Learning Actions from Human-Robot Dialogues

Rehj Cantrell* and Paul Schermerhorn* and Matthias Scheutz**
Human-Robot Interaction Laboratory
*Indiana University and **Tufts University, USA

{rcantrel, pscherme}@indiana.edu, mscheutz@cs.tufts.edu

Abstract— Natural language interactions between humans
and robots are currently limited by many factors, most notably
by the robot’s concept representations and action repertoires.
We propose a novel algorithm for learning meanings of action
verbs through dialogue-based natural language descriptions.
This functionality is deeply integrated in the robot’s natural
language subsystem and allows it to perform the actions
associated with the learned verb meanings right away without
any additional help or learning trials. We demonstrate the
effectiveness of the algorithm in a scenario where a human
explains to a robot the meaning of an action verb unknown to
the robot and the robot is subsequently able to carry out the
instructions involving this verb.

I. INTRODUCTION

In human-robot interaction contexts, it is important for
robots to allow humans to tell them what to do. However,
current robots are limited in their capability to interact with
humans in spoken natural language, largely due to two main
types of limitations: those stemming from natural language
understanding systems and those stemming from cognitive
robotic architectures. As a result, today’s robots understand
a limited number of concepts, and can thus carry out a limited
number of commands that use these concepts. For example, a
robot that does not understand the concept of “accompanying
a person to the door” in a reception setting will not be able to
perform the action. And even if it understands the concept,
this does not automatically imply that it will know how to do
it (e.g., because it might not know how to drive side-by-side
with the person or how to lead the person through a crowded
room).

While research in speech recognition and computational
linguistics has produced impressive algorithms for processing
syntactic aspects of natural language (e.g., [1]), progress
in processing semantic and pragmatic aspects of natural
language—prerequisites for understanding and carrying out
spoken commands—is much more restricted and modest.
Part of the problem is the way in which meaning represen-
tations are typically constructed (e.g., being based on only a
limited number of semantically annotated lexical items). An-
other, possibly even more important, restriction is the limited
number of concepts that are explicitly represented in robotic
cognitive architectures. The combination of both limitations
severely constrains what current robots can understand and
do.

Additional complications arise in human-robot interaction
domains, where the goal is for robots to interact with
humans in natural ways [2]. In such contexts, it is impossible

to know all the concepts the robot might need ahead of
time, because it might not be clear or known how humans
will phrase requests or which requests they will formulate.
Hence, manually adding new semantic representations and
concepts at design time alone is insufficient for run-time
performance. Rather, robots will need to acquire new natural
language constructions at run-time and semantically ground
them within their knowledge base. Moreover, because robots
will likely encounter novel situations not anticipated by
the designer, robot behaviors cannot exclusively be pre-
programmed. Robots must be able to learn and produce new
behaviors at runtime. Only by meeting both requirements
will robots be capable of being tasked in natural ways.

To our knowledge, there is currently no robotic archi-
tecture that allows operators to talk with robots directly
and interactively tell them what to do and how to do it—
that can both (1) learn new meanings of words based on
natural language explanations and (2) apply them directly
in different contexts without any additional learning, pro-
gramming, adaptation, or other help from the instructor.
Specifically, there is no robotic system that has demonstrated
the capability of learning new action verb meanings based
on natural language descriptions and then immediately being
able—without additional training—to perform the described
action.

In this paper, we describe such a system and demonstrate
its functionality in real-time human-robot dialogue interac-
tions where a human teaches a robot the meanings of action
verbs. We start by further elaborating our motivation and
discussing the state-of-the-art in robotic systems that can be
taught in natural language. Then, in Section III, we describe
our proposed learning algorithm for how meaning repre-
sentations are formed as part of an integrated incremental
syntactic-semantic analysis. We then demonstrate an episode
in which a human interactively explains an action to a robot,
allowing it to carry out a command that it previously did
not know how to do. Though space does not allow a full
evaluation alongside the necessary description of this sys-
tem, this provides background for a future evaluation using
human-subject interaction studies. Finally, we summarize our
contribution and discuss some of its limitations.

II. MOTIVATION AND BACKGROUND

Humans communicate most naturally and effectively using
spoken language. Hence, natural human-robot interaction
will require robots to understand and respond appropriately

to natural spoken language—any solution that requires hu-
mans to master a grammatically-limited control language for
robot instruction will ultimately take away naturalness and
likely limit the effectiveness of the interaction. While there
are implementations of robotic systems that can understand
sequences of natural language instructions (e.g., [3]), they are
typically not able to learn new words and thus new actions
based on the meanings of those words. And while there are
robotic systems that can learn new actions, they usually do
not do so from natural language instructions (e.g., [4]).

In general, current robotic architectures are implemented
with very limited semantic knowledge, as programming
enough semantic knowledge for robots to respond acceptably
well to natural language instructions is prohibitive. Addi-
tionally, robots are equipped to handle only a very limited
number of domains, as changing contexts might require
a robot to handle very different vocabulary and concepts.
To overcome these limitations, it is essential that robotic
NLU algorithms be self-adapting, i.e., be able to both learn
the syntactic and semantic structures of new words, and
to ground those words semantically to real-world actions,
objects, and concepts.

Several projects have attempted to address this need for
online learning of meanings in the context of human-robot
interaction.! [6], for example, demonstrate an instruction
system for motion learning in robots using a structured
control language. However, this work relies on an very
limited, hand-crafted fragment of English (containing ap-
proximately 10 grammar rules, compared to the hundreds
of rules typically necessary to even approximate a natural
human-like grammar).

[71, [8] demonstrate a system for word learning in robots;
however they only learn nouns, pronouns, and prepositions
(limited to perceptions), not verbs and actions.

[9] describe a system that learns to perform action se-
quences from natural language instructions; however, the
sequences are situation-specific, rather than being adaptable
to many specific situations.

[10] describe a system that can learn new actions based
on natural language descriptions. However, the descriptions
have to follow a very rigid structure that maps easily onto a
procedural semantics for action execution.

Similarly, [11] translate natural language instructions into
sequences of goals for which a planner then generates
corresponding action sequences. They employ a flexible
dependency parser trained on real-world language, rather
than relying on a small set of grammar rules. As a result, their
system is able to handle several types of disfluencies robustly,
which none of the above systems can handle. However, while
they are also able to fill in missing steps in instructions, their
system cannot handle unknown words.

What is needed is a systematic way of handling new words
semantically on the natural language side and procedurally

INote that we are not focussing on work here that attempts to learn action
verb meanings from observations (e.g., [5]). Moreover, for space reasons,
we cannot review past work on general word learning that is not specific
to action verb learning using natural language instructions on robots.

in the case of action verbs on the action execution side. In
the next section, we will specifically propose an algorithm
that can learn the procedural semantics of verbs together with
control laws that run in real-time on a real robot to perform
the action. Moreover, scalability is implicit in the design, as
every component is general: the grammar is trainable, not
hand-written; definitions for unknown words of any type are
learned automatically; and learning is not a separate pro-
cess, but uses syntactic/semantic parsing procedures already
instantiated for understanding.

III. LEARNING MEANINGS OF ACTION VERBS

Learning the meanings of novel action verbs via natural
language interactions requires a robot to identify action
expressions, to extract their syntactic requirements and to
generate procedural semantics that can be associated with
the syntactic form. In particular, it is both necessary to
understand the syntactic constraints in natural language, and
possible to exploit those constraints for the generation of
semantic forms.

Take, for example, the following uses of the word wait: (1)
“I want you to wait,” (2) “to wait means to stay here”, (3)
“wait”, and (4) “Paul waits”. While all uses of wait must
ultimately reveal a grammatical subject denoting an actor
who waits, only in some of the utterances is the subject
actually expressed (namely examples 1 and 4). Furthermore,
in examples 1 and 2, the word wait takes a syntactic
argument, to, that the others do not require.

In order to represent these different ways in which action
verbs might occur, the algorithm for determining meaning
representations must have two properties: (1) it must be able
to insert grammatical subjects that are not overtly expressed;
and (2) certain words that serve only syntactic roles (without
any particular meaningful semantic interpretation) must not
be considered arguments to the action verb. We now intro-
duce a process for the generation of semantic forms that
satisfies both requirements.

A. Representing semantic roles

The syntactic analysis is performed using an incremental
dependency parsing algorithm (based on the shift-reduce
parsing algorithm [12]) that creates a dependency graph by
successively choosing one of four parsing actions based on
the current input word. The first two actions, shift and reduce,
are the same as in the shift-reduce algorithm: to reduce
a node means to decide that processing of the node has
completed and the node is subsequently set aside; to shift (to
a new node) means to start working on the next input node.
The other two actions are left-arc—connect a (syntactic)
“head” node (or parent node) to a child node on its left—
and right-arc—connect a head node to a child node on its
right. The parser chooses among the four parsing actions
based on a model learned from a pre-parsed corpus via the
k-nearest-neighbor machine learning algorithm. The edges in
the dependency graph are labeled according to the type of
relationship that exists between the two words represented
by the connected nodes where the set of possible arc labels

is based on the set used in the most common dependency
grammar Penn Treebank ([13]). For example, if a subject
(SBJ) arc exists between two words, it indicates that the
child is the subject of the head.

The creation of a semantic arc by the dependency parser
indicates a predicate-argument relationship. For example, if
a SBJ arc is created between two nodes, it indicates that
the head node is a predicate with the child being its subject
argument, which can, in turn, be expressed in A-theoretic
semantics. The dependency structure for the node want with
three arguments for the subject (SBJ), the object (OBJ), and
the action(ACT), would be expressed as:

ACsBI-AYoBT AN2AcT - Want(TsBy, YOB.T, ZACT)

indicating that the subject wants the object to perform
a particular action. Note that the variables bound by the
lambda operators are typed, thus requiring arguments of a
particular type for subsequent lambda-conversions to suc-
ceed. The idea is to explicitly represent semantic restrictions
on the types of entities to which a given action applies
(e.g., usually autonomous agents or actors such as people
and robots are taken as being able to perform actions such
as wanting, while certain entity types might be legitimate
arguments for the objects an action like following operates
on). Alternatively, we can also use untyped variables, but
make the type restrictions explicit as part of the meaning
representation:

Az Ay Az.want(z,y, z)&actor (x)&actor (y)&action(z)

Type restrictions for overt arguments are taken directly from
the corresponding argument in the dependency node, and
restrictions for created arguments (e.g., an implicit subject)
are deduced from the requirements that led to their creation.

Note that either of the above renditions of want in lambda
form only explicates the argument types of wanting, but does
not capture what it means for someone to want something
as in “I want to sleep” or for someone to want somebody
else to do something as in “I want you to follow me.”

The latter case might express the human speaker’s
request to the robot to follow the speaker. Hence,
the meaning of “want” needs to be represented as
a request or command that the robot perform the
“follow-speaker” action. This could be expressed as
\yoBs-Azact-received_orders(yop.y, zact).> The order,
in turn, can be expressed (and should be understood by the
robot) as a goal that the robot needs to achieve. To indicate
that the semantic forms of action verbs that denote actions to
be performed by the robot are really goal state descriptions,
we will use the past-tense form of the action verb expressing
the requested action. So, for example, the command to pick
up a block would be expressed as picked-up(robot, block),
meaning that the robot should arrive at a state where it, the
actor, has completed the action of picking up the block.

2Changing the predicate in “x wants y to do z” to “y receives-order z”
is, of course, quite specific to this particular example of the three-place
wanting-action that can be construed as an “order”.

function determineVerbMeaning()
DG = action = args = meaning = ()
while —(end-of-utterance V action=REDUCE) do
word := readNextInput()
action := getParserAction(word,DG)
DG := updateDependencyGraph(word,DG,action)
if —isVerb(word) then
args := args U{word}
meaning := update-\(meaning,args)
else
match := retrieveMatches(word,args)
if —empty(match) then
meaning := fill(match,DG)
else
meaning := makeLambda(word,args,DG)
end if
end if
end while

Fig. 1. The algorithm for translating a syntactic dependency structure into
a corresponding A-expression.

Another example, which this time includes a syntactic arc
label, is that of follow in the utterance “to follow somebody”.
It also has three dependents: a SBJ, a TO, and an OBJ.
However, since TO is purely syntactic (in other words, it
comes into the sentence from a rule-based syntax and does
not add anything semantically), it is not considered an argu-
ment. For that reason, the semantic form of “follow” would
be expressed as Ax.\y.follow(z,y)&actor(x)&actor(y),
indicating that the actor x follows the actor .

We next show how to generate meaning representations
for new semantic forms of action verbs from semantic forms
representing known meanings.

B. Generating semantic forms and action representations

The basic idea of the proposed algorithm for generating
meaning representations for new semantic forms is simple:
we start by parsing a sentence word-by-word and attempt to
retrieve an appropriate lambda-expression from a dictionary
of known expressions. In order for an expression to be
appropriate for use, its arguments must “match” those of the
dependency node for the word under consideration, i.e., it
must have the same number and type of semantic arguments
as the dependency node. When a matching expression is
found, we retrieve it and fill in arguments wherever possible.
When no matching expression can be found, a new one is
created as described above based on the unknown word token
and its argument structure as presented. As words continue
to arrive, the argument structure may need to be updated. In
that case, previously-created expressions that no longer fit are
discarded and new meaning expressions are either created or
retrieved. This process continues until the dependency parser
performs a reduce action or reaches the end of the utterance.
We now know that we have found all arguments for a verb. A
pseudo-code summary of this algorithm is shown in Figure 1.

If a procedural representation of the verb’s action meaning
exists in the knowledge base, we simply retrieve it and
associate it with the meaning representation. Otherwise we
examine the argument structure to determine whether the
action is required of the robot, in which case the robot will

have to find a way to obtain it (e.g., by asking a human
to define the meaning of the action verb or possibly by
using a problem solver to determine what action sequences
might lead to the desired goal state expressed by the past-
tense form of the action verb—note that for novel verbs
the problem solver will most likely not recognize the goal
state representation and will thus not be able to remedy the
situation, leaving only human help as an option). We now
walk through an example to illustrate the various steps.
Consider the utterance “To follow someone means to
stay within one meter of them,” which defines the verb
to follow. Figure 2, referenced throughout this discussion,
shows the parse graph at various stages. Upon recognition of
the first three words, To follow someone, the parser produces
the graph shown in Figure 2(a). We have no expression
for follow, but from the parse we know that the predicate
follow has one child connected by a syntactic arc labeled
as a VMOD (“verb modifier”) and one child connected by
an arc labeled OBJ (“object”). The A-expression is created
according to the algorithm in Figure 1. In this case, we get

Azspy.yopy.followed(x,y)
giving us for the full utterance:
Azgpy.followed(x, someone)

“followed” appears to be a two-place predicate taking a
subject and an object. The robot does not have a definition
for this word, so it creates a new one (“CL” means “current
lambda expression”):

Created meaning expression for follow:
#SBJ.#0BJ.followed (SBJ, OBJ)
CL = #SBJ.followed (SBJ, someone)

Note that we are not yet resolving the reference of “some-
one”, nor are we introducing a variable instead, for reasons

that will become clear shortly.

The graph structure after recognizing means is shown in
Figure 2(b). The word means takes follow as its argument
with the arc label SBJ, so means appears to be a one-place
predicate. The node structure of follow is unchanged. The
only expression we have for means takes two arguments,
SBJ and OBJ, so a new expression with an overt subject is
created:

Azspg.means(z)

and the current A-representation, including two unknown
words (follow and the hypothesized single-argument form of
means) is:

means(Axgp . followed(x, someone)).

The computer produces the output:

Created meaning expression for means:
#SBJ.meant (SBJ)
CL = meant (#SBJ.followed (SBJ, someone))

After to stay is recognized (Figure 2(c)), the
parser finds a matching expression for means,

Azspy.-ANYops.-assocmeaning(x,y), and has the following
A representation:

assoc_meaning(Azgp . followed(x, someone),
Azgpg.stayed(x)).

producing the following output (“AM” means “associated
meaning”):

Created meaning expression for stay:

#SBJ.stayed (SBJ)

CL = AM(#SBJ.followed (SBJ, someone),
#SBJ.stayed (SBJ))

As depicted in Figure 2(d), once within is received, stay
has two arguments, syntactic VMOD and LOC, matching
the dictionary definition:

Aespg. Ayroc-maintained(x,y)
giving us the A-representation:

assoc_meaning(Axgp ;. followed(x, someone),
Axspg.maintained(z, within))
A new expression must be created for within:

Created meaning expression for within:

within

CL = AM(#SBJ.followed (SBJ, someone,
#SBJ.maintained (SBJ,within))

The addition of one meter, which attaches to within,
results in the A-expression:

assoc.meaning(AxspJ.followed(z, someone),

Azsps.maintained(x, < (one_meter))
This expression is replaced with the arrival of one:

Created meaning expression for:

#NUM.within (NUM)

CL = AM(#SBJ.followed (SBJ, someone,
#SBJ.maintained (SBJ,within (1))

The dictionary expression for within is matched when meter
is recognized: it is a two-place predicate, indicating that one
measurement (the first argument) should be less than the
second argument:

Created meaning expression for meter:

meter

CL = AM(#SBJ.followed (SBJ, someone),
#SBJ.maintained (SBJ, < (meter,1)))

Finally, the addition of of them completes the expression:

assoc_meaning(Axsgp. followed(xz, someone),

Azspy.maintained(x, < (distance_from(them), 1))
Upon receiving of, the structure for meter begins to emerge—
it refers to the distance from the subject to its single argu-

ment. The final form of the dependency graph is generated
(Figure 2(e)) and the A-free semantic representation is

CL = AM(#SBJ.followed (SBJ, someone,
#SBJ.maintained (SBJ,
<(distance_from(them),1)))

The final argument structure of to follow is:

AzsBr.AyorJ.followed(z,y)

To follow someone

(a) (b)

sbj obj
Pl el
To follow someone means to stay within

(d

Fig. 2.

The anaphor them must be resolved, using anaphora reso-
lution, a subset of coreference resolution in which a spoken
anaphor (e.g., a pronoun) is resolved to its antecedent within
the utterance. The following procedure is used for anaphora
resolution: the current focus of attention (e.g., the unknown
word) is maintained, along with a list of the discourse entities
for each utterance. The most likely antecedent of a given
anaphor is selected from these discoursal and focal entities
based on cues such as sentence structure. By consulting our
semantic knowledge base, we learn that them must refer to
a noun. The only noun in this utterance, and thus the only
possible antecedent, is someone.

assoc-meaning(Axsp.followed(x,y)&actor(y)

)
Azspy.maintained(z, < (dist_from(y), 1))
We further assume that a verb’s subject is an actor:

assoc.meaning(Axgp.;.followed(x, y)&actor(z)
&actor(y), Axspy.maintained(z,
< (dist_from(y),1))

This structure is then sent to the goal manager:

AM(["followed", [x,actor], [y,actor]l],
[maintain (< (distance_from(y),1))1)

and from that point on the robot will respond correctly to
requests that it follow someone.

IV. VALIDATION

For validation, the algorithm described above was inte-
grated into a robotic architecture which includes compo-
nents for robot control, vision processing, planning, sensing,
and others, in addition to various components for natural
language processing. The entry point to the natural lan-
guage subsystem is the CMU Sphinx speech recognizer.
Recognized words are sent to the next NLU component,
the incremental, deterministic data-driven dependency parser
Mink, which is an incremental version of MaltParser [14].
The parser incorporates the part of speech tagger by first
checking for a tag in the dictionary; if a tag is not found there,
it uses a trigram model to assign one. Performing in tandem
with the dependency parsing is a A converter which produces
semantic representations of the input, either by using mean-
ing expressions found in a dictionary or, if such expressions
are either not existent or not applicable, by creating new

A |

To follow someone means

shj obj
PilE I
To follow someone means to stay

(©)

shj obj
\rmod‘ obj J/J/ vmod
KA Kl

To follow someone means to stay within 1 meter of them

dist
b

obj pmod

(e) Final form

Dependency graph progression for “to follow someone means to remain within 1 meter of them.”

expressions consistent with the dependency structure. Finally,
anaphora resolution and other post-processing are performed,
still in the Mink component.

If unresolved references or unrecognized words are left,
a dialogue component can generate verbal requests for ad-
ditional information or clarification. Once a complete valid
action expression has been obtained, the goal representation
is sent to the goal manager component component for
translation into an action script (preserving any restrictions
on the argument types). The goal manager performs all
action selection, goal management, and action execution
tasks. Action scripts, which specify the sequence of actions to
achieve a goal, constitute the “procedural knowledge base” of
the goal manager. Multiple goals can be pursued concurrently
(i.e., multiple action scripts can be executing concurrently);
when resource conflicts arise, the goal manager resolves them
based on goal priorities.

The enhanced robotic architecture allows a human opera-
tor to interact with a robot to explain (in natural language)
action words it had not previously known, and allows the
robot to both perform the new action and to store the
procedural knowledge for future use. Specifically, in this
demonstration a human interlocutor H asks the robot R
to follow him, but the robot does not know the concept
of “following someone”. Hence, it asks for clarification,
which the human provides. From the clarification, the robot
learns the meaning of “following someone” and is able to
immediately perform the associated action.

H I want you to follow me.

R I don’t know how to follow.

H it means that you should stay within 1 m. of me
R okay

The demonstration was performed using an implementation
of the algorithm on a Segway robot equipped with two USB
web cameras (calibrated to be able to determine distance
from stereo), a Hokuyu laser range finder (for obstacle
detection), a microphone (for speech input), and a speaker
(for speech output). The parser had access to the dictionary
shown in Table I. A short video of this interaction can be
viewed at http://tiny.cc/segwaywalk.

V. DISCUSSION

The example demonstrates that the proposed algorithm
allowed the robot to autonomously learn new verb meanings

TABLE I
MEANING EXPRESSIONS USED IN THE VALIDATION.

Word meaning expressions

I speaker

want AYoBJ-AzacT . receiveorders(YoBg, ZACT)
you robot

to to

me speaker

it it

means AespJ.-\oBJ-assoc.meaning(Tsps, YOBJ)
that ATPROP-TPROP

should | (A\zspy-Ayve-yve(rssr)

stay Mzpoc-maintain(zroc)

within | Aznuar-Ayprst- < (YprsT,ZNUM)

of Xzopy-of(zoB.r)

one 1

meter Azop.j.distancesrom(zoB.y)

and immediately carry out the associated actions without any
human intervention. And it can learn complex sequences
of actions containing not-yet-known actions, continuing to
ask for further specification until all action instructions in
the sequence are fully defined. This flexibility is critical for
scaling up to larger, more complex robotic systems that need
to interact with humans in natural ways. However, since
successful learning of a large number of action concepts
depends on having a varied and flexible set of action building
blocks from which to build more actions, it is important to
select a good set of initial primitives from which compound
meanings and complex actions can be derived. Also note that
while many action verbs can be learned through instruction,
some are more awkward to describe than others, so the
results of instruction may vary. Understanding which types
of verbs should be described in language versus taught using
other means (e.g., visual demonstrations though gestures,
etc.) is an interesting problem for future work. Ideally, an
integrated learning system would be able to handle both
verbal and non-verbal aspects of teaching (e.g., linguistic
expressions with accompanying gestures fixing some part of
the meaning description). Another important open question
is how inter-instructor variability will affect the successful
acquisition of verb meanings and the learning of control laws
(e.g., instructors that skip important steps or give instructions
that are ambiguous). This is clearly an empirical question
that can be answered in user studies where different defini-
tions for action verbs are collected from subjects. Such an
evaluation is beyond what the space in the paper allows for,
will ultimately aid in verifying that the proposed algorithm is
sufficiently flexible to cope with different ways of expression
verb meanings.

VI. CONCLUSIONS

We introduced a new algorithm that naturally integrates the
natural language understanding system with the production
of new action scripts from spoken instructions and demon-
strated its effectiveness on a robot in the context of spoken
dialogue-based human interactions using a scenario in which
the robot successfully learned operational definitions for
a previously unknown action verb. Different from other

approaches to word learning where learning algorithms are
external to natural language understanding, learning here
is deeply integrated in the understanding process and only
limited by the availability of known definitions from which
to build new action meanings. Moreover, by virtue of being
incremental, it is possible to detect lack of understanding
(e.g., missing action verb definitions) early on, which is
critical for a human-robot interaction contexts where rapid
feedback is expected by human interlocutors. Given that the
integrated learning system is robust and scalable due to its
grounding in data-driven dependency parsing, the proposed
approach is not only suitable for online learning in human-
robot interaction scenarios, but also for large-scale learning
of A\ expressions from corpora. This will be evaluated in
future work, in addition to evaluations in human subject
experiments.

VII. ACKNOWLEDGMENTS

This work was in part funded by ONR MURI grant
#N00014-07-1-1049 to the third author.

REFERENCES

[1] M. Marcus, B. Santorini, and M. Marcinkiewicz, “Building a large
annotated corpus of english: the penn treebank,” Corpus Linguistics:
Readings in a Widening Discipline (eds. G. Sampson and D. Mc-
Carthy), 2004.

[2] M. Scheutz, P. Schermerhorn, J. Kramer, and D. Anderson, “First steps
toward natural human-like HRI,” Autonomous Robots, vol. 22, no. 4,
pp. 411-423, 2007.

[3] S.Lauria, T. Kyriacou, G. Bugmann, J. Bos, and E. Klein, “Converting
natural language route instructions into robot executable procedures,”
in Proc. of Ro-Man, 2002, pp. 223-228.

[4] D. Hasegawa, R. Rzepka, and K. Araki, “A method for acquiring body
movement verbs for a humanoid robot through physical interaction
with humans,” in Proc. of AAAI, 2009.

[5] J. Siskind, “Grounding lexical semantics of verbs in visual perception
using force dynamics and event logic,” Journal of AI Research, vol. 15,
pp- 31- 90, 2001.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “From structured
english to robot motion.” in Proc. of IEEE/RSJ IROS, San Diego, 2007.

[71 K. Gold, M. Doniec, and B. Scassellati, “Learning grounded semantics
with word trees: Prepositions and pronouns,” in Proc. of 6th IEEE
ICDL, 2007.

[8] K. Gold and B. Scassellati, “A robot that uses existing vocabulary to
infer non-visual word meanings from observation,” in Proc. of AAAI,
2007.

[9] S. Huffman and J. Laird., “Flexibly instructable agents.” Journal of
Artificial Intelligence Research, vol. 3, pp. 271-324, 1995.

[10] P. E. Rybski, J. Stolarz, K. Yoon, and M. Veloso, “Using dialog and
human observations to dictate tasks to a learning robot assistant,”
Journal of Intelligent Service Robots, 2008.

[11] R. Cantrell, M. Scheutz, P. Schermerhorn, and X. Wu, “Robust spoken
instruction understanding for HRI,” in Proc. of ACM/IEEE HRI, 2010.

[12] J. Nivre, “Incrementality in deterministic dependency parsing,” In-
cremental Parsing: Bringing Engineering and Cognition Together.
Workshop at ACL, 2004.

[13] R. Johansson and P. Nugues, “Extended constituent-to-dependency
conversion for english,” in Proc. of Nordic Conference on Compu-
tational Linguistics (NoDaLiDa) 2007, 2007.

[14] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kiibler, S. Mari-
nov, and E. Marsi, “MaltParser: A language-independent system
for data-driven dependency parsing,” Natural Language Engineering,
vol. 13, no. 2, pp. 95-135, 2007.

