how many box blue boxes do we

have

is parsed (in part – irrelevant details are omitted for sim-
plicity) as:

[OBJ [WRBhow many[NP b]
[OBJ [WRBhow many[NP box][NP blue boxes]]do]]we have

The first omission can be made in the place where how
many has been connected to two noun phrases. The second
one is selected on the assumption that it is a correction:

[OBJ [WRBhow many[NP b]
[OBJ [WRBhow many[NP blue boxes]]do]]we have

Next, two objects have been selected for the verb do. Again
the first one is discarded:

[OBJ [WRBhow many[NP blue boxes]]do]]we have

The final result,
how many blue boxes do we have

is now in a syntactic form that can be processed semantically.
Similarly, our previous example
so go back into the room um right- go r-

go where you’re right between the cubicle
and the filing cabinet
becomes the slightly more tractable
go back into the room go where you’re

between the cubicle and the filing
cabinet.

A limitation of the system is that it cannot handle aborted
words, which are a very common disfluency type and by far
the most difficult one to detect. While NLU systems that rely
on human transcriptions for disfluency detection and repair can
simply remove aborted words prior to automatic processing,
this approach is clearly ill-suited in situated, embodied NLU
contexts where robots must handle actual speech recognition
output. There are two likely outcomes when a typical speech
recognizer encounters an aborted word: it will either be
misrecognized as a short in-vocabulary word, or, worse yet, it
may be misinterpreted as part of a longer word. Because our
current speech recognition configuration employs a finite state
grammar (which would require each possible aborted word to
be included in the grammar), aborted-word disfluencies are not
passed to the NLU system. Sophisticated acoustic handling
methods could be used to detect aborted words, but such
methods are outside the scope of this paper.

E. Situated reference resolution

There are two steps to situated referent resolution: (1)
anaphora resolution (finding out what noun is referred to by
a pronoun) and (2) grounding (finding out what real-world
referents the nouns refer to). We use a combination of recently-
attended-to entities in conjunction with a search tree in order
to determine whether task-based information is needed for
grounding. Specifically, we have a table of “last” objects (e.g.,
“last mentioned object”, “last visual object”) in addition to
task-based information (e.g., we’re looking for blue boxes),
followed by a method of searching for each type of object (e.g.,
visual search for blue boxes). A decision tree directs the search



when grounding is performed. For example, to ground the
phrase blue things, the table of “last objects” is searched
to see whether any blue object has been mentioned. If the word
blue has not been previously used in the present discourse,
this search will fail. The task information branch of the tree,
in which all entities defined in the task description are listed,
is then searched. In this example, the task of finding ‘blue
boxes would match. In cases where the referent has not been
previously mentioned and is not part of the task knowledge, the
process falls back on a sensory search based on the modality
associated with the referent’s type. In this case, because the
content word of the phrase involves a color, the grounding
process would have triggered a visual search for blue objects.

VI. DEMONSTRATION

Section V described the system and provided examples of
how individual components function. However, since we are
not concerned with component functionality or performance
in isolation (e.g., accuracy numbers of parses), we need to
demonstrate the integrated system on a robot in a relevant
real-world task. For this purpose, we again selected examples
from the human-human corpus that demonstrate two important
challenges for spoken instruction understanding on robots in
HRI scenarios: (1) semantic ambiguities and (2) incremental
understanding with backchannel feedback. The demonstration
platform was a Pioneer P3AT equipped with a Bumblebee
Firewire camera for vision processing and a dual-core Linux
PC for onboard processing. The experimental environment was
a hallway similar to the environment in which the human-
human experiments were conducted (see Figure 1). Some of
the instructions required actuating capabilities that were not
available on the physical robot (e.g., to collect boxes); these
examples were demonstrated using a 2D real-time physical
simulation of the physical environment that the architecture
can run on identically to the physical robot without any
changes (in fact, the architecture has no way of knowing
whether it controls the physical or the simulated robot).

A. Example 1: Semantic Ambiguity

We use the instruction so now you have to get
the blue things right from our corpus and consider
two variants:
(1a) you have to get the blue thing
(1b) you have to get the blue things

Note that the only overt syntactic difference between (1a) and
(1b) is the number of the final word: thing is singular in
the former and plural in the latter. However, the semantic
differences are much greater. The first sentence is a command
to get a specific object. If a human looking at a table with
several objects, two of which are blue, and were instructed
to get the blue thing, then the human – in the absence
of other identifying information – would most likely request
clarification (similarly, the human would request clarification if
no blue object were present). Hence, it is clear that the blue
thing must refer to exactly one object. However, the blue
things refers instead to a set of objects, which must be

Fig. 1. A snapshot from the demonstration setup on the robot in the
hallway (top) and in the 2D physical simulation (bottom).

interpreted as having been either pre-defined, or being limited
by perceptual or other contextual (e.g., task-based) constraints.

TABLE II
SINGULAR AND PLURAL LAMBDA EXPRESSIONS

word number definition
the sing. λY ∃x.Y (x) ∧ ∀yY (y) → x = y
the pl. λY {x|Y (x)}

blue λZλz.blue(z) ∧ Z(z)
thing sing. thing
things pl. thing

This distinction makes the lambda expressions capturing the
two meanings quite different (here we focus on the referential
aspect expressed in a fragment of first-order logic augmented
by simple set constructs):

(a) ∃x(blue(x)∧ thing(x)∧∀y(blue(y)∧ thing(y) → x =
y))

(b) {x|blue(x) ∧ thing(x)}

(a) means that there is exactly one blue thing in the discourse
context, whereas (b) refers to the set of all blue things. The



TABLE III
LAMBDA EXPRESSIONS AND ASSOCIATED CCG TAGS

word number definition
the NP/N λY ∃x.Y (x) ∧ ∀y(Y (y) → x = y)
the NP/NN λY {x|Y (x)}
blue N/N λZλz.blue(z) ∧ Z(z)
blue NN/NN λZλz.blue(z) ∧ Z(z)
thing N thing
things NN thing

distinction poses challenges for incremental parsing, as the
difference must be generated already at the, which is not
explicitly marked for number (see Table II for the lambda
terms attached to the lexical items and Table III for the same
with CCG tags). In such cases, both interpretations are pursued
until one fails (cp. to [16]). Note that in order to have the
noun’s number feature carried through the adjective to the
determiner, the adjective’s definition must also have a number
feature, even though the definition of the adjective itself does
not differ whether taking a singular or plural argument. Hence,
when the is input, the parser retrieves both definitions, having
no evidence as to which to select. Next blue is input, and
again the parser retrieves both definitions and performs a
lambda conversion. The two possible semantic interpretations
at this point are:

(a) (NP/N) λZ∃x.blue(x) ∧ Z(x) ∧ ∀y(blue(y) ∧ Z(y) →
x = y).

(b) (NP/NN) λZ{x|blue(x) ∧ Z(x)}

Finally, either thing (N) or things (NN) is received,
which, based on the CCG tags, decides which reduction is
retained. The reductions in turn generate actions. The singular
version generates the action “get” with the argument “blue”
(causing the robot to get the single blue box based on
finding the single referent that makes the definite description
true), whereas the plural version generates the action “getAll”
(which causes the robot to search for and retrieve all blue
boxes in its environment). In our tests, the robot was able to
successfully understand both spoken instructions and perform
the appropriate actions corresponding to the singular and plural
variants.

B. Example 2: Incremental Understanding with Backchannel
Feedback

The system’s ability to generate appropriate backchan-
nel feedback was demonstrated with the example turn
right and walk a little bit and turn right
(Table IV shows the associated lambda terms). In general,
listeners tend to provide verbal feedback only between phrases,
to demonstrate understanding and remain conversationally
aligned with the speaker. As described in Section IV-E, the
member provided feedback after the first turn right and
then responded with an acknowledgment after the utterance.
However, the member could just as easily have provided feed-
back after walk a little bit. For the purposes of the
present demonstration, both are marked as possible feedback

points. We leave aside, for the time being, the question of how
the robot should choose at which, of all possible feedback
points, to actually provide the feedback. We also leave aside
the question of how to determine the best, or most appropriate,
form of feedback (e.g., whether to nod, say “uh huh”, or
provide some other response).

TABLE IV
LAMBDA CONVERSIONS

Word CCG Definition
turn S/DIR λx.facing(x)
right DIR right
and S\S/S λxλy(x; y)
walk S/DIST λx.walk(x)

a-little-bit DIST small random distance

Note that a-little-bit is taken to be a primitive. This
is because the architecture has no mechanism for deciding
what is appropriate when faced with relative and ambiguous
expressions such as a little bit, which could refer (as
it does here) to a distance, to a concrete amount (“I’d like
a little bit of coffee, please”), to an abstract amount (“I just
have a little bit left to do on my paper”), or to any number of
other types of things. Each of these types of meanings should
receive different tags so they can be differentiated.

Another word that can have several meanings is “and”: two
of those meanings are parallel “and” and sequential “and”.
In the former, the robot would perform actions in parallel.
For example go to the end of the hallway and
get the blue boxes should generate the actions in par-
allel so that the robot would gather blue boxes on its way to the
end of the hallway. On the other hand, turn right and
go forward should most likely generate the sequence of
events, first turn right, then go forward. We
use that sentence to demonstrate how the system handles
instances of the sequential “and”.

The first connection we find is between turn and right.
The combination generates the action term turn(right).
At this point, the system has a completed combination and
is immediately able to understand what to do. When the
word and is received, a connection is made between it
input and the previous output, yielding λy.turn(right); y.
(where “;” denotes the action composition in our dynamic
logic, see [26]). At this point the system can determine
that it must wait for further instructions. The remaining
inputs (walk and a-little-bit) are combined to
create another action term, and the connection between
it and the and allows the system to reduce to form the
combination turn(right);move(small random distance).
Again we have a completed action specification
and the robot could provide feedback. Additional
(analogous) combinations lead to the final output
turn(right);move(small random distance); turn(right),
and the final response point is marked. At any of three
response points, the robot can choose to verbally indicate
understanding; in the experimental runs, we modeled the
human data by providing feedback only after the first segment.



Practically, the current architecture does not have any way
of knowing what the real endpoint of the utterance is. Theo-
retically, the robot could mark the last point and then continue
waiting for further instructions indefinitely (and of course, the
speaker could continue to give instructions indefinitely, while
the robot patiently interpreted them). In the future, intonation
could be used to help determine whether the speaker is finished
or not.

VII. DISCUSSION AND CONCLUSION

In this paper, we presented our integrated robotic architec-
ture for robust natural language understanding and demon-
strated its functionality and performance based on dialogue
data collected previously in human-human experiments in a
relevant HRI search task. Overall, the proposed mechanisms
are now able to handle a variety of challenging spoken
utterances in real-time on a robot, including various forms of
disfluencies and ambiguities that require task-based reference
resolution as exhibited by humans. Thus, we view the current
architecture as an important step in the direction of achieving
natural human-robot interactions.

Given the encouraging results from the corpus-based
demonstrations presented here, we believe that it is feasible to
test the architecture in the search task with human subjects in
the near future, with the robot assuming the role of the “mem-
ber” being guided by instructions from the human “director”.
These experiments will provide a quantitative evaluation of
the architecture, while simultaneously allowing us to compare
how humans speak and behave when they are interacting with
humans versus robots.

In addition, we are interested in further reducing speech
recognition errors by comparing speech recognition output
with human transcripts and finding ways to compensate for
the differences. And we are also interested in addressing the
problem that all semantic expressions in the current system are
hand-crafted, by integrating lambda learning mechanisms that
use context in conjunction with known conceptual definitions
to induce meanings for unknown words.
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