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Abstract— A low-complexity, evidence based navigation al-
gorithm for swarms of mobile sensors is presented. It can be
effectively used in scenarios where a particular event signature
is characterized by a mix of weak signal modalities with certain
degrees of intensity, distributed in a local region. The method
is based on Dempster-Shafer (DS) evidence theory and enables
the mobile nodes to process temporally ordered sensor data and
accommodate imprecise information from multi-modal sensors
on board. Local decisions are made based on fused evidence
triggering an attractive beacon, which in turn draws other
agents for further detection and tracking. Simulation results are
presented for a multi-modal signal signature tracking scenario.

I. INTRODUCTION

Heterogeneous swarms of extremely simple, physically
realizable agents are of great interest for local detection and
tracking purposes in both military and civilian applications.
In particular, certain applications call for the detection and
tracking of a collection of signal modalities or substances
present in ground, water or air. For example, consider a disas-
ter management scenario in which a mixture of weak signals
is present in a local area indicating heat, smoke, radioactivity,
toxic substances, etc. In some cases, the presence of one of
these individual modalities itself can raise a flag. On the
other hand, the presence of this unique collection of signal
modalities in a local area may indicate an important event.
The signals can be of unknown strength and the intensities
may drift over space and time, making autonomous swarms
the ideal candidate for the detection and tracking of such
events.

A. Motivation and Goals

This research stems from an application where a swarm of
hovercrafts/blimps each with an on-board sensor suite is used
to detect and track a unique signal signature characterized
by a combination of weak signal modalities in a local area
(See Figure 1). In this application, the on-board sensors can
detect each of the signal modalities whenever they come in
contact with, or are very close to the sensor. In addition, each
agent is equipped with an attractive beacon to be activated
whenever it successfully detects the event, to bring in other
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Fig. 1. Swarm of hovercrafts/blimps scanning for a multi-modal signal
signature

swarm agents to the same area for further scanning. Apart
from the basic navigation principles used to maneuver mobile
swarm agents throughout the area while avoiding collisions,
their navigational behavior must be partially governed by
the sensor signals in order to locate the event. A notable
distinction here is that it is not possible for the mobile nodes
to detect the weak signal modalities or substances of interest
at a distance, but the agent has to be physically present in
the area for detection to be possible.

We assume that the signals are distributed with varying
intensities in localized regions. The detection of a small trace
of one signal modality alone by a particular node does not
constitute a detection and hence is not a cause for turning the
attractive beacon on to bring other nodes into the locality.
Nevertheless, such an event must create an initial interest for
a particular mobile node to search more in the vicinity of this
detection. Depending on the application scenario, the event
of interest can be characterized either by the mere presence
of a particular mix of substances, presence of the mix of
substances with certain levels of intensity, or the presence of
a unique signal signature denoted by a particular distribution
of multiple substances in a local region. Therefore, the data
from multiple sensors collected along the path of the mobile
agent must be temporally ordered. New incoming multi-
modal information must be properly combined with the avail-
able evidence with due consideration to the inertia of already
collected evidence. Moreover, the uncertainties involved in
sensing during flight and the potential inaccuracies of low-
fidelity sensors typically used in the low-cost, expendable
mobile node platforms pose several challenges in designing
robust swarm systems for such applications.

In this paper, as an extension to the threshold based local
navigation control scheme presented in [1], we present a
robust, evidence-based navigation scheme to address these
issues. In [1], the beacon activation is based on a simple,
single modality thresholding scheme. We propose major
modifications to this scheme based on multi-modal sensor
signal processing using Dempster-Shafer (DS) evidence the-



ory. The goal of this scheme is to use temporally ordered,
multi-modal sensor data to detect unique events characterized
by the local presence of combinations of weak signal modal-
ities. It can provide improved detection capability and trigger
the attractive radio beacon only if certain signal signatures
satisfying specified time-modality characteristics are present.

B. Previous Work

Several researchers have discussed probability based nav-
igation schemes for swarms in the past. The research in
[2] considers the navigation of a team of UAVs through a
battlefield and uses a probability map to represent threats
in the area. As the vehicles move, the sensors collect new
information about the environment and the existing prob-
ability map is updated using Bayes rule. Probability maps
for different threats are used to calculate the overall risk
map, and it is shared by all vehicles for path planning.
As compared to [2], the scheme presented here does not
require communication among nodes, and also has lower
computational complexity.

The work in [3] focuses on a multi-vehicle cooperative
search problem where a team of UAVs seeks to find targets
in a dynamic and risky environment. UAVs use a target
probability map, a threat probability map, and a certainty
map as its knowledge base for the mission. It is assumed that
the threat map is known a priori. The target probability map
is updated based on Bayesian inference. One major drawback
of this scheme is that it requires a priori information on threat
probabilities, which is not readily available most of the time.

The research in [4] discusses a scheme for Bayesian
updating of the search map using probabilistic information
provided by sensors during a cooperative UAV search mis-
sion. The information incorporated by the model includes
events such as the detection of an object. Important sensor
events, such as detecting and discriminating real from false
objects are considered.

Local navigational control schemes [5], [6] have several
advantages over centralized or decentralized control. They
lead to emergent behavior that share many features of general
distributed control, but do not suffer from scaling problems
since only local neighbors are needed for communication.
While most local approaches have low complexity and good
fault-tolerance, they still suffer from the consequences of
using digital communications. Research in [1] presents a
threshold-based ultra low complexity mechanism for local
control of UAVs tracking a chemical cloud or plume where
neither digital communication nor GPS is required for navi-
gation.

In [1], navigational decisions are based on attrac-
tion/repulsion beacons. A mobile swarm agent exploits the
beacon signal gradient available across its breadth to navigate
itself towards or away from the beacon. The research in
[7] discusses a class of attraction/repulsion functions which
result in swarm aggregation. It presents the stability analysis
for several cases and show that the model can be generalized
for formation control. The algorithm presented here is an
extension to the scheme in [1].

The rest of the paper is organized as follows: Section II
presents an overview of the navigation concept in [1] which
this work is based upon. A brief overview of the Dempster-
Shafer (DS) evidence theory, and several extensions to it
proposed by the authors are given in Section III. Section
V presents some simulation experiments for validation of
the proposed framework, followed by concluding remarks in
Section VI.

II. THE BASIC NAVIGATION CONCEPT

In this section, we briefly discuss the basic navigation
concept presented in [1]. Each swarm agent is equipped
with two types of beacons, a collision avoidance beacon col
(to repel agents from each other and distribute them) and
a target attraction beacon tar that is only activated when
agents detect a target. The col beacons are always on and
each agent is equipped with a stereo antenna/receiver pair to
detect col beacons of other agents. In addition, each agent
uses the antenna/receiver pair to detect the tar beacons of
other agents. These tar beacons are used to attract other
agents to the vicinity, once an event of interest is detected
by one agent.

The col receivers can indirectly extract the approximate
distance of the source using the received signal strength.
This allows the collision avoidance algorithm to react only
to agents within a certain circle of radius ρ (the “repulsion
radius”). ρ effectively is an agent’s collision avoidance range
and represents the distance an agent must keep between itself
and its neighbors to leave sufficient space to turn. Therefore,
ρ is dependent on the agent’s turning radius r.

For the control algorithm, we define:

Iy,i =
n

∑
j=1

Ay/(‖ x j− xi ‖2
2) (1)

where Iy,i is a measure proportional to the received power of
beacon type y at agent i at location xi with y∈ {col, tar}, and
Ay is the transmit power of type y beacons. (There are a total
of n agents, and all beacons of the same type are assumed
to have the same power). Using the directional sensitivity
of two side-looking directional antennas, we can find the
following signal intensity for left and right looking antennas
of each of the two modalities:

Ry,i = ∑
j∈Γy

Ay f (x j− xi,ηi)/(‖ x j− xi ‖2
2) (2)

Ly,i = ∑
j∈Γy

Ay f (x j− xi,−ηi)/(‖ x j− xi ‖2
2) (3)

with Γcol = { j| ‖ x j− xi ‖2< ρ}, Γtar = {1, · · · ,n}, ηi being
the right normal vector to the speed vector of agent i in the
plane of operation (i.e., either on the ground or in the flight
plane), and f (x,η) being the directional sensitivity function
of the antenna, where x is the vector from receiver to source
and η is the direction of highest sensitivity of the antenna.
In the case of y = col, the summation for the left and right
antenna signal intensity Li and Ri respectively are taken only
over those agents j that satisfy ‖ x j− xi ‖2< ρ .



Algorithm 1 Basic navigation control [1]
if Scol,i > 0 then

if Dcol,i > 0 then
turn right

else
turn left

end if
else if Star,i > threshold then

if Dtar,i > 0 then
turn left

else
turn right

end if
else

fly straight
end if

The decision for the turn direction requires two directional
antennas on each side of the agent facing in opposite
directions (η , and −η), perpendicular to the agent speed
vector. Since the turning radius r of the agent is assumed to
be independent of the direction (left and right), a simple in-
tensity comparison between left and right directional antenna
will allow to derive the new heading of the agents, which
is either “turn left” or “turn right”. Define the intensity sum
and difference between the antenna pairs as: Ly,i +Ry,i = Sy,i,
Ly,i −Ry,i = Dy,i, y ∈ {col, tar}, i = 1, · · · ,n, where Sy,i and
Dy,i denote sum and difference of left and right antenna
signal strength of modality y at agent i. This basic navigation
control algorithm is given in Algorithm 1.

III. MODELING SENSOR EVIDENCE

DS theory [8] provides a robust approach towards rep-
resenting data imperfections including inaccuracies, uncer-
tainties and ambiguities [9]. Moreover, it is straightforward
to represent multi-modal sensor data using DS theory [10],
making it a better candidate for this context. The strategy we
present here is based on DS theory representing multi-modal
sensor data as belief theoretic evidence, and an extension to it
proposed by the authors to accommodate evidence updating
in heterogeneous sensor environments [10].

A. Dempster-Shafer Theory

We denote the total set of mutually exclusive and exhaus-
tive propositions a node may discern via Θ = {θ1, . . . ,θn},
viz., Θ is the corresponding frame of discernment (FOD) sig-
nifying the scope of ‘expertise’. A proposition θi represents
the lowest level of discernible information. |Θ| denotes the
cardinality of set Θ, and 2Θ denotes its power set. Proposi-
tions of interest are then of the form A⊆Θ generated from
the power set 2Θ of Θ. We use A−B, A,B ⊆ Θ, to denote
all propositions in A after removal of those propositions that
may imply B, i.e., A−B = {θ : θ ∈ A, θ 6∈ B}; The support
for any proposition A is provided via a mass assignment:

Definition 1: The mapping m : 2Θ 7→ [0,1] is a basic belief
assignment (BBA) for the FOD Θ iff (i) m( /0) = 0; and (ii)
∑A⊆Θ m(A) = 1.

The set of propositions F (Θ) that possesses nonzero
masses forms the focal elements of Θ; The triple {Θ,F ,m}
is referred to as the body of evidence (BOE).

Definition 2: Given a BOE {Θ,F ,m} and A⊆Θ, define
(i) belief as Bel : 2Θ 7→ [0,1] where Bel(A) = ∑B⊆A m(B); (ii)
plausibility as Pl : 2Θ 7→ [0,1] where Pl(A) = ∑B∩A 6= /0 m(B);
and (iii) Uncertainty associated with A as the interval
Un(A) = [Bel(A),Pl(A)].

The mass m(A) measures the support to proposition A
only, while the belief assigned to A measures the supports for
all proper subsets of A,i.e., the total support that can move
into A without any ambiguity. Pl(A) represent the extent to
which one finds A plausible. When the set of focal elements
F contains singletons only, the mass, belief and plausibility
functions all reduce to probability. By assigning masses for
composite propositions, it is quite straightforward to model
uncertainties and ambiguities using DS theory when com-
plete sensor models or ‘a priori’ probabilities are not readily
available in a multi-modal sensor environment. Moreover,
It is capable of more easily accommodating the qualitative
aspects of information during knowledge representation and
refinement under uncertainties [11].

B. Evidence Updating

In DS theory, the Dempster’s combination function allows
one to find a new BOE by combining the evidence generated
by several BOEs spanning the same FOD [8]. The fact that
the two BOEs being combined are required to be from identi-
cal FODs constitutes the main drawback associated with this
evidence combination function. Several other approaches are
available to handle the combination of evidence from non-
identical FODs [10], [12].

The research in [10] presents a method to handle such non-
identical FODs while considering sensor reliability as well as
inertia and integrity of available evidence in a heterogeneous
sensor environment. This approach has been further extended
to ‘evidence filtering’ [13] where the ‘frequency’ character-
istics of various multi-modal events could be directly studied
with the temporal ordering of evidence. These features could
be highly useful in the current context, and also in possible
future extensions of the navigation scheme presented here
to detect more complex spatio-temporal signal signatures.
Hence, we use the strategy in [10] for evidence updating
inside each swarm agent over time. For simplicity, let us
consider the homogeneous case of the strategy presented in
[10]:

Definition 3: [10] Given the BOEs {Θ,F1,m1} and
{Θ,F2,m2}, and a given A∈F2. The updated belief Belk+1 :
2Θ 7→ [0,1] and updated plausibility Plk+1 : 2Θ 7→ [0,1] of an
arbitrary proposition B⊆Θ are

Bel(B)1(k +1) = αk ·Bel(B)1(k)+βk ·Bel(B|A)2(k)
Pl(B)1(k +1) = αk ·Pl(B)1(k)+βk ·Pl(B|A)2(k) (4)

where αk ≥ 0,βk ≥ 0 and αk +βk = 1. The constraints on pos-
itivity and sum are needed to ensure that the updated beliefs
constitute a valid belief function. The conditional in (4) is the
Fagin-Halpern conditional in [14] which can be considered a
more natural extension of the Bayesian conditional notions.
It is possible to have different conditioning events A. In fact,
proper choice of the conditioning event A may often improve
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Fig. 2. Swarm agent (hovercraft) with directional, multi-modal sensor
modules

the performance of the final decision making process based
on the updated evidence. In the evidence updating strategy in
(4), the term Bel(B|A)2(k) captures the portion of the incom-
ing evidence while Bel(B)1(k) captures the already available
evidence. The updated belief is given by Bel(B)1(k+1) and
similar notions hold for the plausibility.

IV. NAVIGATION ALGORITHM FOR SIGNATURE
TRIGGERED BEACONS

In this section, we describe the incorporation of a signature
detection strategy and the implementation of a signature
based triggering mechanism to replace the threshold trig-
gered beacon activation mechanism described in Section II.
The modified navigational behavior of agents is given in
Algorithm 2 described below. Note that the first portion of
this Algorithm is derived from Algorithm 1 [1], and it has
priority over the evidence based navigational decisions, in
order to avoid collisions using col beacons and to respond
to any tar beacons present. Otherwise, the navigational
decisions are made using the latter portion of the algorithm
based on belief updates with multi-modal sensor readings.

Let us consider the complete trajectory of a single swarm
agent. We can identify three phases in its navigational
behavior.

1. Pre-detection phase: No signal modalities detected so
far, node behavior is completely governed by beacons
col and tar.

2. Signature detection phase: Navigational behavior af-
fected by updated evidence using sensor readings.

3. Post-detection phase: Emit the tar beacon to attract
other agents to the area for further scanning.

Our contribution is mainly for the phase 2 above. We now
describe how the navigational decisions are made during this
signature detection phase:

Suppose the signature scanned for is characterized by
modalities m ∈ {1, . . . ,N}. All mobile nodes (swarm agents)
are equipped with sensors which can identify each of these
N different modalities. Two sensors are used for each signal
modality to be sensed. These sensors are directional, fitted
in opposite directions in the left and right sides of the node,
perpendicular to its speed vector as shown in Figure 2. Each
node maintains a BOE over the FOD Θ = {θ1, . . . ,θN} where
each singleton proposition θm correspond to sensor modality
m. Each mobile node samples its sensor signals (left and
right, for all modalities) and updates its BOE accordingly, at
regular sampling intervals synchronized with the clock signal

Algorithm 2 Evidence based navigation
update beliefs
if Scol,i > 0 then

if Dcol,i > 0 then
turn right

else
turn left

end if
else if Star,i > threshold then

if Dtar,i > 0 then
turn left

else
turn right

end if
else if Beli(θm) > T1,m for any m ∈ {1, . . . ,N} then

m0 = argmax Bel(θm) {modality with nav priority}
if m0 = previous m0 then

ri = ri +∆ {increase turn radius}
else

ri = R {reset turn radius}
end if
save m0
if Dm0,i > 0 then

turn right
else

turn left
end if

else
fly straight

end if
if Beli(θm) > T2,m ∀ m ∈ {1, . . . ,N} then

trigger attractive beacon tar
end if

used for the algorithm in [1]. The belief towards modality m
in mobile node i at k-th sampling instance is updated based
on (4) as,

Beli(θm)1(k+1) = α ·Beli(θm)1(k)+β ·Beli(θm|A)2(k) (5)

where A ⊆ Θ2 is a properly chosen conditioning event.
The term Beli(θm)1(k) represents the current belief towards
modality θm and the conditional belief term Beli(θm|Θ)2(k)
represents the new evidence derived using the current sensor
signals of modality m. For the simple choice of A = Θ2, (5)
becomes a linear combination of the available and incoming
evidence [10]. The coefficients α,β determine the weight
given to the inertia of the currently available evidence on
modality m, and is an important design parameter affecting
the behavior of the swarm towards detection of the signature
sought.

It is important to note that the computation in (5) can
be implemented in mobile nodes using a simple first order
process with minimal analog hardware using an R-C realiza-
tion, making this an attractive option for expendable, low-
cost swarm platforms. While keeping the control functions
based on the col and tar beacons intact, the Algorithm 1 is
modified as follows:
(i) If the belief towards at least one of the modalities

m were detected to be above a pre-specified lower
threshold T1,m, i.e.,

Beli(θm) > T1,m for any m ∈ {1, . . . ,N} (6)

then the modality m0 with navigation priority is deter-
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(a) Transition from pre-detection phase to signature
detection phase
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(b) Signature detection phase (contd.)
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(c) Signature detection phase (contd.)
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(d) Signature detection phase (contd.)
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(e) End of signature detection phase
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(f) post-detection phase

Fig. 3. flight trajectory snapshot of an individual node

mined as
m0 = argmax

m
Beli(θm). (7)

(ii) If m0 is equal to the previously detected m0 indicating
continuous navigation inside a region of modality m0,
increment the turn radius r by a quantity ∆. Otherwise,
the mobile node has moved to a region of a different
modality and hence reset the turn radius r to its original
value R. Save current m0 for later use.

(iii) Compute the difference measure Dm0,i for sensor modal-
ity m0 as,

Dm0,i = Lm0,i−Rm0,i (8)

where Lm0,i and Rm0,i are the current sensor signal
strengths for the left and right sensors of modality m0
respectively. The turn direction is determined according
to the sign of Dm0,i as in Algorithm 2.

(iv) If the beliefs of all modalities characterizing the signa-
ture sought are above their upper thresholds T2,m, i.e.,

Beli(θm) > T2,m ∀ m ∈ {1, . . . ,N} (9)

then emit the target attraction beacon tar.
The lower threshold T1,m in above step (i) ensures that

the increase in turn radius occurs only after the mobile node
has entered a region with sufficiently high intensity level
of modality m. This along with the functionality in above
step (ii) ensures that the mobile node will attempt to cover
the region with detection of modality m in a spiral-shaped

navigation path of increasing radius, starting close to the
center of the region. The goal is to explore the vicinity of
this region completely, and seek other modalities.

During successive scanning, when the mobile node moves
into a new region with a different modality of navigational
priority, the turn radius is reset to its original value R. Next,
the node attempts to scan this new region using a new
outward spiral path starting from its center. This process is
further illustrated with the simulations in Section V. These
maneuvers are continued until all modalities are detected
beyond a set of upper thresholds T2,m triggering the attractive
beacon tar.

V. SIMULATION RESULTS

The above evidence-based navigation algorithm is applied
to a swarm of mobile sensor nodes searching for a unique
signature exhibiting certain properties in four adjacent areas.
These properties correspond to modalities mk, k∈{1,2,3,4},
and their dispersion areas are shown in Figure 3(a). Consider
the trajectory of a single mobile node scanning the area.
Until it reaches the region with modality m2, the navigation
is based on the collision avoidance beacons col of other
nodes. Assume no target attraction beacon tar is active yet.
Accordingly, the initial portion of the path shown in Figure
3(a) shows the pre-detection phase of the node considered.

Once it reaches the area with modality m2 as marked by
time instance 1 in Figure 3(a), the node enters the signature
detection phase. The sensors for modality m2 detects the
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Fig. 4. Belief variation over the trajectory of mobile node

presence of it and as a result, the beliefs are updated using
(5). Here we used the simple choice of conditioning event
A = Θ2 and the variation of updated belief over time is shown
in Figure 4. Thereafter, the mobile node assumes an outward
spiral navigation path around the region of modality m2 as
shown in Figure 3(b). Note that the quality of the detection
of a particular modality vary over this region and deteriorates
from the center towards the boundaries of these areas. The
detection deep inside these regions is better than on the
periphery.

Figures 3(b) - 3(d) shows the detection of regions with
modalities m3, m4 and m1 respectively, during the signature
detection phase. The thresholds T1,m = 0.1, T2,m = 0.6 and
α = 0.7 were used during the simulation. Figures 3(e)
indicates the completion of the signature detection. Figure
3(f) shows the node in its post-detection phase activating the
tar beacon to attract other agents to the region for further
discovery.

Note that in this simulation, we only displayed all three
navigational phases of one single agent of the swarm to
illustrate the evidence based updating strategy. However, the
agent behavior is continuously affected by the col and tar
beacons emitted by other nodes, and they always have prece-
dence over the modified evidence-based navigation rules as
mentioned before.

VI. CONCLUDING REMARKS

An evidence based navigation scheme for the detection
of a multi-modal signal signature using swarms of mobile
sensor nodes is presented. It offers a novel method to
detect and track unique signatures characterized by a mix of
signal modalities in a local area. The information gathered
by sensors are modeled as evidence, based on DS theory.
Temporally ordered evidence is used to make navigational
decisions and trigger an attractive beacon, to draw other
nodes towards the signal signature for further exploration.
This method can be important in situations where a target
area is described by classes of interesting signal signatures
with varying intensity in space or time. In many cases, these
signatures cannot be characterized well by the presence or
absence of a single signal modality.

Future work include the extension of the algorithm to de-
tect more complex, spatio-temporally dependent signatures.
The possibility of incorporating evidence filters [13] for this
purpose also need to be explored. In the simulation example
presented, we considered individual signal modalities (corre-
sponding to singleton beliefs in the agent BOE) within each
region of interest. In real world applications, it would be
important to have a detection capability looking for classes
of signals denoted by composite propositions in an agent’s
BOE. Studying the proper choice of conditioning event A in
(4) may prove to be useful towards developing this capability.

Introducing a small degree of random switching between
left and right directions during the navigation over the region
of signature may further increase the robustness of the search
process, offering faster detection and better coverage of area.
The algorithm will be tested in a real world scenario using a
swarm of hovercrafts with on-board multi-modal sensors in
the future.
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