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Abstract

Human-robot interaction poses tight timing require-
ments on visual as well as natural language processing
in order to allow for natural human-robot interaction.
In particular, humans expect robots to incrementally
resolve spoken references to visually perceivable objects
as the referents are verbally described. In this pa-
per, we present an integrated robotic architecture with
novel incremental vision and natural language process-
ing and demonstrate that incrementally refining atten-
tional focus using linguistic constraints achieves signif-
icantly better performance of the vision system com-
pared to non-incremental visual processing.

Introduction
Spoken natural language understanding (NLU) situated
in a human-robot interaction (HRI) context is critically
distinguished from other NLU applications by human
expectations. In particular, human speakers expect co-
located listeners to rapidly and incrementally integrate
perceptual context (c.f. (Clark and Marshall 1981)).
Such rapid integration can be used to solve difficult
natural language processing (NLP) problems, such as
resolving references and reducing parse tree ambiguity.

The success (or failure) of this integration in con-
straining the semantic interpretation of the utterance is
communicated to the speaker though backchannel feed-
back such as gaze, verbal acknowledgments, and head
nodding, all produced during the processing of the on-
going utterance (c.f. (Schiffrin 1988)). This feedback
loop necessitates full bi-directional integration of incre-
mental vision and NLP systems, each constraining the
other. In particular, natural language descriptions can
reduce the vision search space for particular objects,
thus increasing the speed of visual reference resolu-
tion, while visually-acquired sensory information reduce
parse-tree ambiguity by resolving attachment problems.

In this paper, we evaluate the effectiveness of an inte-
grated incremental language and vision system by com-
paring the operation of two vision processing modes:
in the first, a complete description of an object is first
generated from natural language input, followed by a
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single visual search through all existing candidates (i.e.,
every object in the environment) for the referent; in the
second, information gleaned incrementally from natural
language input is used to constrain vision’s search by
progressively narrowing the field of possible candidates,
in effect focusing the robot’s attention on an increas-
ingly restrictive set of criteria. We demonstrate that,
by constraining vision in this way, the system is able to
resolve references significantly faster.

The structure of the paper is as follows. In Section 2,
we describe the problem in detail and review previous
work in both NLP and vision processing. Then, in Sec-
tion 3,we introduce our approach to accomplishing the
integration of the two types of processing. In Section
4, we discuss an experiment that serves to evaluate our
approach, closing in Section 5, with a summary of our
accomplishments and proposals for future work.

Motivation
Imagine a scenario where a human instructs a robot
to put objects in their proper places in a living room.
The instructions will likely include object descriptions
meant to uniquely describe, out of all possible candidate
objects, one specific object or set of objects. It will also
likely include location descriptions, often constructed
from one or more prepositional phrases. The former
presents a problem of visual search, while the latter
presents a parsing problem.

The robot will typically be faced with several candi-
date objects for clean-up and various possible places to
put them when trying to resolve referential expressions
singling out objects such as “the red book on the floor”,
and spatial relations indicating goal locations such as
“on the shelf next to the vase”. When instructing a
robot, humans will naturally look towards an intended
object or point to it, gazing back at the robot to check
whether it is attending to the object (Yu, Scheutz, and
Schermerhorn 2010). If the robot is able to follow the
human eye gaze to the target object, both human and
robot will establish joint attention which will allow the
human instructor to check quickly (and often subcon-
sciously) that the robot understood the request cor-
rectly. In addition to looking at the object, humans
will typically also expect a robot to verbally acknowl-



edge understanding by saying “OK” or “got it”, or ask
for clarification effectively such as “the one by the ta-
ble?”. Feedback is often already required for partial
utterances, again through eye gaze, verbal acknowledg-
ments, or through the immediate initiation of an action
such as the robot reaching for a book after it heard “put
the red book...” while the utterance is still going on.

Note that in such an interactive setting, vision and
NLP can mutually and incrementally constrain each
other. For example, visually observing a scene that is
being talked about can support understanding of am-
biguous or underspecified utterances while they are be-
ing processed – “the red book on the floor” will most
likely refer to a book visible to the instructor, not the
one behind her back. Similarly, a syntactically ambigu-
ous sentence like “put the book on the table on the
shelf” will become clear as soon as the robot detects a
book on the table, thus using visually observed spatial
relations to constrain parsing and semantic analysis.

Conversely, incremental processing of a verbal de-
scription of a scene can direct visual processing to the
relevant elements, e.g., “Put the red [[now prioritizing
the processing of red image regions]] shoe on [[now pri-
oritizing horizontal supporting surfaces on which an ob-
ject can be placed]] the box”, or “Take the shoe on your
left [[now prioritizing the lower left field of view]] ...”. In
addition, non-linguistic cues such as pointing and gaze
direction can be incrementally integrated with partial
meanings to steer attention to those elements of the
scene relevant to the current discourse situation.

While no current robotic NLU systems yet approach
the ability to handle natural unrestricted spoken in-
put, several efforts have advanced the state-of-the-art
in natural language interactions with artificial entities
by tackling different aspects of these challenges. For ex-
ample, several robotic systems add genuine NLU com-
ponents to the robotic architecture (c.f. Michalowski
et al.’s robot GRACE combines speech with a touch
screen (Michalowski et al. 2007); Müller et al’s semi-
autonomous wheelchair (Müller et al. 1998) responds to
coarse route descriptions; Moratz et al. use goal-based
or direction-based spoken commands to guide a robot
through an environment (Moratz, Fischer, and Ten-
brink 2001); Firby’s Reactive Action Packages (RAPs)
(Firby 1989) tightly integrate natural language and ac-
tion execution; and Kruijff et al. (Lison and Kruijff
2009) are pursuing directions in incremental NLU for
HRI very similar to ours (Brick and Scheutz 2007)).

However, only a few complete NLU systems operate
in real-time. Allen et al. (Allen et al. 2007) use a
manually-designed bottom-up chart parser with prefer-
ences and manually-defined weights rather than more
standard probabilities. Syntactic analysis is comple-
mented by semantic analysis that returns a logical form
as a semantic network. One drawback of this archi-
tecture in an HRI setting is its standard pipeline ar-
chitecture (i.e., syntactic analysis is completed before
semantic analysis can begin) which prevents an embod-
ied agent from timely backchanneling. Still more inte-

grated is the system by Schuler et al. (Schuler, Wu, and
Schwartz 2009) which processes phonological, syntac-
tic, and referential semantic information incrementally;
however, the system has not been used on a robot.

Several lines of research have addressed the problem
of modulated object search and interactive or incre-
mental visual processing. Unconstrained object segme-
nation is a notoriously hard and ill-defined problem.
Mishra et al. (Mishra and Aloimonos 2009) use a seed
point, obtained from user input or attention, together
with a log-polar image representation to improve seg-
mentation in 2D and depth images; Johnson-Roberson
et al. (Johnson-Roberson et al. 2010) segment point
clouds with a similar technique for robot grasping.

While bottom-up attentional processes are well
known, more recent work addressed how top-down cues
could bias visual search in a task-dependant manner.
Choi et al. (Choi et al. 2004) train an adaptive reso-
nance theory (ART) network from human labeling to
inhibit bottom up saliency for non-relevant image re-
gions. The VOCUS system by Frintrop et al. (Frin-
trop, Backer, and Rome 2005) employs bottom-up
(scene-dependent) as well as top-down (target-specific)
cues, which are learned from training images, lead-
ing to increased search performance. Navalpakkam et
al. (Navalpakkam and Itti 2006) show how search speed
can be maximized by incorporating prior statistical
knowledge of target and distractor features to modu-
late the response gains of neurons encoding features.

The concept of incremental visual processing has not
received much attention. Typically the aim is simply
to make vision methods “as fast as possible”. However
often not all results are needed immediately or there is
a trade-off between speed and accuracy. In one early
attempt, Toyama et al. (Toyama and Hager 1996) layer
so-called “selectors” and “trackers” such that selectors
at lower (coarser) levels reduce the set of object candi-
dates for higher levels, with trackers at the top generat-
ing output sets of size one. Failure at level i lets the sys-
tem fall back on layer i−1, with a broader search space
but smaller accuracy. The system can thus robustly
maintain track, adjusting search space and accordingly
tracking accuracy to changing conditions. Zillich (Zil-
lich 2007) shows how an incremental approach in the
perceptual grouping of edge segments removes the ne-
cessity of tuning parameters, which are often difficult
to select and tend to lead to brittle systems.

Most related to ours is work on interaction between
vision and language by Bergström et al. (Bergstrom,
Bjorkman, and Kragic 2011) and Johnson-Roberson et
al. (Johnson-Roberson et al. 2011) who perform inter-
active segmentation of 2D images and 3D point clouds
based on real-time MRF graph partitioning. Dialogue
such as robot : “I think there are two objects” human:
“No there are three objects” or robot : “So, should I
split the green segment?” human: “No, the yellow
one!” biases graph partitioning to form the most likely
objects. However their work explicitly requires interac-
tion in both ways to refine segmentation, rather than



just collecting attentional cues from the human.
While these and related research efforts tackle various

aspects of NLU and vision, no existing framework al-
lows for a deep integration of these different algorithms
with a complex vision system into a unified integrated
robotic architecture for natural HRI.

Integrating NLP and Vision

The context of situated natural language interactions
between humans and robots provides several unique
challenges for integrated robotic architectures, in par-
ticular, for visual scene and natural language under-
standing. We focus on two: Challenge 1: Hu-
man timing. All visual, natural language and action
processing must be performed and completed within
human-acceptable timing, ranging from fractions of a
second for eye movements and other motor actions, to
at most one second for verbal responses. Challenge 2:
Incremental multi-modal constraint integration.
All processing must be incremental for the robot to be
able to determine the meanings of partial instructions,
perform any required perception actions including the
establishment of joint attention, and either acknowledge
understanding or ask for clarification.

We address these challenges through incremental nat-
ural language and vision processing. The former grad-
ually builds a hierarchical semantic representation, re-
questing a new vision search for each new discourse en-
tity. The latter then allows for the continual refinement
of the search by the addition of new filters as additional
description is given by the speaker.

Incremental NL
Our incremental natural language system uses a shift-
reduce dependency parser trained on approximately
2500 sentences comprising the training set (sections 02–
21) of the Wall Street Journal (WSJ) corpus. The
parser identifies labeled head/argument pairings (e.g.,
subject/predicate or object/predicate) and identifies,
for each word, a manually-created dictionary definition.
The argument structure is used to select a compatible
definition from several possibilities. In this way, a se-
mantic representation is produced for the utterance.

The semantic representation is produced incremen-
tally: when a token is added or its argument structure
augmented by the addition of a new argument, a new
semantic definition is selected. Sensory information is
requested incrementally as well: each time a new en-
tity is referenced, a new vision search begins, and asso-
ciated visual constraints (both adjectival and preposi-
tional modifiers) are sent to vision as they are attached
to their noun head. Semantics are produced in this way
for a variety of types of utterances, including instruc-
tions, direct and indirect questions, and statements.

For each entity referenced in one of the above types of
utterances, the robot consults its knowledge about the
entity and determines what type of sensor should be
used to identify and investigate the entity’s properties.
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Figure 1: “Do you see the box on the left?”

For the purposes of this paper, only visual entities (i.e.,
those requiring visual sensors) are discussed. In the case
of a visual entity x, the robot calls the vision server in
order to verify the existence of x. One of three cases
then results: (1) The robot is able to identify one or
more objects that meet the description, and it assents,
“yes”. (2) The robot is not able to identify any object
meeting the description, and it announces, “I could not
find any”. or (3) The robot is expecting to find one
and only one such object (e.g., “there is the [or one]
blue object”), but it finds multiple such objects, and
announces, “I was not able to identify a single referent.
Please use a uniquely-identifying description.”

This verification process is used in the case of all
types of utterances. Given a situation in which two
blue objects are before the robot, if the robot is asked,
“Do you see the blue object?” or if it is directed “Pick
up the blue object,” the robot, being unable to find
a single uniquely-identified object meeting the descrip-
tion in either case, will request additional constraints in
order to narrow the reference down. If there are instead
no blue objects, but the robot is still told “there is a
blue object,” the robot will respond that it cannot find
any blue object. Determiners communicate how many
objects that meet the description the robot is to expect.
The robot distinguishes between three types of deter-
miners: existentials (a, any, some) which requires at
least one such object; referentials (the) which requires
exactly one object; and universals (all, every, each) that
allow any number of objects.

Figure 1 shows an example of incremental processing,
beginning midsentence, just as we receive a determiner
(our first sign of a coming noun phrase) in Figure 1(a).
A dummy entity is created and a visual search begun.
In Figures 1(b) and 1(c), adjectives are attached to the
dummy entity; as this occurs, each adjective is inter-
preted as an additional constraints to the vision search.
Figure 1(d) sees the appearance of the real noun, which
now replaces the dummy. A last attachment is made in
Figure 1(e) and the constraint sent to vision.

Incremental Vision
Given the goal of identifying the objects referred to
by language, we tackle the segmentation of these ob-
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Figure 2: A high-level view of the vision framework.

jects from the overall visual scene by making use of an
attention mechanism that relies on cues incrementally
obtained from NLP. The input to visual processing are
color images overlaid with 3D point clouds obtained
with an RGB-D sensor (a Microsoft Kinect) and organ-
ised into a rectangular array (depth image).

The relevant types of vision processors are saliency
operators, object detectors and object trackers (see Fig-
ure 2). In general, saliency operators detect the amount
that a modifier such as a color or a location applies to a
particular area of space, while object detectors typically
search for specific nouns, such as “faces,” “persons,”
“objects,” and “clusters,” which are then tracked by
object trackers. An utterance such as “Do you see the
blue object?” starts a visual search process composed of
a number of saliency operators and one detector and its
associated tracker. Several such visual search processes
can run in parallel. Within a search, visual processors
are registered to one another so that the completion of
a processing iteration in one processor notifies the other
processors that are related to the same search.

Saliency operators are computationally cheap
bottom-up processes operating independently and in
parallel. When created as part of a visual search
they are configured using processing descriptors (de-
rived from, e.g., the adjectives extracted from the ut-
terance) that specify what quality is being sought in
this specific search. Each saliency operator then out-
puts a 2D saliency map with values between 0 (not
salient) and 1 (maximally salient) overlaid on the 3D
point cloud. The output of different saliency operators
is finally combined by multiplying the saliency maps.

Color is an object property often used to point out a
specific object in a scene. The color saliency operator
maintains a list of commonly used color words (“blue”,
“red”, “black”) associated with points in color space.
These associations are currently hand-coded but could
also be learned as in (Skocaj et al. 2010). Distances of
pixel colors to the salient color selected by the process-
ing descriptor are mapped to saliency values in [0, 1].
Several colors can be salient at the same time (“the red
or blue object”), in which case the minimum distance

to a salient color is used.
Another common property when talking about a

scene containing several objects is relative location,
as in “Pick up the object on the left”. The location
saliency operator maps location in the image to saliency
and can be configured for “left”, “center”, “right”,
“top”, “middle”, or “bottom”. Saliency decreases lin-
early from the selected image border to the opposite or
in form of a Gaussian located in the image center.

While operating on the raw input data prior to seg-
mentation does not allow specification of object shape
properties (as objects have not yet been segmented),
height saliency (i.e., object height above the support-
ing surface) is a simple cue to support properties such
as “tall” and “short”. Height from ground to the high-
est point above ground is mapped to [0, 1] for “tall”
and [1, 0] for “short”. Similarly, surface orientation
saliency, (i.e., the angle between local surface normal
and normal of the supporting plane) is mapped to [0, 1]
for “horizontal” and [1, 0] for “vertical”.

Some of these operators may not be very distinctive
or may be ambiguous (e.g., “short” could be the oppo-
site of “tall” or refer to the small length of an elongated
object), so we do not expect each of these operators to
output very precise information. Rather, these opera-
tors need only to prioritize salient image regions (and
thus corresponding parts of the point cloud) in order to
render the following segmentation step computationally
more tractable.

Object detection is performed by segmenting the
3D point cloud. For the experiments presented here
we make the simplifying assumption often used in
robotics scenarios (Johnson-Roberson et al. 2010;
Wohlkinger and Vincze 2011) that objects are located
on a dominant supporting plane. Segmentation then
amounts to detecting the supporting plane, subtracting
it from the point cloud, and clustering the remaining
points into object candidates.

Clustering is based on the Euclidian clustering
method provided by the Point Cloud Library (PCL)
(Rusu and Cousins 2011) and is computationally the
most expensive step. Given that the output of saliency
operators cannot be considered very precise, we explic-
itly avoid thresholding based on the combined saliency
map to yield distinctive regions of interest. Meaningful
thresholds are difficult to define and will change from
scene to scene. Our approach is to instead sort 3D
points in order of decreasing saliency and use a modifi-
cation of the PCL Euclidian clustering method to start
with the most salient point, greedily collect neighbour-
ing points and output the first most salient cluster, then
repeat. So we make sure that the most salient objects
pop out first and are immediately available as referents
for language, while less salient objects follow later.

In order to bind detected objects as visual referents a
final decision has to be made whether an object is, e.g.,
“blue and tall”. This decision is based on a threshold
value, performed on segmented objects rather than on
saliency maps. Once a detector has successfully seg-



mented objects from a scene, object tracking is per-
formed by a tracker tasked with consuming the result-
ing objects and tracking them from frame to frame. To
this end, previously found objects are associated with
new ones based on spatial consistency. Two objects
are considered equal if they overlap by more than 50%,
otherwise a new object is added to the tracker.

These processors work in tandem with each other and
share information. A visual search for a “tall red ob-
ject,” for instance, might consist of an “object” detector
using the results from a “red” saliency operator and a
“tall” saliency operator. These implementation details
are transparent to outside components such as natural
language. Transparent interaction is provided by the
interface described in the next subsection.

The Interface between Vision and NL
In order for a robotic system to perform naturally in the
context of human-robot interactions, a robot vision sys-
tem must quickly respond to incremental cues from nat-
ural language in order to dynamically instantiate and
modify visual searches. To accomplish this, a vision sys-
tem needs to expose an interface capable of naturally
handling requests from natural language components,
thereby freeing language components from requiring an
intimate knowledge of visual components and their ca-
pabilities. A common currency must exist between lan-
guage and vision components to enable this timely and
natural interaction. Additionally, the vision framework
must be able to rapidly convert requests (possibly in-
complete) from natural language into meaningful visual
searches in a robust and dynamic way.

The interface between natural language and vision is
handled by search managers, the highest level mecha-
nism responsible for dynamically building searches from
natural language cues, which are used to shield out-
side components from internal implementation details.
When a new visual search is triggered by an outside
component via a call to startNewVisualSearch, a new
search manager is automatically instantiated, and a
unique search ID is returned to the caller so that fu-
ture visual constraint requests can be properly associ-
ated with that particular search. addVisualConstraint
is then used to populate the search with the appropri-
ate combination of saliency detector and tracker with-
out the outside component being required to know any
of the details of the different processor types.

Because each processor has a unique capability de-
pending on its underlying implementation, processors
that are used external to the vision system are re-
sponsible for advertising their capabilities to the search
manager in order to allow it to populate the search
with the appropriate vision processors. For example, a
processor capable of generating saliency maps for var-
ious color values might advertise “red,” “green,” and
“blue.” These advertisements are specified at runtime
via a series of xml configuration files. (In keeping
with the responsibilities of different types of proces-
sors as described in the previous subsection, detector

(a) “Do you see the red ob-
ject?”

(b) “Do you see a green tall
object on the right?”

Figure 3: Note the drastic changes in lighting in these
scenes.

(a) Average time to detect
target object across scenes

(b) Average time to detect
target object across objects

advertisements are generally nouns, as opposed to the
description-based advertisements of saliency operators.)
In this way the distinction between saliency operators
and detectors is hidden within the vision framework,
and outside callers are not required to have knowledge
about their differences. Search managers automatically
route incoming predicates to the most appropriate vi-
sion component.

Once objects have been detected and reach the track-
ing stage, outside components (e.g., NL) can query vi-
sion to retrieve results about the visual search (e.g., by
calling getTokensByTypeId). Once a visual search is no
longer needed, a request to vision to endVisualSearch
can be made, which stops all vision components related
to that particular search.

To summarize, as a search manager receives incre-
mental constraints, the incoming predicate is mapped
to a new instance of the appropriate vision component.
An arbitrary number of constraints can be incremen-
tally added to a search, and a fully functional visual
search is composed of a detector, tracker, and zero or
more saliency operators. Clients are relieved from de-
tails of the underlying vision framework, providing only
a search ID and predicate constraints to build visual
searches and query for results.

Results and Discussion
We evaluated the effectiveness of language-modulated
attention by measuring the time needed to identify a
specific discourse referent. We constructed five scenes,
each composed of five objects, which were subsequently
referred to in utterances such as “Do you see the red ob-
ject?” or “Do you see a tall green object on the right?”
(see Figure 3). Note the drastic differences in lighting,



which would make simple thresholding methods based
on color very challenging.

Each scene (object configuration) was paired with a
set of five utterances, each uniquely identifying a dif-
ferent target object within the configuration. Each
scene/utterance run was repeated 10 times as the time
to identify the target was measured. Without attention
(i.e., performing a single vision search on all objects)
the order in which objects were checked for compati-
bility with the description was random; on average the
target object was found after checking half of the ob-
jects. When attention was used to incrementally filter
the visual scene for saliency (in terms of the descriptive
constraints) the target was often the first detected.

The average times and standard deviations are illus-
trated in Figures 4(a) and 4(b). Figure 4(a) shows the
time until detection of the target object for each scene,
averaged over all target objects. In most cases, we can
see that the average detection time without attention is
roughly twice the detection time with attention. This
is what we would expect: with attention the target ob-
ject is typically the first found; without attention the
target object is on average the 2.5-th found. Figure
4(b) shows average detection times per object over all
scenes. Note that object O5 (the tall green Pringles
can) shows almost no improvement. In the absence of
attention, pixels are clustered row by row beginning at
the top. As a result, the tallest object often happens
to be the first object detected. For smaller objects the
difference is more pronounced.

These results clearly demonstrate that attentional
cues obtained from dialogue efficiently steer visual pro-
cessing to relevant parts of the scene, resulting in sig-
nificantly reduced runtimes for detecting target objects.
However, the system does have limitations.

While the system is quite general due to the train-
ing grammar and handling of different types of ut-
terances, it is negatively affected by the lack of ex-
plicit directionality inherent in the dependency gram-
mar. The lack of directionality extending into the nat-
ural language definitions, the system has some diffi-
culty distinguishing questions from statements. For
example, is requires a subject and a predicate (e.g.,
“[there]SBJ is [a blue box]PRD, represented by the
definition λxSBJ .λxPRD.exists(yPRD). In both ques-
tions (“is there y”) and statements (“there is y”), the
same argument structure, and thus, problematically,
the same definition is used, and the identical seman-
tics produced (e.g., exists(y)). In the case of the ques-
tion, however, the semantics produced should instead
be report(self, exists(y)), indicating that the robot
should report the truth of the proposition exists(y).

Currently, this is handled by treating statements as
questions: the robot must report on the truth of a state-
ment as if it were answering a question. This results in
a positive benefit, that the report is constantly verify-
ing everything it is told rather than assuming it to be
true; however, it results from a general limitation: in all
cases where multiple word senses share the same POS

tag/valency pair, but different semantic definitions, it
is not currently possible to distinguish between the two
senses and use the different definitions.

A further limitation is that, while the syntactic sys-
tem is trained on a large corpus and is thus gener-
ally applicable to a large variety of sentences, currently
the only part of the definitions that is learnable from
annotated data is the argument structure or valency.
The semantic form itself is learnable only from a set of
manually-written rules. While the existence of groups
of words forming semantic forms in exactly the same
way does render the writing of such rules feasible, re-
lying on rules is less than ideal. This limitation is cur-
rently being addressed in ongoing research.

In the experiments presented here, the visual process-
ing required was fairly simple; one may be tempted to
argue that with some optimisation, possibly including
GPU implementation of the 3D point clustering based
segmentation step (the computational bottleneck in our
case), the system could be made “fast enough” without
requiring this integration. But visual processing does
not stop here. Once we add object categorization and
recognition, and begin to eliminate the initial simpli-
fying assumptions, we are bound to yet again hit per-
formance bottlenecks. Biological vision systems have
developed attentional mechanisms to be able to quickly
react to the relevant parts of the visual scene. Accord-
ingly the focus in our work lies in developing principled
attentional mechanisms for the case of human robot in-
teraction to support visual processing at time frames
compatible with human language, rather than in opti-
mising specific vision methods for certain scenarios.

Conclusions and Future Work
In this paper, we argued for integrated incremental ver-
sions of vision and NLP in order for robots to meet
the requirements posed by natural interactions with hu-
mans. We demonstrated experimentally that constrain-
ing vision with incrementally-acquired natural language
descriptions can significantly speed up vision process-
ing, and thus also reference grounding. The reverse
direction, constraining natural language interpretation
with visually-acquired information about objects, will
be the next problem to tackle.

Another extension will address the fact that the de-
cision whether a detected object is considered to meet
a verbal description is based on a threshold. Future
work will employ probabilistic models of object prop-
erties (such as the incrementally learned KDE based
representations of Skocaj et al. (Skocaj et al. 2010))
and on how these probabilities can be dealt with by
NLP. This will require a substantive extension of the
NLU system as well in order to fuse existing confidence
measures (e.g., of the parsers) with those coming from
the vision system. Finally, we will also populate the
vision framework with more processors (such as object
categorisation as in Wohlkinger et al. (Wohlkinger and
Vincze 2011)), object recognition algorithms as well as
a variety of further saliency operators.
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