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ABSTRACT
Physical agents (such as wheeled vehicles, UAVs, hover-
craft, etc.) with simple control systems are often sensitive
to changes in their physical design and control parameters.
As such, it is crucial to evaluate the agent’s control systems
together with the agent’s physical implementation. This can
consequently lead to an explosion in the parameter space to
be considered.

In this paper we investigate the use of swarms of ultra-low
complexity agents, and address the issue of finding workable
physical agent parameters. We describe a technique for re-
ducing the dimensionality of the search space by performing
evaluation tasks that can be used to predict near-optimal pa-
rameter values for agents in related multi-agent tasks. We
validate our approach on an example task, and demonstrate
that this technique can greatly reduce the computational
resources required to design a multi-agent system.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems
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1. INTRODUCTION
Multi-agent swarms provide attractive solutions for many

important search tasks, such as detecting or tracking tar-
gets of various types ([4, 5]), especially when the agents that
compose the swarms are low-complexity, low-cost platforms.
For example, we have previously demonstrated a method of
detecting and tracking targets using ultra-low complexity
agents that is generalizable to a range of vehicle types [8].
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However, these demonstrations used a highly idealized agent
model that does not take important physical characteristics
of many types of embodied agents into account. The aim
of the current paper is to investigate the effects of using a
more physically realistic simulation model, in particular the
interaction between physical and control dimensions, and
we present and validate a technique for optimizing agent
parameters of this nature.

2. OPTIMIZATION METHOD
We will use the following method, which is aimed at reduc-

ing the search space for the problem of optimizing physical
and control parameters in a multi-agent swarm:

1. Suppose agent with physical/control parameters
(P1, ..., Pn), and multi-agent swarm task T

2. Determine performance measures for swarm for T :
f(T, P1, ..., Pn)

3. Select some parameter Pi, which impacts f(T, P1, ..., Pn),
such that there is some less expensive “predictor task”
Tp with performance measure
g(Tp, P1, ..., Pi−1, Pi+1, ..., Pn) that can be used to pre-
dict optimal values for Pi in T

4. Run Tp for all values of the parameter space
(P1, ..., Pi−1, Pi+1, ..., Pn) and record the values of
g(Tp, P1, ..., Pi−1, Pi+1, ..., Pn)

5. The recorded performance values for each parameter
configuration in Tp are taken as values of Pi for the cor-
responding parameter configurations in T , eliminating
Pi as a parameter of the larger, more costly experiment
set.

Essentially, an agent parameter Pi for the swarm config-
uration is selected, and a new task Tp, which is less compu-
tationally expensive in simulations than the original swarm
task T , is used to predict an optimal value for Pi for each
possible configuration of the other agent parameters.

For validation, we apply our technique to an example
multi-agent task. The target monitoring task requires a
multi-agent group to keep the specified target (e.g., a cloud
of hazardous chemicals, or some military unit) under contin-
uous observation by at least one agent. We assume a simple
hovercraft agent model, described in the following section.



Despite the low complexity of the agent model, the compli-
cated interaction between physical and control parameters
and agent behavior creates a difficult optimization problem.
We apply our method by selecting and simulating our pre-
dictor task, and then verify its success by simulating the
multi-agent task as well.

2.1 Agent Model and Control System
For the purposes of this paper, we assume that the swarm

agent platform is already determined: a hovercraft with two
stationary thrust fans for directional control and a very sim-
ple “bang-bang” control system: either the left or right fan
(but not both) is activated at any given time. This model
is motivated by its ultra-low cost and complexity. However,
due to the control constraints, optimal control of individual
hovercraft agents is not possible. The following rulesystem
constitutes the agent model for the hovercraft agents:

R1: If distance between self (AS) and nearest peer (AN) is
less than avoidance range (DAS ,AN

< AR) and AN is
to the left (θAN

≤ 180, relative to current heading)
then engage left motor.

R2: If DAS ,AN
< AR and θAN

> 180 then engage right
motor.

R3: If target (T ) is to the left relative to current heading
(θT ≤ 180) then engage right motor.

R4: If θT > 180 then engage left motor.

Note that the details of acquiring the target location are not
addressed here (see [8] for one solution); it is assumed that
the target is either (a) always within sensory range or (b) at
a known fixed location, and thus its location is always avail-
able. Effectively, the agent first checks to see if its closest
peer (AN) is within its avoidance range (AR); if so, it de-
termines whether that agent is to its left or right, and then
activates the fan on that side, thus turning away. Similarly,
if no peers are nearby, the agent determines whether its tar-
get is to its left or right, and then powers on the opposite
motor, in order to turn towards the target.

Assuming this simplified hovercraft model, we approach
the problem of selecting the best combination of physical
values for the hovercraft’s parameters to accomplish the
swarm’s objectives. The control system for the hovercraft is
fixed, but there are two parameters available for optimizing
agent performance. The first is the agent’s avoidance range,
defined to be the distance between two agents at which they
engage in collision avoidance behavior. In practice, a large
avoidance range leads to fewer collisions.

The second parameter we are able to vary is the thrust
applied by each fan, which is fixed for the duration of each
experiment. Intuitively, higher thrust values lead to faster
hovercraft movement and increased rotation speed, but ex-
cessive thrust can make it difficult to accurately control the
agent’s movement. We assume all other agent parameters
are fixed.

Using this control scheme, it is evident that precise control
of the hovercraft’s movement is not possible. There is no
straightforward way to stop or even slow the vehicle. The
agent can only react to the target’s angle relative to itself;
there is no anticipation of the need to change direction as
a target is approached. Instead, the agent continues until
it has passed the target, at which point it must overcome

any momentum it has built in order to turn back toward
the target. Hence, the agent’s target-monitoring behavior
takes the form of constant “oscillations” around the vicinity
of the target.

2.2 Task Description
Given the target-monitoring task and the agent model de-

scribed above, we are required to optimize the avoidance
range and thrust parameter values of the hovercraft. First,
performance measures must be determined for the multi-
agent task. The target-monitoring task requires the agents
to stay as close to a stationary target as possible while min-
imizing collisions. The control system makes it impossible
for the agents to stop, so the agents continually “swarm”
around the target. We use the area enclosed by this swarm
as a performance measure. Generally speaking, low swarm
area is better, as it implies that the swarm is able to more
precisely define the region in which the target is located.
Naturally, low swarm area increases the likelihood of colli-
sions, so good performance requires an agent configuration
that balances these two priorities.

The crucial step in the parameter reduction process is de-
termining a good candidate parameter for elimination. Here,
we would like to find a predictor task that allows us to derive
avoidance range while varying only the thrust dimension. In
this case, note that ideal avoidance range should be directly
correllated with the agent’s ability to change direction. An
agent that is capable of quickly changing direction is likely
to need a smaller avoidance range to avoid collisions. Thus,
a single-agent task which measures the distance needed to
turn around may make a good predictor task. From this, we
derive the following task description.

In the single-agent task, a hovercraft is randomly placed
in an environment containing a stationary target. Accord-
ing to the control algorithm, the hovercraft is continuously
attracted to the target, but it is unable to stop. Thus, the
agent typically overshoots the target location by some dis-
tance, and continually oscillates around the target for the
remainder of the fixed duration run. We take the space re-
quired for an agent to return to the target after detecting
that it has passed it to be an indication of the agent’s ability
to react to sensed events. This distance is the agent’s max-
imum overshoot (MO) for that “cycle” (from the target and
back). Note the agent records a new MO value each time it
returns to the target. Intuitively, the avoidance range indi-
cates how soon the agents react to one another, and the MO
represents an agent’s ability to adjust to a target. Thus,
an agent with a high MO should require a large avoidance
range.

The MO values are used to predict avoidance range in the
following way: the MOs for each visit to the target in an
experimental run are sorted in ascending order. The value
of the MO at the nth percentile in the sorted list is taken as
that run’s prediction for the optimal avoidance range value
in a swarm of these agents. The value of n selected reflects
the relative importance of the two competing performance
measures. For example, with larger n, the more conservative
avoidance range leads to fewer collisions but greater swarm
area.

With the single-agent task defined, it can be simulated
using various values for thrust and the MO can be recorded
as the predicted avoidance range for each thrust value.

To verify our results, we simulate the full multi-agent task



for each value for both parameters, thrust and avoidance
range; note that the avoidance range dimension is included
only for the purposes of demonstrating the accuracy of the
technique. The multi-agent task again requires a cluster of
agents to stay as close to a stationary target as possible. As
described, we use swarm area and the number of collisions to
evaluate swarm performance. To measure the swarm’s area
at a particular point, we compute the area of the convex
hull enclosing all agents. The average swarm area for each
cycle over the course of an experimental run is taken for the
performance measure. Further, the number of collisions are
recorded for each simulation.

3. EXPERIMENT AND RESULTS
The simulations were carried out in SimWorld, a sim-

ulation environment built upon the SimAgent toolkit [1].
Supplementing the SimWorld environment is a library of
C functions that makes use of the Open Dynamics Engine
(ODE) [7], a rigid body physics engine. Both the single and
multi-agent simulation tasks take place in an unbounded
continuous 3D environment. Agents are initially randomly
placed in a uniform distribution throughout a 400 m × 400 m
environment with the target placed at the center. Simula-
tions run for 10,000 cycles, or 500 seconds of simulated time.

In our representation of the hovercraft, the mass of the
hovercraft was set at 1.5 kg, and the coefficient of friction
between the ground and the hovercraft was set at 0.03. ODE
does not consider air drag in its calculations, so we approxi-
mate the force of air drag for each agent using the standard
equation. We then apply this force to the agent such that it
opposes the agent’s direction of motion.

In the single-agent experiments, the force representing fan
thrust was varied from 0.7 N to 2.0 N, in intervals of 0.1 N.
In the multi-agent experiments, thrust was varied from 0.8 N
to 2.0 N, in intervals of 0.4 N, and avoidance range was var-
ied from 5 m to 50 m, in 5 m intervals. A swarm of 20
agents was used for each run. 100 experimental runs were
conducted for each configuration, and all results presented
in the following sections represent averages over these sim-
ulations. In total, 1,400 single-agent simulations and 4,000
multi-agent simulations were conducted. Each run of the
single-agent task took approximately 10 seconds to com-
plete. The multi-agent task took approximately 60 seconds.
Thus, approximately 4 CPU hours were used for the single-
agent simulations, whereas approximately 2.75 CPU days
were required for the multi-agent simulations.

The results from the single-agent task are summarized in
Figure 1, which shows the 40th, 60th, and 80th percentile
MOs for each thrust value tested. It indicates a parabolic
trend in the MO values, with the lowest point reached at
1.3 N. Given these results, it is necessary only to determine
the degree of risk one is willing to take and select the corre-
sponding level (e.g., 80th percentile if collisions are viewed
as catastrophic, or 40th percentile if ensuring a tight net
around the target is more important). The avoidance ranges
indicated by the selected threshold can be used in the de-
termination of the optimal thrust setting.

For the purposes of the present paper, however, we pro-
ceed with the multi-agent experiments as though we had
not conducted the predictive study. Figure 2 shows the re-
lationship between avoidance range and the average number
of collisions per experimental run. A super-linear decline
in the number of collisions emerges as the avoidance range
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Figure 2: Collision counts for the multi-agent task.

increases. Without the single-agent results, it is necessary
to examine the collision data to determine for each thrust
value the lowest collision avoidance range that yields an ac-
ceptable number of collisions. The small black circles on the
curves in Figure 2 indicate the avoidance ranges predicted
using the 80th percentile results from Figure 1. The single-
agent MO proves to be an accurate predictor of appropriate
avoidance ranges for swarms with equivalent thrust; as the
MO percentile used to predict the avoidance range is in-
creased, the average number of collisions per experiment for
the corresponding swarm approaches 0.

From this, we conclude that the single-agent task is suf-
ficient for choosing the avoidance range for a swarm with
equivalent thrust. By varying the percentile used to de-
termine the maximum overshoot in the predictor task, it
is possible to qualitatively specify the maximum acceptable
collision rate. Further, this percentile value can be varied
after the simulations have completed, eliminating the neces-
sity to re-execute the predictor task.

Once acceptable avoidance ranges have been decided on,
we can proceed to evaluate the relative performance of each



Figure 3: Average swarm area for the multi-agent

task.

thrust configuration in the multi-agent task. As we have
reduced the problem to a single dimension, this amounts to
comparing the performance of just four hovercraft config-
urations (one for each thrust value). Figure 3 depicts the
average area enclosed by the swarm as a function of avoid-
ance range for each of the thrust values in question; pre-
dictably, swarm area increases quadratically with the avoid-
ance range. However, we need only look at the values cor-
responding to the avoidance ranges settled on above (indi-
cated, once again, by a small black circle on the line for each
thrust, ) and determine which produces behaviors leading to
the most densely-packed swarms. Again, the 80th percentile
MO is indicated by the small black circles on the line for each
thrust. We conclude from this data, that the optimal con-
figuration is a thrust of 1.2 N and an avoidance range of
25 m.

4. RELATED WORK
The effectiveness of autonomous swarms has been stud-

ied for a variety of applications. Swarm techniques have
been applied to toxin detection, as in [3], where chemical
gradient information is used to guide the swarm, and in [9],
which considers fluid dynamics to follow the chemical trail.
In data mining applications, swarms have also been used to
perform data clustering. For example, [2] modifies particle
swarm optimization (PSO) concepts to allow agent swarms
to search an n-dimensional data set to find appropriate data
clusters. Given the wide range of uses for swarm technol-
ogy, we focus on the applications in which the swarm agents
represent physical bodies. Specifically, we assume a hov-
ercraft agent model, though aspects of the work presented
here should apply to a range of physical autonomous agent
models.

The use of swarms for target tracking has been the focus of
research for some time. In [8], each swarm agent is equipped
with an “attractive beacon” that is activated whenever it
detects a target, consequently attracting other agents to that
area. The task is then accomplished in two phases: (1) a
detection phase, in which agents search for the target cluster
until one agent detects it, and (2) an enclosure and tracking
phase, during which the agents cover the cluster area as

tightly as possible. In this paper, we extend this to account
for the physical realities of implementing the swarm.

The authors in [6] implement a simulated swarm for real-
time pattern tracking. An approach motivated by genetic
algorithms is applied to PSO to achieve facial recognition.
While a similar, genetically-inspired approach could be taken
to the task of parameter selection which we present, we in-
stead focus on reducing the size of the search space by one or
more entire dimensions. This is made possible by examining
the intuitive role of physics in the behavior of the swarm, a
concern which was not applicable in [6].

5. CONCLUSION
The goal of this paper was to present and validate a tech-

nique for physical agent parameter optimization for a multi-
agent swarm. We demonstrated our presented technique by
determining values for the thrust applied by the hovercraft
fans and the avoidance range, defined to be the distance be-
tween agents at which they engage in avoidance behaviors.
We simulated a swarm of hovercraft for a range of thrust
and avoidance range values, and showed that our avoidance
range prediction maintained a collision rate near zero. Fi-
nally, we used a small subset of the swarm simulations and
area of the swarms to determine the optimal thrust value.
In future work, we plan to explore whether this technique
can be extended to a wider variety of agent parameters.
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