
Robot Development and Path Planning for Indoor
Ultraviolet Light Disinfection

Jonathan Conroy∗, Christopher Thierauf∗, Parker Rule∗, Evan Krause∗,
Hugo Akitaya†, Andrei Gonczi∗, Matias Korman‡, and Matthias Scheutz∗

∗Tufts University, MA, USA. {jonathan.conroy, christopher.thierauf,
parker.rule, evan.krause, andrei.gonczi, matthias.scheutz}@tufts.edu

†University of Massachusetts Lowell, MA, USA. hugo akitaya@uml.edu
‡Siemens Electronic Design Automation, OR, USA. matias korman@mentor.com

Abstract—Regular irradiation of indoor environments with
ultraviolet C (UVC) light has become a regular task for many in-
door settings as a result of COVID-19, but current robotic systems
attempting to automate it suffer from high costs and inefficient
irradiation. In this paper, we propose a purpose-made inexpensive
robotic platform with off-the-shelf components and standard
navigation software that, with a novel algorithm for finding
optimal irradiation locations, addresses both shortcomings to
offer affordable and efficient solutions for UVC irradiation. We
demonstrate in simulations the efficacy of the algorithm and show
a prototypical run of the autonomous integrated robotic system
in an indoor environment. In our sample instances, our proposed
algorithm reduces the time needed by roughly 30% while it
increases the coverage by a factor of 35% (when compared to
the best possible placement of a static light).

I. INTRODUCTION

The new coronavirus has changed our world forever. Among
the many lasting changes prompted by the rapid spread of
SARS-CoV-2 is the need for regular systematic disinfection
of indoor spaces, which has gone beyond hospitals and care
facilities where room disinfection has always been a critical
task that was performed on a regular basis (e.g., when patients
were discharged) to public and private spaces such as schools,
colleges, hospitality settings, airlines, train companies, and
mass transportation authorities. In these spaces, regular dis-
infection will become a critical component of any strategy
to reopen societies after a pandemic like the current one.
However, this increases danger and time strain to the human
workforce that is already stretched thin. Automating these
processes is therefore an attractive approach. In the words of
UVD Robots CEO Per Juul Nielsen, whose company builds
robots with ultraviolet C (UVC) lights: “Hospitals around the
world are waking up to autonomous disinfection. We can’t
build these robots fast enough.”1

While solutions of this nature exist (see II), there are three
main shortcomings of the current solutions that severely limit
their utility and applicability: (1) cost (the existing robots
are very expensive, in some cases upwards of $100,000), (2)
formal guarantees that every surface is disinfected, and (3)
efficiency. It is unclear how well existing systems operate

1www.forbes.com/sites/richblake1/2020/04/17/in-covid-19-fight-robots-
report-for-disinfection-duty/

in part because of the lack of formal guarantees of the
disinfection process.

In this paper, we address all three aspects with the design
of an autonomous inexpensive custom robotic platform for
UVC disinfection tasks. The robot can carry a significant
payload, allowing it to operate for extended periods of time on
battery power. More importantly, by finding close-to-optimal
paths through the indoor space, the robot minimizes power use
while guaranteeing that all surfaces receive sufficient light to
guarantee disinfection.

II. MOTIVATION AND RELATED WORK

Ultraviolet light irradiation has been used in health care
settings for quite some time to deactivate contaminants. Initial
studies suggested COVID-19 would be similar to other corona
viruses [15], and studies have since confirmed the exact
irradiation dose necessary to deactivate the virus (e.g., [13]).

Existing approaches are split between systems which are
stationary in operation (e.g., Tru-D™ or [2]) and mobile
platforms that have become a more frequent research focus:
consider UVD Robots®, [12], [14], and other ongoing projects
which have seen media coverage.2 However, these platforms
have either focused on the ability to bring a UVC lamp to a
region rather than validating disinfection or have focused on
proving disinfection experimentally rather than formally. See
[16], [18], and [20] as examples of stationary options, and [17]
as an example of a non-stationary option using a UVC wand.

Keeping devices stationary in a single location is suboptimal
because light energy falls off with the square of the distance
(see Section IV-B1 for details) and the farthest surface point
from the device is thus the determinant of the overall irradia-
tion duration based on the minimum light exposure needed to
deactivate the coronavirus.

To see this, consider a UVC lamp placement in location H ,
the halfway point, in the simplified 1D irradiation problem in
Fig. 1. We assume the irradiation at all points long the line
need to be at least 1. Consider sequential lamp placed in M

2See Violet (time.com/5825860/coronavirus-robot/), work by Rovenso
(spectrum.ieee.org/automaton/robotics/industrial-robots/rovenso-uv-
disinfection-robot), or the ”ADAMMS-UV” from the USC Viterbi Center for
Advanced Manufacturing, footnote 1.

https://www.forbes.com/sites/richblake1/2020/04/17/in-covid-19-fight-robots-report-for-disinfection-duty/
https://www.forbes.com/sites/richblake1/2020/04/17/in-covid-19-fight-robots-report-for-disinfection-duty/
https://time.com/5825860/coronavirus-robot/
https://spectrum.ieee.org/automaton/robotics/industrial-robots/rovenso-uv-disinfection-robot
https://spectrum.ieee.org/automaton/robotics/industrial-robots/rovenso-uv-disinfection-robot

Fig. 1. Example to demonstrate the need to have multiple locations for UVC
irradiation.

and N such that the light intensity at the farthest points from
the lamp I at S, E, and H is the same. Since I(S) = I(E) =
1/d2 + 1/(d+ 2 · d′)2 and I(H) = 2 · 1/d′2, we want to find
d and d′ such that 1/d2 + 1/(d+ 2 · d)2 − 2 · 1/d′2 = 0. The
solutions are d = (E−S)·(3−

√
3)/6 and d′ = (E−S)·

√
3/6

and the overall irradiation time is d′2, d′2/2 each in M and in
N (since we have to irradiate sequentially, it would be d′2/2
if it were to be done in parallel with two lamps), a significant
savings compared to (d+ d′)2.

In real-world settings there are additional difficulties: (1)
2D floor plans are more complex than the 1D approximation
of a hallway provided and will therefore require more com-
plex point placement (see Section IV), (2) robot navigation
constraints will create point placement constraints, and (3)
some obstacles may cause zones not reachable with direct
light. Additionally, the example does not address movement
time as a disinfection opportunity (the lamp can remain turned
on while traveling through its environment), and additional
challenges arise from operating in 3D with a platform only
capable of moving in 2D. In this paper, we attempt to address
(1), (2), and (3), while leaving the remainder for future work.

III. LOW-COST ROBOT PLATFORM

We developed a low-cost robotic platform equipped with an
NVidia Jetson Nano embedded computing board for onboard
computing (as outlined in Section III-A) and a UVC germici-
dal lamp (which produces 17 Watts of UV-C radiation per 100
hours) for UVC disinfection. The robot is made of aluminium
extrusion, with a square base of 24 by 28 inches. This is wide
enough to provide stability for the pillar (which holds the lamp
34 inches above the ground) and space for the uninterruptible
power supply (UPS) used for rechargeable power, while being
thin enough to fit through a standard sized door.

Also mounted on the pillar are the robot’s sensors. Two
LIDAR units (the Hokuyo URG 04LX) provide a 360-degree
view of the environment, which was found to be necessary to
address points which were close to obstacles by allowing the
robot to safely reverse out of such spots. The Intel Realesense
D435i provides a depth point cloud of the environment in
front of the robot, allowing for obstacle avoidance of objects
that may fall above or below the linear cloud collected by
the LIDAR. Although the on-board IMU was initially used
for odometery, this was found to be unnecessary due to the
accuracy of the Canonical Scan Matcher (CSM) [3] which
instead uses laser scan matching for odometery calculation.3

The platform is differentially wheeled for the purposes
of cost reduction. Additional stability is provided through

3We have used the CCNY ROS wrapping of CSM, available in the ROS
scan_tools package.

Fig. 2. The robot developed for autonomous UVC irradiation driving into a
room to be disinfected.

passive omni-directional wheels in each corner. Both 4-inch
polyurethane wheels interface with 24-volt brushless DC mo-
tors via drivers controlled over a USB-to-serial connection, and
are on a spring-loaded mechanism to maintain contact with
uneven surfaces. Brushless DC motors were chosen for their
ability to produce high torque even at low speeds (necessary
for the stop-and-go behavior of the heavy platform). Hall effect
sensors attached to each commutator provide wheel rotation
data, which is fed into the odometry calculations.

A. Navigation Software

The software running the robot is based on the Robot
Operating System (ROS [19]) and utilizes standard map-
ping, control, and odometery packages in addition to some
custom software packages for hardware control. Real-time
path planning is performed using the ROS amcl package,
which provides an implementation of works described in [22].
ROSControl [4] in conjunction with custom hardware code
manages wheel velocities when attempting to complete a given
trajectory. Mapping is performed using GMapping, which is
described in [10], [11]. CSM [3] is used for odometry. The
combination of these technologies enables basic obstacle-free
waypoint navigation, which is required for the proposed algo-
rithms for finding close-to-optimal disinfection paths described
next.

IV. PLANNING PATHS FOR DISINFECTION

Our path planning algorithm receives the point cloud from
the robot’s sensors. For tractability and modularity, we divide
our algorithm into three independent pieces: (1) mapping
(given point cloud data gathered by the robot, we obtain a
floor plan of the building represented by a simple polygon); (2)
waypoint and time determination (find locations and amount

of time that the robot should stop and turn on the UVC light
to so fully disinfect the floor); and (3) route planning (choose
the order in which the waypoints are visited so as to minimize
travel time).

Splitting the algorithm into independent subproblems may
introduce additional error. In particular, the static placement
of waypoints does not take into account the additional dis-
infection that may happen while the robot moves between
waypoints. This error is proportional to the ratio between
the amount of time spent moving and the time spent at the
waypoints. For our application, this ratio is quite small (we
spend hours at waypoints and a few minutes in motion). Thus,
we believe that the overall error produced is negligible.

A. Mapping
Maps are generated through usage of a custom hardware

platform (see Section III). Laser scan data is converted into
a 2D, top-down representation of the environment in which
the robot can operate. The task of the mapping algorithm is to
determine the location of a 2D curve that can approximate this
occupancy grid. The curve represents the walls of the building
(possibly with some furniture). Knowing the exact floor plan
is critical in making sure that all locations of the room will
be properly disinfected.

This problem is known as curve fitting or curve reconstruc-
tion in the literature (see the excellent survey by Dey in [6]).
There are many approaches used to solve this problem. In our
setting, the curve should follow the walls and possibly furni-
ture of the room. A distinguishing feature from the general
problem is that walls and furniture typically are rectangular.

As the sensors used are prone to noise caused by reflections,
we preprocess the initial occupancy grid by performing a
morphological closing to remove thin areas incorrectly labeled
as free space. We then construct a polyline describing the
room boundary from the occupancy grid using the algorithm
described in [21] and implemented in OpenCV.

To reduce noise, we simplify the boundary. One stan-
dard simplification method, implemented in OpenCV, is the
Douglas-Peucker algorithm [7]. However, we find that in some
cases this works poorly on the scanned room data. Instead,
we use the simplification algorithm described in [9] to find
the best fit rectilinear polygon with the minimum number
of vertices that remains within a specified tolerance of the
original polygon. More precisely, we find the minimum area
bounding rectangle of the unsimplified polygon to determine
the directions of orthogonal compression, apply [9], and
discard any self-intersections to simplify the boundary in
linear time. Fig. 3 provides an example of an occupancy grid
and the resulting approximation. Here, we find that using
the rectilinear algorithm produces a very reasonable room
boundary.

B. Waypoint selection
With the floor plan obtained from the mapping algorithm,

we now focus on determining the waypoints—that is, we want
to choose the specific places within the room that the robot
should stop and turn the UVC light on to disinfect the room.

Fig. 3. Comparison of Douglas–Peucker (blue) and rectilinear (red) sim-
plifications, overlaid with the greyscale grid obtained the ROS GMapping
algorithm.

1) Modeling irradiation: Suppose we turn on the UVC
Light at some point u and are interested in how much energy
is irradiated at a point v. We measure amount of irradiation
received with the following (standard) assumptions:

• v is irradiated by the light only if directly visible from u
(we do not consider reflection of light).

• The intensity of the light received is proportional to
the amount of time that the light is on and inversely
proportional to the square of the distance between u and
v.

• If v is at a wall, the intensity is also inversely proportional
to the the incidence angle (i.e., vertical angle created
between the normal vector of the wall containing v and
vector st). If v is not at a wall, just extend the ray from
u to v until it hits a wall to obtain the incidence angle.

We also assume that the UVC light is a single point whose
height is halfway between the ceiling and the floor. This
effectively allows us to transform the problem into a 2D
one: the amount of irradiation received at the ceiling is the
same as the irradiation received at the floor, and any other
horizontal slice will receive more irradiation. Thus, as long as
we sufficiently irradiate the ceiling or floor, we can guarantee
full irradiation of the 3D volume.

This assumption is conservative: in practice, the light em-
anates from a lamp whose shape is similar to traditional
fluorescent lamps (a vertical segment would be a more accu-
rate representation). Light emanating from a segment would
irradiate more since (i) it reduces the distance to v and (ii)
makes the incidence angle smaller. Thus, using a segment light
increases the amount of irradiation received at v.4

With the above assumptions, we can model the amount of

4An ideal placement would be to place the light so that the distance from
the lowermost point of the light to the floor is equal to the distance from the
topmost point to the ceiling. As we will see later, this has an impact on the
shadow, so for now we ignore this.

irradiation received at v from u in a unit of time as:

Iru(v) =

{
cos(αuv)P
d2uv+h

2 if u sees v

0 otherwise
(1)

Here, αuv is the incidence angle between u and v (see
definition above), P is a scaling constant (proportional to
the intensity of the UVC light), duv denotes the 2D distance
between u and v, and h is half of the distance between the
floor and ceiling. We say that a point v is visible from a point
u if (1) the segment connecting the the two points does not
intersect the polygon boundary, and (2) duv is larger than the
shadow distance (i.e., the UVC light does not see the points
directly below it). This shadow distance is based on some of
the characteristics of the robot and the light source.

2) Waypoint selection as an LP problem: The above for-
mula computes the irradiation from u to v for a single unit
of time. In general, if the light is on for t units of time, then
v would receive t · Iru(v) irradiation. Note that, for any fixed
pair u and v, the amount of irradiation is proportional on the
time that the robot spends there.

In order to make sure we fully disinfect the whole floor plan,
we need to distinguish between the region we need to guard
(the whole floor plan, denoted by R) and the areas within the
room that we can reach (denoted by G). G can be obtained
by removing from R all the points that are within a distance
d of an obstacle, where d is the radius of the robot.

We apply a grid discretization of both regions by drawing
horizontal and vertical lines that are ε units apart, partitioning
G and R into grid cells. Let GG be the set containing the
centers of all grid cells that lie within G. We consider points
of GG as potential waypoints for the robot.

We discretize R in a similar fashion. This gives us a set of
points GR that we need to guarantee that are disinfected. A
point is disinfected if it has received enough irradiation (say,
received at least r units of irradiation).

This leads to a natural linear problem formulation: for any
pair (waypoint, place to disinfect), measure how much is the
point irradiated and accumulate over all possible waypoints.
Globally, we want to minimize the time spent irradiating while
at the same time make sure that all points are guarded.

Let tu be the time that we spent at waypoint u ∈ GG . The
waypoint selection problem is formalized as follows:

min
∑
u∈GG

tus.t. tu ≥ 0 ∀u ∈ GG∑
u∈GG

tuIr(v) ≥ r ∀v ∈ GR

Note that because of the robot limitations, this often yields
infeasible instances. This is simply because we would often
have some corner of GR that is not seen by any point of GG .
Thus, we remove from GR points that are not seen at all from
GG . The percentage of points that need to be removed is also
used as a measure of quality of the algorithm (the goal being

disinfecting as close to 100% of the room as possible). See
Section VI for more details.

The above formulation guarantees that all points of GR

(visible from GG) are disinfected, but even when all points of
GR are visible, this does not guarantee that the whole room is
disinfected. Indeed, when two consecutive grid points are seen
by different waypoints we cannot guarantee that intermediate
points are seen by either waypoint.

In the following, we provide two different modifications to
the algorithm that would fix this issue.

3) Guaranteed disinfection: Our first approach modifies
the definition of irradiance. We say that the “pessimistic
irradiance” between a waypoint u and a room point v is the
minimum irradiance between u and any point in the grid cell
containing v. A feasible solution to the pessimistic irradiance
LP problem will guarantee to disinfect, not only the discrete
grid GR, but also the neighborhoods of all such points.
By the construction of the grid cells, the union of all such
neighborhood will be R.

Alternatively, we can scale up the waiting times to guarantee
that every point in the room receives the minimum level of
irradiance. We locate the globally dimmest point in the room
with respect to the waiting times and then compute a scale
factor to ensure that point receives the minimum irradiance.
Balakrishnan et al. [1] give a branch-and-bound algorithm for
finding global minima using upper and lower bounds on the
function’s minimum within a subregion of the search space.
We find an upper bound on minimum irradiance in a region of
a room by choosing an arbitrary point within the region and
computing its irradiance. For a lower bound, we compute the
pairwise irradiance between the guard points and vertices of
the region, choose the minimum irradiance over the vertices
for each guard point, and sum over the guard points. We use
a triangulate-and-bound variant of Balakrishnan’s algorithm:
we triangulate the room and split the triangles along their
longest edge until, for each triangle, all vertices are covered by
the same guard point (accounting for shadows if desired). For
the branching procedure, we continue to split triangles in this
manner. At the cost of a small decrease in coverage, we can
achieve tighter bounds by allowing the removal of triangles
with small areas or loose lower bounds from the search space.

Either of these two modifications guarantees that the visible
region of the volume is disinfected. Walls of the region are
also disinfected by the original LP formulation: while we only
focus on disinfecting the lowest points along the wall, this
is sufficient to disinfect the whole wall. Indeed, as distance
and incidence angle are both maximized when the point is at
the bottom of the wall, irradiance is minimized by points on
the bottom of the wall. Thus, any solution that disinfects the
bottom of the wall must also disinfect the entire wall.

It can be shown that as the discretization parameter ε
approaches 0, the “pessimistic irradiance” algorithm converges
to the minimum time needed to disinfect the room. The
“branch-and-bound” algorithm converges in certain rooms, and
we conjecture that it will perform reasonably in the general
case.

C. Route planning

Once the waypoints (and stopping times for each of them)
have been determined, we need to find an efficient way to
visit all of them. This is a variation of the traveling salesman
problem where weights are geodesics (i.e., the weight between
any two points is the shortest paths within a simple polygon).
We compute the geodesic distance between the waypoints by
running Dijkstra, and then compute an approximation of the
geodesic TSP that are available to the robot. In practice, the
transport times are so small that they are overshadowed by the
time spent at the waypoints.

In addition, we have to consider the orientation of the robot
(i.e., it can only move forward in one specific direction, and
whenever we need to change direction it must rotate). Good
approximation solutions are known for these kind of problems,
but unfortunately they run in exponential time [8]. The simpler
solution used is to ensure waypoints do not place the robot too
close to any obstacles (which is already being calculated) and
to then allow the robot’s path planner determine the best way
to get in and out of that position.

V. EVALUATION METHODS

We evaluate a solution by looking at (i) the percentage
of the room that is disinfected5 while at the same time (ii)
minimizing the time required to complete the disinfection.
To establish a baseline for comparison, we propose a naive
algorithm simulating a stationary disinfection routine: choose
a single point near the center of G6 and wait as long as
necessary to completely disinfect the farthest point of the room
that it can see. Since rooms are rarely starshaped, it will be
unlikely that a single point will be able to guard the room.
We expect this naive algorithm to perform terribly (in both of
our optimization criteria); we mainly use it as a baseline for
comparison purposes.

Note that our disinfection coefficient is fairly high compared
to similar experiments7. We do this because SARS-CoV-2 has
been shown to be fairly resilient to irradiation [5]. In any
case, we note that the coefficient itself has little impact on the
results: coverage is unaffected, and a change in the coefficient
would have a linear impact in time needed by both our baseline
(stationary) and our algorithm.

We can also find an upper bound on the disinfection percent
and a lower bound on the time required to achieve that percent
for any path the robot can take. We use a similar idea to
the “pessimistic irradiance” algorithm, applied in reverse: we
consider the best possible irradiance possible between a point
in the grid cell around the robot location and a point in the
room. Define the “optimistic irradiance” between a point u ∈
GG and a point v ∈ GR to be the maximum irradiance between

5Some corners could not be disinfected in our instances
6Specifically, the midpoint of the largest segment of the horizontal bisector

of the polygon. This is implemented in the representative_point
function of the Shapely library

7In our experiments, a point must be irradiated with 120600µWs/cm2

before we declare it disinfected, as opposed to 12000 − 22000µWs/cm2

required in [16].

TABLE I
COMPARISON OF DIFFERENT STRATEGIES

Algorithms that consider robot shadow
Branch & Bound Pessimistic Lower Bound

ε Time Disinf. Time Disinf. Time Disinf.
(s) % (s) % (s) %

1.0 112389 99.29 74804 91.54 17444 99.95
0.5 107893 95.10 58076 98.22 29434 99.90
0.3 88573 99.61 49211 99.14 29034 99.87
0.2 133928 99.60 39393 99.48 29935 99.85

Algorithms that ignore robot shadow
Branch & Bound Pessimistic Lower Bound

ε Time Disinf. Time Disinf. Time Disinf.
(s) % (s) % (s) %

1.0 110969 99.29 57479 93.00 17444 99.95
0.5 107556 95.10 52921 98.47 29421 99.90
0.3 79854 99.61 47306 99.23 28812 99.87
0.2 132187 99.60 37734 99.48 29602 99.85

Fig. 4. Bicriteria evaluation of the different algorithms on the HRI Lab
instance.

any point in the grid cell containing u and the point v. As
the grid cells cover G (ie. all possible locations the robot can
be), running the linear program with “optimistic irradiance”
constraints will produce an upper bound on the disinfection
percentage and a lower bound on the disinfection time. As the
discretization parameter ε approaches 0, these bounds tighten.

VI. EXPERIMENTS

Six rooms were mapped and served as test data. We closely
examine one room, the “HRI lab”, as a case study for the
various parameters of the proposed algorithm. 9

To establish a baseline we compute the amount of time
that a stationary light would need when placed in the position
that would maximize the coverage (i.e., disinfect the largest
possible portion of the room). Just to give an example, a
naive stationary solution (described in V) yields a baseline
disinfection time of 99, 937 seconds to disinfect 41.65% of
the room. A low disinfection percent is caused by the noncon-
vexity of the lab (i.e., walls and doors create many visibility

8The “pessimistic irradiance” approach is unusually bad in this room due
to a failure of the room boundary simplification algorithm, which in this case
slightly exaggerates an obstacle and makes half the room inaccessable to the
robot.

9Code & data available at github.com/pjrule/covid-path-planning.

https://github.com/pjrule/covid-path-planning

TABLE II
SUMMARY OF PERFORMANCE IN ALL ROOMS, ε = 0.2

Naive Branch & Bound Pessimistic Irradiance Lower Bound
Room Name Percent Percent Percent Percent

Time (s) Disinfected Time (s) Disinfected Time (s) Disinfected Time (s) Disinfected
HRI Lab 99937 41.65 133928 99.60 39393 99.48 29935 99.85

Room 2510 41403 85.15 200016 97.28 13546 98.60 12902 99.17
Room 2530 40845 94.19 35237 99.86 13958 99.22 16684 100.00
Room 25408 32228 58.07 79637 71.02 73654 72.20 67905 74.50
Room 2560 19066 57.88 31520 100.00 11854 100.00 7459 100.00
Room 2910 42857 84.74 12634 97.72 16323 98.18 9849 98.87

constraints). Table I and Fig. 4 give a comparison between
the two algorithms described in IV-B and the lower bound
described in V, run with various values of the ε discretization
parameter. Notice that as ε decreases, the solution times and
disinfection percents achieved by the algorithms appear to
quickly converge to the lower bound, as expected. The best
solution time achieved is 2.5 times faster than the naive
solution and disinfects twice as large an area. The branch-
and-bound algorithm is competitive for some values of ε,
though it is highly sensitive to parameterization and therefore
does not always produce tight bounds. The data suggest the
“pessimistic irradiance” algorithm often converges quickly to
optimal; branch-and-bound appears to converge more slowly
or not at all.

The effect of the robot’s shadow was also investigated.
Due to the physical interference of the robot, the UVC light
cannot disinfect the area directly below it. As this is the
point where distance is minimized, one might worry that this
negatively affects solution times. Table I shows the results of
the simulations run for variations that consider or ignore the
visibility. At ε = 0.2, the solution accounting for robot shadow
only takes 4% longer than the solution that ignores shadow
while disinfecting the same area: the effect is negligible.

Table II summarizes the performance of the various al-
gorithms across all rooms at the discretization parameter
ε = 0.2. Similar to the case study, the “pessimistic irradiance”
algorithm performs well relative to the lower bound and is a
significant improvement over the naive approach.

A. Example run in the office environment

An example run of the algorithm fully integrated with
a robotic platform is demonstrated 10. First, the operator
designates a zone to be disinfected by mapping it through
teleoperation. When the operator is satisfied, the map can
be reused for disinfection and path planning (assuming the
environment does not drastically change).

Environment data inis provided to an implementation of the
algorithm which produces the waypoints and exports them
as location/time pairings in a CSV file. These pairings are
read on startup of the robot software stack, and are referenced
when the “begin disinfection” task is called. This task was

10Video of the demonstration can be found at
https://hrilab.tufts.edu/movies/autonomous disinfection.mp4. Exposure
times are reduced to 1 second for succinctness.

triggered manually when testing, but scheduled approaches are
also viable (assuming safety steps are taken to ensure no one
is harmed by direct UVC exposure).

When the environment is ready for disinfection, the disin-
fection task is triggered and the robot moves to each point,
ensuring that it remains at each point no less than the time
specified by the algorithm. The light remains on between
waypoints, because as outlined by IV the error introduced by
doing so is small and the consequences of additional exposure
are more positive than negative.

The robot is placed just outside an empty pre-mapped office
environment for which waypoints have been computed using
the algorithm described, and then navigates into the room,
turns on the lamp, and completes the loop specified by the
waypoints. Some points were mapped as a result of being
able to see them through glass doors, and so could not be
navigated to: these points were removed for demonstration
after having seen them handled sensibly (displaying an error
but continuing to disinfect remaining achievable regions). To
prevent accidental human UV-C exposure, the doors to the
office are locked and labeled. The operator is in another room
behind a closed door, which is where the robot tether leads
for both power and monitoring purposes. All robot hardware
and navigation control is handled on the platform.

VII. CONCLUSION AND FUTURE WORK

We have developed a low-cost autonomous robot platform
together with a planning algorithm for UVC irradation tasks
and demonstrate in simulation and on the real platform that
the system works as expected. While the current approach
focussed on using a floor plan for disinfection, future work
will address the more difficult problem of computing the
minimum necessary exposure time from 3D data, perhaps as a
continuous path, which would allow the disinfection platform
to use its travel time as disinfection time (either slowing travel
as necessary to ensure appropriate disinfection, or by also
stopping as necessary). Additionally, improvements can be
made to the platform, as the safety restrictions imposed as a
result of COVID-19 impeded manufacturing and in turn forced
design choices which could otherwise be avoided.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank the members of the Com-
putational Geometry laboratory at Tufts University for their
suggestions and their helpful discussions.

https://hrilab.tufts.edu/movies/autonomous_disinfection.mp4

REFERENCES

[1] V. Balakrishnan, S. Boyd, and S. Balemi. Branch and bound algorithm
for computing the minimum stability degree of parameter-dependent
linear systems. International Journal of Robust and Nonlinear Control,
1(4):295–317, 1991.

[2] M. Bentancor and S. Vidal. Programmable and low-cost ultraviolet room
disinfection device. HardwareX, 4:e00046, 2018.

[3] A. Censi. An ICP variant using a point-to-line metric. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
Pasadena, CA, May 2008.

[4] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep,
A. Rodrı́guez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar,
G. Raiola, M. Lüdtke, and E. Fernández Perdomo. ros control: A
generic and simple control framework for ros. The Journal of Open
Source Software, 2017.

[5] J. G. B. Derraik, W. A. Anderson, E. A. Connelly, and Y. C. Anderson.
Rapid evidence summary on sars-cov-2 survivorship and disinfection,
and a reusable ppe protocol using a double-hit process. medRxiv, 2020.

[6] T. K. Dey. Curve and surface reconstruction. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, Second Edition, pages 677–692. Chapman and Hall/CRC,
2004.

[7] D. Douglas and T. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic Information
and Geovisualization, 10:112–122, 1973.

[8] X. Goaoc, H. Kim, and S. Lazard. Bounded-curvature shortest paths
through a sequence of points using convex optimization. SIAM J.
Comput., 42(2):662–684, 2013.

[9] A. Gribov. Searching for a compressed polyline with a minimum number
of vertices. CoRR, abs/1504.06584, 2015.

[10] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE Transactions on
Robotics, 23(1):34–46, 2007.

[11] G. Grisettiyz, C. Stachniss, and W. Burgard. Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling. In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, pages 2432–2437, 2005.

[12] M. Guettari, I. Gharbi, and S. Hamza. Uvc disinfection robot. Environ-
mental Science and Pollution Research, 2020.

[13] C. S. Heilingloh, U. W. Aufderhorst, L. Schipper, U. Dittmer, O. Witzke,
D. Yang, X. Zheng, K. Sutter, M. Trilling, M. Alt, E. Steinmann, and
A. Krawczyk. Susceptibility of sars-cov-2 to uv irradiation. American
Journal of Infection Control, 48:1273–1275, 2020.

[14] A. Kreitenberg. Ultraviolet autonomous trolley for sanitizing aircraft,
Dec. 9 2014. US Patent 8,907,304.

[15] H. M., K. Hönes, P. Vatter, and C. Lingenfelder. Ultraviolet irradiation
doses for coronavirus inactivation - review and analysis of coronavirus
photoinactivation studies. GMS Hygiene and Infection Control, 15, 2020.

[16] N. Mahida, N. Vaughan, and T. Boswell. First uk evaluation of an
automated ultraviolet-c room decontamination device (tru-d™). Journal
of Hospital Infection, 84(4):332 – 335, 2013.

[17] M. M. Nerandzic, J. L. Cadnum, K. E. Eckart, and C. J. Donskey. Evalu-
ation of a hand-held far-ultraviolet radiation device for decontamination
of clostridium difficile and other healthcare-associated pathogens. BMC
Infectious Diseases, 12(1):120, 2012.

[18] M. M. Nerandzic, J. L. Cadnum, M. J. Pultz, and C. J. Donskey. Eval-
uation of an automated ultraviolet radiation device for decontamination
of clostridium difficile and other healthcare-associated pathogens in
hospital rooms. BMC Infectious Diseases, 10(1):197, 2010.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[20] R. M. Ryan, G. E. Wilding, R. J. Wynn, R. C. Welliver, B. A. Holm, and
C. L. Leach. Effect of enhanced ultraviolet germicidal irradiation in the
heating ventilation and air conditioning system on ventilator-associated
pneumonia in a neonatal intensive care unit. Journal of Perinatology,
31(9):607–614, 2011.

[21] S. Suzuki and K. be. Topological structural analysis of digitized binary
images by border following. Computer Vision, Graphics, and Image
Processing, 30(1):32–46, 1985.

[22] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press,
Cambridge, Mass., 2005.

	Introduction
	Motivation and Related Work
	Low-Cost Robot Platform
	Navigation Software

	Planning Paths for Disinfection
	Mapping
	Waypoint selection
	Modeling irradiation
	Waypoint selection as an LP problem
	Guaranteed disinfection

	Route planning

	Evaluation Methods
	Experiments
	Example run in the office environment

	Conclusion and Future Work
	Acknowledgements
	References

