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Abstract—Joint attention – the idea that humans make infer-
ences from observable behaviors of other humans by attending
to the objects and events that these others humans attend to –
has been recognized as a critical component in human-robot
interactions. While various HRI studies showed that having
robots to behave in ways that support human recognition of joint
attention leads to better behavioral outcomes on the human side,
there are no studies that investigate the detailed time course of
interactive joint attention processes.

In this paper, we present the results from an HRI study
that investigates the exact time course of human multi-modal
attentional processes during an HRI word learning task in an
unprecedented way. Using novel data analysis techniques, we are
able to demonstrate that the temporal details of human atten-
tional behavior are critical for understanding human expectations
of joint attention in HRI and that failing to do so can force
humans into assuming unnatural behaviors.
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I. INTRODUCTION

Human social interactions can be very complex and com-
prise multiple levels of coordination, from high-level linguistic
exchanges, to low-level couplings and decouplings of bodily
movements. In particular, the temporal patterns of eye-gaze
coordination between interacting humans, including mutual
eye fixations as well as following gaze shifts to perceivable
objects in the environment, play a critical role in establishment
of mutual rapport and understanding, a mechanism generally
referred to as “joint attention” [1].

The importance of joint attention for HRI has been recog-
nized some time ago [2] and has recently led to interesting
findings [3], promising architecture designs [4], and compu-
tational models of human development [5]. Yet, there is no
HRI study that rigorously investigates the exact time course
of multi-modal human attention behaviors in social interaction
tasks, which is a prerequisite for fully understanding the nature
of joint attention in HRI and ultimately for the development
of robotic architectures that can lead to natural HRI [6].

In this paper, we investigate the temporal characteristics
of joint attention processes in human-robot interactions in
an experimentally unprecedented way. We use carefully con-
trolled robot behaviors to collect detailed time-stamped multi-
modal data (including eye-tracking, visual and auditory data
in naturalistic human-robot interactions) and apply novel data

analysis methods to this rich data set to discover the exact
time course patterns of human joint attention behaviors. The
goal is to better understand the nature of human multi-modal
coordination processes to be able to inform the design of HRI
architectures in the future.

The paper is organized as follows. We start with a brief
background and related work section making the case for a
rigorous experimental study of joint attention behaviors. We
then introduce our experimental paradigm and report results
from an HRI experiment that demonstrates the complexity
of temporal patterns of human eye gaze, motion and verbal
behaviors. We conclude with a discussion of our findings and
directions for future work.

II. BACKGROUND AND RELATED WORK

The very idea of “joint attention” is that individuals can
make inferences from the observable behaviors of others by
attending to objects and events that others attend to. In its
simplest form, joint attention requires the establishment of
eye contact between two people, followed by one person
intentionally breaking it to be able to look at an object of
interest, followed by a subsequent fixation of that object by
the other person. In its most general form, it is a “meeting
of minds” that requires shared context and presuppositions (in
addition to shared focus) [7]. In developmental psychology,
there is convincing evidence that even young children are
sensitive to gaze and pointing cues in child-parent interaction,
and that they use those cues to follow the adult social partner’s
attention [8], which facilitates early cognition and learning
[9], [10]. This prompted some to study the dynamics of joint
attention processes and behavioral couplings in simulations
(e.g., [11]).

In HRI, joint attention processes have been recognized as
a critical component in human-robot interactions for quite
some time. Early efforts focussed on building architectural
mechanisms of joint attention [2], [12], [13].

Recently, several HRI studies evaluated joint attention be-
havior. [14] investigated the role of eye gaze in a story telling
robot and found that subjects were better able to recall the
story when the robot looked at them more while it was telling
the story.



[3] report results from a study where humans watched a
video of a robot producing statements about a visual scene
in front of it. Eye-tracking data showed different patterns of
human eye gaze depending on the robot’s gaze and speech
and confirmed that humans are able to comprehend the robot’s
statements faster when the robot’s gaze behavior is similar to
that a human would exhibit if she uttered the same sentence.

[15] performed experiments with a guide robot designed
using data from human experiments to turn its head towards
the audience at important points during its presentation. The
results showed that human listeners reacted better non-verbally
to human-like head turns of the robot compared to non-human-
like head turns.

Finally, [16] studied the extent to which eye-gaze behavior
of the robot could signal “participant roles” (in a conversation)
to human observers and confirmed that subjects’ behaviors
conformed to the communicated roles.

While the first two studies found overall improvement in
human comprehension and the other two studies confirmed
typical joint attention behavior of humans in some robot con-
ditions, none of the studies investigated interactive attention
processes, e.g., how humans react to the robot’s reaction to
the human shift in eye gaze. For this kind of investigation, the
robot’s behavior cannot be scripted in advance (as in the above
studies). Rather, the robot must be able to generate real-time
behaviors based on real-time perception of human behavior.

Given that critical parts of human joint attention processes
naturally occur at a subconscious level and include subtle
carefully timed actions (e.g., eye gaze shifts to establish
eye contact) and reactions (e.g., eye gaze shifts to objects
of interest inferred from perceived eye gaze), we need an
experimental paradigm that will allow a robot to interact with
humans at this fine-grained level of detail. Failing to respect
the subtle time course of human attentional processes will in
the best case lead to prolonged, unnatural HRI; in the worst
case, however, it could lead to human lack of interest and trust,
frustration and anxiety, and possibly resentment of the robot.

III. EXPERIMENT

The overall goal of our study is to investigate the exact
time course of multi-modal interaction patterns that occur
naturally as part of joint attention processes in human-robot
interactions. We employed a word learning task where the
human participants were asked to teach the robot the names
of a set of objects. We selected this task for five reasons:
(1) it has an explicit goal that allows participants to naturally
engage with the robot in interactions while being constrained
enough to make real-time processing on the robot’s actions
feasible, which in turn allows for adaptive robot behavior; (2)
it has been used successfully in a variety of developmental
studies investigating multi-modal human-human interactions
(e.g., between parents and their children [17]); (3) it allows
us to investigate the fine-grained temporal patterns and rela-
tionships between human eye gaze and human speech as part
of the larger joint attention processes; (4) beyond modeling
human interactions, the task itself has its own merits as it can

help shed light on how robots might acquire new knowledge
through human-robot social interaction [18];1 and (5) it can
ultimately be used to develop cognitive models of temporal
interaction patterns that in an unprecedented way capture the
time course of human-human interactions (cp. to [5]).

The experimental paradigm is noteworthy in that it is:
• Multimodal: Participants and the robot interact through

speech and visual cues (including perceivable information
from vision, speech, and eye gaze).

• Interactive and adaptive: The robot can follow what
the human is visually attending to (based on real-time
tracking of human eye gaze) and thus provide visual
feedback to human subjects who can (and will) adjust
their behavior in response to the robot’s response.

• Real-time: The robot’s actions are generated in real time
as participants switch their visual attention moment by
moment.

• Naturalistic: there are no constraints on what participants
should or should not do or say in the task.

We defined two experimental conditions: 1) the following
condition in which the robot monitors the participant’s gaze
in real time and then moves its head to look toward the same
location that the participant is visually attending to; and 2) the
random condition in which the robot completely ignores the
participant’s behaviors and instead generates random move-
ments during the whole interaction. Note that compared with
descriptive statistics that one can compute from observing nat-
ural human-robot interaction, our experimental manipulation
with two conditions provides a more systematic way to study
and quantify real-time human-robot interaction.

Will participants in the random condition pay overall more
attention to the robot compared with participants in the
following condition? Moreover, in addition to a comparison
of overall eye movement patterns in the two conditions,
the more interesting research question, is how participants
will differ in the two conditions at a fine-grained level. For
example, subjects might spend more time attending to the
robot with longer eye fixations in the random condition. They
also might spend more time in attracting the robot’s attention
before naming objects, and therefore, generate fewer naming
utterances. Alternatively, they might more frequently monitor
the robot’s attention with shorter eye fixations and generate
more naming utterances in order to attract the robot’s attention
through the auditory channel. Furthermore, open questions can
be asked about the details of eye fixations in conjunction with
naming events: will subjects look more at the robot or more
at the named object? Will their eye movement patterns change
over the course of naming speech production? Will those in the
following condition generate different eye movement patterns
compared with people in the random condition? And if so, in
what ways?

To be able to answer these questions, we collected and

1For example, it can help answer the question of how robots should adjust
their behaviors in ways that may encourage humans to generate better teaching
behaviors to facilitate communication and learning.



Fig. 1. A snapshot from the participant’s first-person view, sitting
across a table from a robot, trying to teach the robot object names.
The cross-hair indicates the participant’s eye gaze at this moment. In
this example, the robot was not following the participant’s attention
(“random condition”).

analyzed fine-grained multimodal behavioral data that would
allow us to discover the time course of sensorimotor patterns.

A. Participants

25 undergraduate students at Indiana University participated
in the study (4 of them were excluded due to technical
problems with their eye tracking).

B. Experimental Setup

The experimental setup is depicted in Figure 1, with a
human subject sitting across a table from a robot. The human
wears an ASL head-mounted eye-tracker with a head-mounted
camera to capture the first-person view from the participant’s
perspective, and an overhead camera provides a bird’s eye
view of the scene. A box with two sets of colored objects
is located on the subject’s side, each set containing three
objects with colors “blue”, “pink”, and “green”. Objects are
unique in each set in terms of shapes and names. The object
names are displayed on labels that are attached to the drawers
containing the objects and are visible to the participant during
the experimental run.

The employed robot is humanoid torso with 2 DoF (degrees
of freedom) movable head and two 3 DoF arms. The robot’s
head includes two 2 DoF “eyes” with integrated Firewire cam-
eras, two 1 DoF movable eye-brows and two 2 DoF movable
lips. In the present experiment, only the head was actuated.
The robot’s chest also includes integrated microphones and
speakers, but only the microphones were used for recording
(no speech recognition was performed). A single Linux PC
(Intel Pentium 4, 2.80Ghz) was used for running all robotic
control software implemented in our DIARC architecture [6]
(which has been used successfully for many HRI studies in
our lab, e.g., [19]–[21]).

An additional camera was mounted behind the robot to
provide a static view of the visual scene regardless of the
robot’s head orientation or head movement. This static camera

was used in the “follow condition” together with real-time eye
tracking information from the eye-tracker worn by the human
to determine the object the human looked at. Specifically, color
blob detection was performed on the image from the first-
person view camera mounted on the eye tracker to determine
whether the human looked at any of the colored objects or
at the robot (based on superimposing the cross-hair human
eye fixation data on the image from the head cam). The corre-
sponding colored object could then be determined in the static
camera’s image based on color correspondence alone (unless
the human fixated on the robot). A head motion was initiated
to center the head on the fixated object (or the person’s face if
the human was looking at the robot) based on real-time gaze
data from the participant. In the random condition, the robot
only executed pre-programmed random sequences of head
movements followed by short pauses where the head remained
stationary for a randomly determined amount of time. Thus,
the robot completely ignored the participant’s behaviors.

C. Procedure

To facilitate visual processing, participants were asked to
to put on a white lab coat and remove any hand accessories.
The eye tracker was calibrated as follows: the subject was
seated in front of a calibration board with nine calibration
points. The eye tracker was placed on the subject’s head, and
the experimenter adjusted the alignment to find the position in
which the tracker could best track the subject’s eyeballs. Next,
the experimenter calibrated the eye tracker using the ASL
eye-tracker software. When the calibration was complete, the
subject was guided into the experimentation room and seated
opposite the robot. A head-mounted microphone was attached
for recording the subject’s speech. The subject was shown the
two sets of objects (in their drawers). Subjects were allowed to
teach the robot however they wanted and were encouraged to
be creative. The subject started by moving objects in the first
set from the drawer to the table. The robotic architecture was
started, and the experimenter instructed the subject to start.
The subject was allowed one minute to teach the robot the
names of the three objects in a set (see Figure 1). After the
minute was up, the experimenter notified the subject to switch
to the second set. Subjects alternated between the two sets two
times (4 trials in total) in approximately 4 minutes (M=4.21s,
SD=0.25).

D. Data Processing

As shown in Figure 2, we collected multimodal streaming
data, including first-person view video from the participant’s
perspective, first-person view video from the robot, video from
a bird’s eye camera on the table top, gaze data from the ASL
eye tracker, and speech data, all of which will be used in our
analyses.

a) Visual data: Since the interaction environment was
covered with white curtains and visual objects were made with
unique colors, the detection of objects in view can be done
easily based on color blobs. Similarly, we used skin color to
detect hand blobs and red color to detect the robot in view.



Fig. 2. In our experiment, the collected and processed multi-streaming multi-modal data included speech, multiple video streams from
different cameras, and eye gaze. The combination of visual processing and gaze information defined temporal Region-of-Interest (ROI)
events (highlighted in the figure).

As shown in Figure 2, five Regions Of Interest (ROIs) were
defined and calculated frame by frame: the robot, the three
objects, and the subject’s hands. In practice, we decomposed
the whole video from the participant’s view into an image
sequence and ran the color detection program on each image
to find the 5 ROIs.

b) Gaze data: We computed eye fixations using a
velocity-based method to convert continuous eye movement
data into a set of fixation events (see details in [10]) . For
each fixation, we superimposed (x,y) coordinates of eye gaze
onto the image sequence of the first-person view to calculate
the corresponding ROIs moment by moment.

c) Speech: We implemented an endpoint detection algo-
rithm based on speech silence to segment a speech stream
into several spoken utterances, each of which may contain
one or multiple spoken words. We then transcribed speech
into text. The final result is a temporal stream of utterances,
each of which is coded with onset and offset timestamps and
a sequence of spoken words in the utterance.

In the following subsections, we first report analyses of
eye movement data from participants of both groups and then
report analyses of their adaptive behaviors in speech acts. We
integrated speech and eye movement data, zoomed into the
moments when they named objects and extracted dynamic
time-course patterns around those naming moments. All of
the following statistics and analyses were based on the whole
data set across 21 subjects (11 in the following condition and

10 in the random condition), containing about 50,000 image
frames, 190,000 gaze data points, 4590 eye fixations, 2585
spoken utterances, and 1053 naming utterances.

TABLE I
EYE MOVEMENT MEASURES AVERAGED ACROSS TRIALS

(APPROXIMATELY 1 MINUTE PER TRIAL, ** INDICATING STATISTICAL
SIGNIFICANCE, P<.001, T-TEST, TWO-TAILED)

following random
number of attention switches (eye fixations) 53.61 55.8
average fixation length in seconds 0.96 1.16
number of robot looking fixations 22.32 21.75
average length of robot fixations in seconds (**) 1.11 1.72
longest fixation in seconds (**) 3.66 5.92

E. Analyses of Eye Movement Data

As shown in Table I, the overall eye movement patterns from
the two experimental conditions are similar in terms of the
total number of eye fixations and the average length of those
fixations. Moreover, human participants in both groups gen-
erated similar gaze behaviors toward the robot. For example,
the total number of eye fixations on the robot is comparable
between two groups. However, a closer examine of gaze data
revealed the differences between the two experimental condi-
tions. Even though the total number of fixations on the robot
is similar, participants in the random group generated longer
fixations (M=1.72 sec per fixation) than those in the following
group (M=1.11sec). Taken together, the results suggest that



Fig. 3. A comparison of average fixation times on the robot or objects
in the two experimental conditions.

participants in the random condition visually attended to the
robot significantly longer (through longer eye fixations) than
to objects and also longer than those in the following group
(see Figure 3). In contrast, there is no significant difference
in average fixation of the robot or objects in the following
condition. Moreover, participants in the following condition
looked slightly longer at visual objects compared with those
in the random condition. Hence, the most interesting difference
between the random and following groups with respect to eye
movement patterns is the increasing attention on the robot in
the random group where the robot and participants were not
in the joint attention state.

Figure 4 reports transitional eye fixations (saccades, etc.)
from one ROI to the next ROI. Three different kinds of transi-
tion were measured: 1) from robot to object; 2) from object to
robot; and 3) from object to object. We found that participants
produced a similar number of attention switches between
the robot and objects in the two experimental conditions.
However, there were significantly more attention switches
between objects in the following condition. Since we also
know that the total number of attention switches is similar
in the two conditions, this suggests that participants in the
following condition were more likely to switch visual attention
between objects while those in the random condition needed to
check the robot’s visual attention very frequently and therefore
rarely switch gaze directly between objects without monitoring
(going back to) the robot.

In sum, the analyses of eye movement data suggest that
1) humans were sensitive to the differences in the robot’s
behaviors in the experimental conditions; 2) they adjusted
their behaviors accordingly by spending more time on keeping
track of the robot’s attention in the random condition; and 3)
although the overall eye movement patterns were (more or
less) similar between two groups, fine-grained data analyses
discovered various significant differences, ranging from the
duration of the longest fixation, to the proportion of time
looking at the robot, to the transitional gaze movements
between visual objects.

Fig. 4. The average numbers of fixation transitions (saccades, etc.)
within a trial. Three transition types in the two conditions were
calculated and compared: from robot to object, from object to robot,
and from object to object.

F. Analyses of Speech Acts

We first calculated a few basic statistics from participant’s
speech acts (see Table II). On average, participants in the
two conditions produced a similar number of distinct word
types (Mfollowing = 88; Mrandom = 86) and a similar number
of spoken utterances (Mfollowing = 114; Mrandom = 121).
However, participants in the random condition generated more
tokens 2 (Mrandom = 459) than those in the following con-
dition (Mfollowing = 349) and they also generated longer
spoken utterances (3.79 words per utterance) than the other
group (3.31 words per utterance). Although these differences
are statistically significant (t-test, p<.01), they do not seem
useful for extracting general principles for HRI designs. More
interesting are naming utterances (containing object names)
as participants in the random condition produced significantly
more than those in the following group (60 versus 48); and
this is not simply because participants in the random produced
more speech (as we already stated). In fact, the proportion of
naming utterances from participants in the random condition
(0.50) is also much higher than from those in the following
group (0.42). Together, both the total number of utterances and
the proportion of naming utterances contribute to the overall
higher number of naming speech acts in the random condition.

TABLE II
OVERALL STATISTICS OF VOCABULARY (** INDICATING STATISTICAL
SIGNIFICANCE P<0.001; * INDICATING P<.01, T-TEST, TWO-TAILED).

following random
number of words 88 86
number of tokens (*) 394 459
number of utterances 114 121
words per utterance (*) 3.31 3.79
number of naming utterances (**) 48 60
proportion of naming utterances (**) 0.42 0.50

This raises the question of what else participants produced
in their speech and what the potential differences were be-

2The number of tokens counts the number of occurrences of all distinct
word types.



TABLE III
AVERAGE OCCURRING FREQUENCIES OF SELECTED WORDS

following random
“look” 2.12 6.33
“see” 2.23 7.78
“here” 2.92 11.12
“robot” 0.33 3.44
“hey” 0 1.78
“yes” 1.10 2.83
object names 48.78 60.44

tween the two conditions? Hence, we next calculated the
histogram of all spoken words in each group separately and
compared the two lists to be able to detect words with
different frequencies. Table III shows a subset of those words.
Participants in the random condition produced words like
“look”, “see”, “hey” and “here” much more frequently, clearly
to attract the robot’s attention. Taken together with the results
from Table II, we can conclude that participants in the random
condition generated more attention-attracting utterances and
more naming utterances than participants in the following
condition, possibly because the latter did not (need to) do so
since the robot was always following the participant’s visual
attention. It is possible that more naming and more attention-
attracting utterances in the random condition could benefit
communication and learning in at least two ways. First, since
participants noticed that the robot was not visually attending
to their behaviors and that it was difficult to attract/control
the robot’s attention through vision and manual action, they
attempted to use speech acts from the auditory modality
to better attract the robot’s attention. Moreover, from the
language learning perspective, participants might have realized
that learning situations were not ideal since the robot did
not pay attention to the objects when they named them. In
order to overcome this, they chose to name those objects
more frequently with the hope that more (imperfect) naming
instances would increase the chance of successful learning
even though each individual naming instance was not ideal.

But did people in the two conditions name objects in
different ways? Figure 5 shows the histograms of the du-
rations of naming utterances in two conditions. Participants
in the random condition tended to generate longer naming
utterances while naming utterances from those in the fol-
lowing conditions contained more than 70% of shorter ones
(<1.5 sec). Shorter spoken utterances might be due to two
factors: fewer words in the utterance or a lower speech rate.
We calculated the speech rate and found that there was no
difference between two groups (mfollowing = 1.72 word/sec,
mrandom = 1.67 word/sec). However, the number of words
in naming utterances in two conditions differ – participants
in the following condition generated almost 50% single-word
naming utterances (i.e., only object names). If the robot is
following the human teacher’s attention (as in the following
condition), a human teacher can simply utter the object name
at the moment that both the robot and the teacher are jointly
attending to that object, a straightforward teaching strategy

Fig. 5. The histogram of durations of naming utterances in the
experimental conditions

requiring no complicated syntactic structures to attract the
robot’s attention. Our results confirm that participants in the
following condition clearly adapted to this teaching strategy.
Meanwhile, participants in the random group realized that the
robot was not paying attention and therefore produced more
attention-attracting speech, naming those objects using sen-
tence structures instead of single words. In sum, participants
in both conditions were sensitive to the robot’s behaviors and
adjusted their own speech acts accordingly.

G. Analyses of Temporal Dynamics in Multimodal Data

In an effort to better understand the dynamic processes
that lead up to naming events, we focused on the moments
just before and just after a naming utterance and measured
participants’ visual attention as a way to integrate speech data
with gaze data. The approach is based on what has been
used in psycholinguistic studies to capture temporal profiles
across a related class of events [22] (in our case, the relevant
class of events is a naming event). Such profiles enable one
to discern potentially important temporal moments within a
trajectory and compare temporal trends across trajectories.
Figure 6 shows the average proportions of time across all
naming events (which can be viewed as a probability profile)
that participants looked at the robot, the target object, the other
two objects, or their own hands. Thus, each trajectory in a
plot shows the probability that participants looked at one of
four identities either for the 10 sec prior to naming events
(the left two plots), or during naming events (the middle two
plots, a temporal window of 1.5 sec was used since name
utterances had different lengths), or the 10 sec after naming
events (the right two plots). We observe several interesting
patterns. First, participants in the random condition spent
around 70% of their time on gazing at the robot both before,
during and after naming events. Moreover, there seems to be
no difference among those moments, suggesting that those
participants looked at the robot all the time. Second, even in
the following condition, participants kept track of the robot’s
attention and as a result, looked more at the robot than the
target object. This is a surprising result since we know from
previous studies on object naming in face-to-face interaction
(see a review in [23]) that speakers are likely to look at the



Fig. 6. The proportion of time that participants were looking at the robot, the named target object, the other two objects, or their own hands
before, during and after a naming utterance. The top three plots were calculated from naming instances of participants in the following
condition and the bottom three were derived from participants in the random condition. The left two plots are before naming events; the
middle two during naming events, and the right two after naming events.

target object when they produced the object name. Our results
thus show that maintaining and monitoring joint attention
in face-to-face human-robot interaction significantly changes
participants’ visual attention: they looked at the social partner
more regularly than face-to-face human-human interaction
with referential communication tasks [23], and they did so
even at the moments of object naming. Third, also in the
following condition, we observe increased gaze at the to-
be-named object even before the naming utterance appeared.
Similarly, participants’ visual attention on the target object
decreased after the naming event. Taken together, at those
moments around a naming event, they paid more attention
on the named object than other objects on the table. This
particular gaze pattern between target and other objects is
in line with the results from psycholinguistic studies on the
coupling between speech and gaze [23]. However, this pattern
was not replicated in the random condition. Besides the fact
that participants in the random condition spent a significant
amount of looking time on the robot, the rest of their attention
was more or less equally distributed between target and other
objects. This suggests that participants perceived the robot’s
random behaviors and attempted to adjust their own behaviors.
By doing so, they failed to demonstrate typical behaviors that
are well-documented in psycholinguistic studies on speech and
simultaneous eye gaze. This is of importance for HRI and
requires further investigation as current robots are likely to
violate subtle temporal patterns in joint attention processes
and thus the time course of attention processes that humans

expect. This finding also serves as justification for pursuing a
temporally fine-grained multi-modal analysis of human joint
attention processes in HRI.

Finally, we also extracted more fine-grained dynamic pat-
terns around naming events. For example, even 4 seconds prior
to a naming event in the following condition (the upper left
plot in Figure 6), participants started looking at the target
object much more than the combined looking time on the
other two objects. Between 2500 and 1500 milliseconds prior
to naming, there was an increase of attention toward the
robot, and that increasing attention to the robot stopped and
then dropped after 1500 ms prior to a naming event. Instead,
participants in the following condition paid more attention to
to-be-named objects from then on until to the moment right
before a naming utterance was produced.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated the utility of analyzing
the time course of human-robot interactions in an effort to
reveal human moment-to-moment behaviors. The particular
focus was on detecting critical phases in human multi-modal
joint attention processes. For this purpose, we conducted HRI
experiments in a naturalistic word learning task where a human
instructor had to teach a robot the names of new objects. In
one condition, the robot followed human eye gaze based on
real-time processing of human eye fixations implementing a
simple form of joint attention behavior, while in the other
condition the robot exhibited random head movements that
were indicative of distraction or loss of attentional focus.



We collected detailed multi-modal time course data from the
experiments and use it to analyze the differences in human
reactions to the two conditions.

The results confirmed our general prediction, that humans
paid more attention to the robot in the random condition
compared to the following condition in an attempt to get
the robot’s attention so that they could teach the robot the
names of the objects. However, the more interesting results
were revealed at a finer-grained temporal level of multi-
modal interactions investigating eye-fixations before, during,
and after naming utterances (among other analyses). We found
that humans exhibit similar human joint attention behavior
in the following condition to what happens in human-human
face-to-face interaction, but unnatural behavior with respect
to eye fixations as well as their coupling with naming events
in the random condition. This finding is of high significance,
especially if the goal is to aim for natural HRI.

Future work, thus, can use our experimental findings and
apply them to the design of better HRI architectures. For exam-
ple, we can predict based on our data what object participants
will name based on their eye gaze 3 to 4 seconds prior to the
actual naming event. Hence, a robot that can detect human
eye gaze could be programmed to focus its attention on that
object as soon as the human intention is discovered. This will
likely result in better coordination between humans and robots,
and also reduce human cognitive effort (given that subjects
in the following condition were using significantly simpler
linguistic expressions). Moreover, by studying the details of
eye gaze and naming coupling we will be able to design
behavioral scripts for learning robots that will allow robots to
assume the role of a human teacher that is intuitive and easy to
follow for human learners. Overall, we believe that the kind of
empirically-grounded and sensorimotor-based study of human-
robot interactions exemplified in this paper will ultimately
allow us to systematically investigate important aspects of
human social interactions that can form the foundation for
developing truly natural HRI.
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