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Abstract
Accidents happen in nature, from simple incidents like bumping into obstacles, to erroneously arriving at the wrong
location, to mating with an unintended partner. Whether accidents are problematic for an animal depends on their
context, frequency, and severity. In this paper, we investigate the question of how accidents affect the task performance
of agents in an agent-based simulation model for a wide class of tasks called “multi-agent territory exploration tasks”
(MATE). In MATE tasks, agents have to visit particular locations of varying quality in partially observable environments
within a fixed time window. As such, agents have to balance the quality of the location with how much energy they are
willing to expend reaching it. Arriving at the wrong location by accident, typically reduces task performance.
We model agents based on two location selection strategies that are hypothesized to be widely used in nature: best-of-
n and min-threshold. Our results show that the two strategies lead to different accident rates and thus overall different
levels of performance based on the degree of competition among agents, as well as the quality, density, visibility,
and distribution of target locations in the environment. We also show that in some cases individual accidents can be
advantageous for both the individual and the whole group.
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Introduction

Several natural tasks performed by animals require them to
visit specific locations in their environment within a fixed
amount of time. Foraging animals, for example, have to
find locations that offer food before they run out of energy.
Another example is searching for a mate where animals have
to find mating partners during their breeding season. These
and other related tasks can be seen as instances of “multi-
agent territory exploration” (MATE) tasks (Schermerhorn &
Scheutz, 2007b) which are defined by a group of agents
A, a set of locations or “checkpoints” C, a search period
T , and a (partially observable) environment E. Agents and
checkpoints are distributed in the environment according to
a distribution D, with each checkpoint having an associated
“quality” which can be perceived by the agents. A typical
goal in a MATE task would be to maximize the quality of
visited checkpoints within T (although other goals can be
specified as well).

Several variations of MATE tasks have been proposed in
the literature. For example, agents might have to visit two
locations consecutively such as finding food first and then
bringing it back to a base location (Drogoul & Ferber, 1993),
or they might have to meet up with mobile checkpoints
(Araujo & Grupen, 1996). More complex variants still
require multiple agents to visit checkpoints at the same time
(Schermerhorn & Scheutz, 2007a).

In MATE tasks, accidental visitations of checkpoints can
happen when an agent aims for a specific checkpoint, but
accidentally stumbles across another checkpoint on its way,
either because the agent ignored the checkpoint, or because
the checkpoint was not visible to the agent. We will thus

define an “accident” (in the MATE task) as “any visitation
of an unintended checkpoint” – “unintended” here meaning
“not selected based on the agent’s choice strategy”. An
important question for MATE tasks thus is whether and to
what extent accidents can have an impact on the average
agent performance, since typical performance measures in
MATE tasks require agents to visit the highest quality
checkpoints possible. It seems prima facie intuitive that
accidents could not be useful as they will likely only lower
an agent’s performance for any “reasonable” search strategy
(i.e., one that attempts to maximize the checkpoint quality).
However, as we will demonstrate in this paper, there are cases
where accidents are beneficial for task performance.

Take, for example, the common instance of a MATE
task where agents (e.g., females) attempt to find (stationary)
mates located in the environment using different mate
selection strategies (Baugh & Ryan, 2009) based on males’
mating calls or display of prowess, which are indicative of
the quality of the mate and thus a crucial determinant of
the quality of the offspring (Welch, Semlitsch & Gerhardt,
1998). Since females typically only have partial knowledge
of the location of possible partners, as some males may
not advertise their location through calls, they may end
up mating with non-optimal partners by accident (e.g.,
bumping into a potential mate causes females to simply mate
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with the male in some species such as treefrogs (Gerhardt,
1974)). For low quality males who might not win in a
“shouting” competition with high quality males, it might thus
be beneficial to remain silent and try to intercept females
instead of calling, a strategy often referred to as “satellite”
strategy (Leary, Fox, Shepard & Garcia, 2005); for if they
decide to call, females might actively avoid them.

To explore the effects of accidental encounters on the
performance of agents in MATE tasks, we use an agent-
based model (ABM) which allows us to investigate the
conditions under which accidents could be advantageous
to the population. This model consists of agents choosing
locations to visit according to two different selection
strategies that have been hypothesized to be widely used in
the animal kingdom: the best-of-n strategy (Janetos, 1980)
and the minimum-threshold strategy (Jennions & Petrie,
1997). We will investigate how these strategies alter the
frequency of accidents and what average quality change
results from such accidents. For instance, we vary the ratio
of agents, the distribution of agents and checkpoints in the
environment, and the quality of the checkpoints, to determine
how these independent variables interact with each other and
affect the performance of agents.

The rest of the paper is structured as follows. We start
by reviewing evidence for the importance of accidental
encounters in different animals performing different tasks.
Then we present various analytical models of behavior
together with our own previous work investigating the
performance of mating strategies in general, and accidental
matings in particular. We then introduce the MATE task
with the specific types of accidents shown by our model,
followed by our experimental setup with independent and
dependent variables. Next, we present the results of a large
parameter sweep together with an analysis of the influence
each parameter has on the frequency and average quality
of accidental encounters. We also present a spatial analysis
of the environment to show the distribution of accident
locations. Then, we discuss our results, explaining why the
two strategies overall reduce the likelihood of accidents (e.g.,
compared to a random strategy) and also showing when
accidents can be advantageous for the population. We finish
the paper by summarizing the main results and proposing
extensions for future work.

Evidence for Accidental Encounters in
Nature
Accidental encounters occur in nature in distinct contexts
of social interactions. For example, it is known that
chimpanzees can live in harmony with human populations;
yet, some documented chimpanzee attacks on humans
consisted of accidental encounters in areas frequented
by both chimpanzees and humans (Hockings, Yamakoshi,
Kabasawa & Matsuzawa, 2010). Although humans are not
a common prey of chimpanzees, some of the attacks aimed
at children showed predatory characteristics (McLennan,
2008; Wrangham, Wilson, Hare & Wolfe, 2000). These
behaviors might lead to disease transmission from humans
to chimpanzees, and are thought to negatively affect the
population of primates, hence are an example of the negative
effects of accidental encounters.

One particular area of interest in biology for studying
the effects of accidental encounters is accidental mating.
Females of gray treefrogs show phonotactic behavior, being
attracted by the quality of male calls (Gerhardt, 1994).
However, silent males have been found within groups of
these frogs. The case of male “satellites” in amphibians,
i.e., males that differ in size but not age from calling males
and that remain silent instead of advertising their location
through calls, is an example of a strategy that intrinsically
explores accidents; for satellites can only mate when females
“bump into them” by accident (Leary, Fox, Shepard &
Garcia, 2005). Avoiding to call then seems to be a persistent
tactic for smaller males that have a limited amount of energy
to spend on calling and are not willing to engage in an
aggressive interaction with larger males (Forester & Lykens,
1986). And, it turns out, that the strategy not only depends
on the size of the individual male, but also on the structure
and dynamics of the calling environment. For example, in
breeding sites with many callers, lower quality callers spend
more time acting as satellites than calling (Arak, 1983).

Another example for how population density can affect
strategy choices that depend on accidents is the behavior
of crickets during the mating season (Alexander, 1961).
Females of some species of crickets are attracted by the
sound emitted by males. However, in an environment
configurations with a high density of crickets, there is
a high probability of accidental intersexual encounters.
Hence, fewer males decide to spend energy calling to
attract females, an hypothesis confirmed by results from
another study (Hissmann, 1990) where a population of
crickets of species Gryllus campestris was observed for
a long period of time. During the observation time, the
population density decreased and the sex ratio showed a high
amount of males in the environment. At high density, fewer
males called to attract females and surprisingly the silent
males proportionally had more mates than the calling ones.
These encounters between females and silent males might
have been accidental. As the population density started to
reduce, the probability of mating by chance also decreased.
Consequently, males had to compete for the few remaining
females and, hence, more males had to call in order to attract
those females.

Often, individuals of different species share the same
mating site and their breeding season also overlaps. This is
the case with two species of treefrogs Hyla cinerea and Hyla
gratiosa. Although these two species are interfertile, females
prefer conspecific calls (i.e., moving towards males of the
same species) (Mecham, 1960). However, heterospecific
pairs were observed in field (Oldham & Gerhardt, 1975).
Oldham and Gerhardt suggested that accidental matings
between individuals of different species more often happen
in cases where males call from areas close to water.
Therefore, calling positions (i.e., distribution of males in
the breeding sites), have significant influence on interspecies
accidental encounters.

Accidental encounters have also been identified as the
main form of mating in some species. For instance,
researchers do not see relevant influence of courtship
behaviors in mole salamanders since intersexual encounters
happen, in general, by accident (Verrell & Krenz, 1998).
Verrell and Krenz proposed two experiments in order to
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compare how males perform when they need to compete for
a female with only one male and with three other males,
respectively. The goal of this study was to verify the males’
mating efforts according to different operational sex ratios.
The authors hypothesized that if accidents were not relevant
for mating success, males would court more when there
were more competitors. They found that males of mole
salamanders decrease their mating effort when there are
more males competing for the same female (i.e., there is a
smaller probability of mating). Verrell and Krenz believe that
this strategy might have been evolved because males arrive
at breeding sites earlier in the mating season, when there
is more competition for mates. Therefore, males prefer to
wait until later in the season when there is a higher chance
of accidentally finding competition-free encounters with
females. Consequently, a higher probability of accidental
encounters is beneficial for the males in the population.

While accidents clearly happen in nature and different
explanations have been proposed on a case-by-case basis
for why they might be useful or adaptive, there is currently
no computational study that systematically investigates the
tradeoffs between different mating strategies and accidents.
Yet, such a study would be important for providing
the necessary theoretical insights that can put the above
findings on a more formal footing and provide more
concise explanations for the advantages and disadvantages
of accidents.

Background and Previous work
Mathematical and computational models have been fre-
quently proposed in the literature to explain animal behaviors
such as mating strategies. In general, these models aim for
evolutionary explanations, trying to discover strategies that
evolved in populations through a long timespan (e.g., evolu-
tionary stable strategies). In the context of mating, there are
models about conflicts over resources (Houston & McNa-
mara, 1988); understanding when to call and when to forage
(McNamara, Mace & Houston, 1987; Thomas & Cuthill,
2002); mating selection strategies (Janetos, 1980; Jennions
& Petrie, 1997; Real, 1990); modeling satellite behavior
(Lucas, Howard & Palmer, 1996; Arak, 1988; Waltz, 1982).
However, all these models contain a high number of parame-
ters, and finding the complex interactions among all those
parameters is typically not feasible. Moreover, for some
tasks, the spatial distribution of elements can be relevant for
the success of agents (Collins, McNamara & Ramsey, 2006),
which often is not captured in analytic solutions.

Agent-based models (ABMs) use the individual interac-
tions among agents and the environment to show how global
population-level behaviors can arise from these individual
interactions. Thus, they are often more useful for behavioral
studies as they (1) enable the possibility of testing and
explaining different characteristics and dynamics of agents
and their environments, and (2) allow researchers to observe
how changes in parameterization affect interactions of agents
and thus task performance.

Often, researchers analyze agents’ performance in
MATE tasks using an absolute performance. However,
“performance-cost-tradeoffs” are often more informative.
In (Schermerhorn & Scheutz, 2007b), for example, we

investigated the cost-benefit of four candidate architectures
for a MATE task. We varied agents’ attributes such as
sensory range, group size and behavior prediction abilities
of agents and showed that the relative performance of the
architectures differed with the costs assigned to each agents’
attributes.

Some MATE tasks require coordination. For example, in
a mating task in which both partners must be present at a
specific location (e.g., a site to lay eggs), males and females
must coordinate in order to satisfactorily perform the task.
In general, when agents are allowed to communicate, their
performance in the task is improved. But in (Schermerhorn &
Scheutz, 2007a), we showed that the cost of communication
is relevant to decide whether the agents benefit from
communicating.

In our previous work, we were interested in exploring how
different strategies in the MATE task perform in different
biologically plausible configurations, focusing on mating
strategies of the grey treefrog Hyla versicolor (Scheutz,
Harris & Boyd, 2010). Results from simulations of a short
period (one hour) in the task can be easily compared
with empirical data and can therefore generate meaningful
biological explanations. We compared two strategies for
mate selection: best-of-closest-n – “best-of-n” for short
– and closest-above-minimum-threshold – “min-threshold”
for short – investigating whether one strategy dominated
another. Strategy domination means that one strategy
consistently leads to significantly better performance than
the other strategy for a given parameter range. We found
that even though min-threshold performance was better than
best-of-n on the majority of the parameter space, there were
regions in our parameter space where the performance of
best-of-n surpassed min-threshold. Therefore, min-threshold
did not dominate best-of-n.

We also started a preliminary exploration of accidental
matings in fully observable environments and showed that
accidents decrease the average quality of the mated males
(Ferreira & Scheutz, 2015). Comparing the rate of accidents
and the quality of accidentally mated males with the rate
and quality of non-accidental matings, we found that the
best-of-n strategy had an undesirable higher rate of accidents
compared to the min-threshold strategy. However, accidents
in min-threshold had a more detrimental influence on
the quality of mated males because females playing min-
threshold only moved toward a male when he was “worth
it” (i.e., males with quality above threshold). While rarer,
accidents with males below the threshold drastically reduced
the average quality of mated males. Overall, it is an open
question whether accidents that led to worse performance in
the short-term (i.e., the mating task), might have important
long-term effects (e.g., to maintain the diversity in the gene
pool).

In this paper, we will extend the above study to a more
general class of tasks and partially observable environments,
and again analyze the frequency of accidents as well as the
influence of those accidents on the average quality of the
visited checkpoints. Table 1 shows how MATE’s entities
(agents and stationary as well as mobile checkpoints) can be
mapped to a few different biological tasks.

In addition to investigating MATE tasks with larger
parameter spaces, we specifically explore how different
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MATE Agents Stationary
Checkpoints

Mobile
Checkpoints

Foraging Task Animals Food Prey
Mating Task in
Treefrogs

Females Calling Males

Mating Task in
Salamanders

Females Males

Table 1. Relation between MATE and biological agents and
tasks.

checkpoint distributions change the rate and quality of
accidents (previously we had only used a Gaussian
distribution of checkpoints). Moreover, to address the
previous simplification that all male frogs started in the
environment from the beginning, in this paper we allow new
checkpoints to appear in the environment as time goes on.

Model for Multi-agent Territory Exploration
Task (MATE)

We modeled a general MATE task with stationary
checkpoints to compare the efficiency of different checkpoint
selection strategies (i.e., how fast agents found and visited
the best quality checkpoints (Schermerhorn & Scheutz,
2007a)). Agents start from the edges of the environment and
have to decide which location to move towards.

Agents update their states in two distinct phases: sensing
and acting. During the sensing phase, agents sense the
qualities of checkpoints and select candidate checkpoints
according to either best-of-n or min-threshold strategy. In
best-of-n, agents select the best checkpoints from a set of
n closest checkpoints. In min-threshold, agents select the
closest checkpoint with quality above a minimum threshold
θ. After selecting a checkpoint, agents move in a straight line
towards the chosen checkpoint. When an agent reaches the
desirable checkpoint, that checkpoint is removed from the
environment. At the next cycle, the agent will choose another
checkpoint during sensing phase.

We start by formally defining the two main strategies
(see also (Ferreira & Scheutz, 2015; Scheutz, Smiley &
Boyd, 2013)). Let Ci be the set of all checkpoints in the
environment at a cycle i, and let A be the set of all agents in
the environment. Also let lq be the quality of the checkpoint
l ∈ Ci. Finally, let D(a, f) denotes the straight line distance
between an agent a and a location l. Define the set of
closest checkpoints from a given set X to a given agent a
as c(a,X) = {j ∈ X|@k ∈ X[D(a, k) < D(a, j)]} and let
cn(a,X) denotes the set of n closest from setX with respect
to the location of agent a.

• best-of-n. The selected checkpoint at cycle i is
argmaxl∈cn(a,Ci)(lq) for the agent a, i.e., the goal
checkpoint with highest quality in the set of closest
n checkpoints.
• min-threshold. The selected checkpoint at cycle i

is argmaxl∈c(a,{g∈Ci|lq≥fθ})(lq), where fθ is the
minimum threshold of agent a, i.e., the checkpoint
with the highest quality above the minimum threshold
among the closest checkpoints.

Selection strategies balance the quality of checkpoints and
cost to reach them. However, often agents visit undesirable
checkpoints. These accidental encounters can increase the
number of visited checkpoints and at the same time, as we
showed in (Ferreira & Scheutz, 2015), reduce the average
quality of visited checkpoints. Thus, the goal of this general
MATE model is to explore the conditions in which accidental
encounters are more likely to happen and the effects of
these accidents on the performance of the agents. A detailed
description of the model according to the ODD (Overview,
Design concepts, Detail) protocol of agent-based models
(Grimm, Berger, DeAngelis, Polhill, Giske & Railsback,
2010) can be checked in the appendix.

Types of Accidents
Due to the different configurations we tested, three different
types of accidents might occur. Type 1 accidents happen
between an agent and a checkpoint that displays its quality
(i.e., non-satellite) in the path towards another checkpoint
of better quality. Figure 1a shows an example of Type
1 accidents. This is the most common type of accidental
encounter and can exist in any configuration we tested.
Moreover, this type of accident always reduce the average
quality of visited checkpoints of one specific agent because
if the quality is higher than the original choice, than the
accident would be chosen. A detailed proof of this statement
can be seen in (Ferreira & Scheutz, 2015).

Type 2 accidents happen only when cp = progressive.
In these accidents, the agent is moving towards a specific
checkpoint but before reaching the selected checkpoint,
another checkpoint spawns within dvisiting to an agent,
effectively forcing the agent to visit it right away. the agent.
Type 2 accidents can increase or reduce the average quality
of visited checkpoints because the new checkpoint can have
any quality.

Finally, Type 3 accidents happen between agents and
satellites. Satellites are the checkpoints of worst quality and
only exist in ω = partially − observable. Therefore, Type
3 accidents also reduce the average quality of accidents.
Satellites do not display their qualities, hence agents can not
sense and avoid them. Figure 1c shows an example of Type
3 accidents.

Experimental Setup and Hypotheses
We modeled the MATE task in our agent-based simulation
environment Simworld (Scheutz & Harris, 2011) and added
mechanisms to record the number and distributions of
accidental encounters.

We fixed environmental parameters such as the size of the
environment as 20m x 25m, the termination condition Term
at 3600 cycles (one cycle corresponding to one second of
real-time) and dvisiting = 4cm (within which checkpoints
are considered visited). We also fixed mδ as a uniform
distribution (i.e., we placed agents near the edges and every
point had the same probability of containing an agent).
Moreover, we fixed the standard deviation of checkpoint
quality σq = 2. Finally, we fixed the velocity of agent
movements at av = 1.86cm/s.

We varied the remaining parameters in a systematic way
to investigate their possible interactions with the number and
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(a) Type 1 Accident (b) Type 2 Accident (c) Type 3 Accident

Figure 1. Examples of accidental encounters showed by our simulation. Red circle represents an agent. Circles with numbers
represent checkpoints with their qualities. The agent is using best-of-n with n = 4. The dashed line is the path the agent will
traverse. (a) the agent senses the 4 closest checkpoints (blue circles) but can not sense the checkpoint 16 (checkpoint 16 is the
farthest), and selects checkpoint 24. On the agent’s path towards checkpoint 24, it accidentally visits checkpoint 10. (b) simulation
with cp = progressive and checkpoint 10 has not emerged yet. If checkpoint 10 is placed when the agent is close to checkpoint’s
location, an accidental encounter happens. (c) simulation with ω = partially − observable and checkpoint 10 is a satellite that
does not display its quality. The agent senses the other four checkpoints and selects checkpoint 24. On the path towards checkpoint
24, the agent accidentally visits the satellite.

quality of accidents. We varied the number of agents mn ∈
{1, 5, 10, 15, 20}. We expect a positive correlation between
mn and the ratio of accidents, because increasing the number
of agents wandering around increases the probability of those
agents accidentally visiting an undesirable checkpoint. On
the other hand, we do not expect any correlation between the
number of agents and the average quality of accidents.

We also varied the checkpoint placement method cp in
simultaneous and progressive. We expect more accidents
in simulations with simultaneous compared to progressive
placement, because there exists a higher checkpoint density
when agents exist since the beginning of the simulation.
However, we do not expect any difference in the quality
of accidents between both placement methods. We have
the same hypothesis about the number of checkpoints in
the environment cn as increasing this number consequently
will increase the density of checkpoints. Thus, we
varied cn ∈ {100, 200, 300, 400, 500} to test our hypothesis
about increased accident rates using three distribution of
checkpoints cδ: uniform, Gaussian and inverseGaussian. In
the uniform distribution, all areas in the environment have the
same probability of becoming a checkpoint. In the Gaussian
distribution, more checkpoints exist in the central area of
the environment. In the inverseGaussian distribution, more
checkpoints exist near the edges of the environment. We
expect a significant interaction between these distributions
and the rate of accidents. More specifically, we expect that
uniform distribution would lead to fewer accidents because
checkpoints are not “clustered” in an area. Therefore,
agents could move to the selected checkpoint with reduced
probability of accidentally visiting another checkpoint. We
do not expect any relevant difference between the quality of
accidents for each distribution.

We considered three selection strategies best− of −
n, min− threshold and a random choice. For best−
of − n we varied its parameter n ∈ {1, 2, 3, 4, 5};
for min− threshold we varied θ ∈ {6, 12, 18, 24}; the
random choice strategy is not parameterized. In (Ferreira &
Scheutz, 2015) we showed that strategies reduced accidents.
Moreover, we showed that min− threshold led to fewer
accidents than best− of − n. However, accidents in min−

threshold drastically decreased the average performance of
the population. The same results are expected here.

Finally, we also varied the mean quality of the checkpoints
µq ∈ {6, 12, 18, 24}. We previously showed that the quality
of the checkpoints interacts with the strategies in a complex
fashion. While agents using best− of − n do not take
the absolute quality of checkpoint into consideration when
they make a choice, agents using min− threshold only
approach checkpoints with quality above θ. Thus, we expect
that configurations with high values of µq would display
fewer accidents because agents would move for shorter
distance, hence reducing the probability of accidentally
bumping into an undesirable checkpoint.

To examine whether satellite behavior might be adaptive,
we tested all previous combinations of parameters with both
values of ω. With ω = fully − observable, all checkpoints
display their qualities. Forester and Lykens reported a
maximum of 14% of satellites in a population of frogs
(Forester & Lykens, 1986). Thus, in the second condition
(ω = partially − observable), we fixed the number of
satellites at 10%, i.e., the 10% worst quality checkpoints do
not display their qualities and are thus not visible to agents
selecting checkpoints.

Due to the stochastic characteristics of the model, we
ran 100 simulations with distinct initial conditions for
each point in the parameter space for a total of 1,200,000
simulations. The dependent variables were the number
of visited checkpoints, the number of accidentally visited
checkpoints, and the average quality for both accidentally
and non-accidentally visited checkpoints.

We limited the range of the tested parameters due to
computational constraints. The first hypothesis we wanted to
explore was the influence of agent-checkpoint ratio on the
number of accidents. Thus, as we did not know how the data
were distributed, we uniformly varied cn and mn (it does
not make sense to have 0 agents, thus we used a minimum
of 1 agent). Even though we are proposing a general MATE
simulation, we decided the upper bound of the parameter n
based on empirical data in mating experiments with frogs
(Jennions & Petrie, 1997). We decided to match the values
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of µq and θ to compare different interactions between both
parameters.

We aim at drawing general conclusions of the influence
of accidents in MATE tasks. For example, when we
introduce a partially-observable environment, satellites could
be “bad callers” in the mating task performed by treefrogs,
or satellites could be hidden predators in a foraging
task. The checkpoint placement methods represent, for
example, whether all possible mates are present in the
environment since the beginning of the mating season,
or they enter the environment in different times. We
also test distinct checkpoint distributions because animals
congregate differently during the mating season. While some
animals create clusters of possible choices, other are more
uniformly distributed across the mating environment. The
same rationale works for food in a foraging task.

Different tasks have different agent-checkpoint ratios.
Foraging tasks have much more checkpoints than mating
tasks. But, as we presented in the “Evidence of Accidental
Encounters in Nature”, even different mate tasks have
different agent-checkpoint ratios. Thus, we decided to vary
the number of agents and the number of checkpoints to get a
wide range of possible agent-checkpoint values.

Moving checkpoints could have been added to our MATE
task. However, with moving checkpoints there are several
parameters that would have to be determined regarding the
movement (e.g., direction/trajectory, speed, what to do when
colliding, etc) which would either significantly increase
the number of simulation runs (and make some parameter
explorations not feasible) or require assumptions (about
the various motion parameters) that might be difficult to
justify for the general case. Hence, it might be better to
investigate moving checkpoints for particular MATE tasks
(e.g., particular predator-prey simulations).

Results

The results of the parameter sweep showed significant
main effects of all variables on the frequency and quality
of accidents. The two non-random selection strategies
overall reduced the number of accidents in addition to
maintaining a better performance than the random selection.
The number of agents and checkpoints affected the number
of accidents and there were differences on the dynamics
of accidents according to when new checkpoints appeared
in the environment and what their mean quality was.
Furthermore, some areas of the environment were more
likely to have accidents, hence would be good locations for
satellites to increase the chance of being accidentally visited.

Which is the Best Strategy for Agents?
Depending on the particular instance of the MATE task,
one of two goals would be preferable: maximization of the
number of visited checkpoints (e.g., for foraging for food),
or maximization of the quality of visited checkpoints (e.g.,
for finding a suitable mate). The results show that overall
accidents increase the number of visited checkpoints, but
often reduce the average quality of collected checkpoints.

Table 2 shows means and standard deviations of the
number and quality of visited checkpoints, including or not

the ones visited by accident. Agents following the best-of-
n strategy visit more checkpoints and have more accidents
on average. On the other hand, min-threshold is the strategy
by which agents are more selective. Agents following this
strategy only spend energy in moving when there are
good quality checkpoints in the environment. Moreover,
comparing both strategies with the random baseline strategy,
we can see that although agents following best-of-n visit
more checkpoints than in the random case, the number of
accidents is much lower in best-of-n than random (Figure 2).
This confirms our previous findings that agents using
strategies have fewer accidents (Ferreira & Scheutz, 2015).
Comparing best-of-n with min-threshold, the number of
accidents is smaller in min-threshold because agents traverse
shorter distances and therefore had a smaller probability of
accidentally visiting an unintended checkpoint.

Looking at the quality of visited checkpoints, strategies
increase the average quality of visited checkpoints.
Moreover, agents using the random strategy display the
best average quality of accidents because those accidents
have random quality, which means that the average quality
of accidental and non-accidental visits are not significantly
different. When we compare the other two strategies, we can
see that being highly selective pays off: The average quality
of visited checkpoints in min-threshold is much higher than
in best-of-n. However, the average quality of accidents is
much lower in min-threshold than in best-of-n, thus when an
accident happens with agents following min-threshold, the
effect on the overall task performance is more severe than in
best-of-n (Figure 3).

Is There a Significant Effect of Accidents on
Selection Strategies?
Accidents increase the number of visited checkpoints and
often reduce the average quality of visited checkpoints.
Yet, it is necessary to compare the influence of accidents
on the performance of different strategies. We performed
paired-samples t-test to compare the number of visited
checkpoints with accidental encounters versus without
accidental encounters for all strategy and parameters
(Table 3). There were significant differences in the number
of visited checkpoints with and without accidents for
all strategy and parameters. These results suggest that a
significant part of the checkpoints was visited by accident.
Specifically, accidental encounters increase the number of
visited checkpoints on all selection strategies and for all
parameters.

Figure 4 depicts the average number of accidents for
simulations with and without accidents for all strategies.
The highest number of accidents happened with the random
choice. When we compare the other two strategies, agents
using best-of-n visited more checkpoints by accident on
average than agents using min-threshold.

Table 4 shows the results of paired-samples t-test to
compare the quality of visited checkpoints with accidental
encounters versus without accidental encounters conditions
for all strategies and parameters. Again, there were
significant differences for all strategy and parameters.
These results indicate that accidental encounters are
detrimental to the performance of all three selection
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Number Quality
Strategy Visited Check-

points
Visited Check-
points Without
Accidents

Visited by
Accident

Visited
Check-
points

Visited
Check-
points
Without
Accidents

Visited by
Accident

random 68.93 ± 48.50 49.29 ± 32.63 19.64± 20.11 15.14 ± 6.72 15.20 ± 6.72 14.94 ± 6.76
best-of-n 153.42± 108.16 148.76± 105.16 4.66 ± 5.09 15.74 ± 6.73 15.79 ± 6.73 14.13 ± 6.79
best-of-1 182.42± 119.84 182.14± 119.68 0.28 ± 0.66 15.18 ± 6.71 15.19 ± 6.71 11.64 ± 6.75
best-of-2 162.80± 111.80 158.02± 108.07 4.78 ± 4.34 15.57 ± 6.71 15.61 ± 6.71 14.04 ± 6.77
best-of-3 149.81± 105.03 144.04± 100.56 5.76 ± 5.10 15.81 ± 6.72 15.87 ± 6.72 14.26 ± 6.76
best-of-4 140.06 ± 99.60 133.95 ± 94.90 6.11 ± 5.32 15.99 ± 6.72 16.06 ± 6.72 14.34 ± 6.76
best-of-5 132.01 ± 95.43 125.64 ± 90.52 6.37 ± 5.54 16.14 ± 6.72 16.22 ± 6.72 14.42 ± 6.77
minthresh 99.94 ± 115.24 98.91 ± 114.92 1.02 ± 2.08 18.15 ± 5.86 18.58 ± 5.69 13.58 ± 6.21
minthresh 6 167.94± 113.76 167.11± 113.55 0.83 ± 1.67 15.45 ± 6.36 15.47 ± 6.34 8.65 ± 6.22
minthresh 12 122.87± 118.82 121.71± 118.76 1.16 ± 2.20 17.14 ± 5.35 17.61 ± 4.69 10.92 ± 4.61
minthresh 18 77.27 ± 106.47 76.18 ± 106.03 1.09 ± 2.20 20.36 ± 3.55 21.01 ± 2.62 15.51 ± 2.94
minthresh 24 31.68 ± 66.35 30.66 ± 65.11 1.01 ± 2.21 23.87 ± 2.26 24.93 ± 0.60 20.64 ± 2.18

Table 2. Summary of means and standard deviations for number and quality of visited checkpoints, visited checkpoints without the
ones visited by accident and visited by accident for each strategy and parameter.
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Figure 2. Effects of different strategy parameters on the
number of accidental encounters. The bars represent the
average number of accidental encounters for all simulations
runs for each strategy plus parameter.

strategies (i.e., accidental encounters reduce the quality of
visited checkpoints on all selection strategies and for all
parameters).
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Figure 3. Effects of different strategy parameters on the quality
of visited checkpoints and accidentally visited checkpoints. The
bars represent the average quality of checkpoints visited by
agents for all simulations runs and for each strategy plus
parameter.

Figure 5 shows the average quality of visited checkpoints
with and without accidents. Accidents reduced the quality
of visited checkpoints in all selection strategies. Moreover,
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Strategy t df p-value
random 338.42 12000 <2.2e-16
best-of-n 708.98 600000 <2.2e-16
best-of-1 148.6 120000 <2.2e-16
best-of-2 381.55 120000 <2.2e-16
best-of-3 391.77 120000 <2.2e-16
best-of-4 397.67 120000 <2.2e-16
best-of-5 398.26 120000 <2.2e-16
minthresh 340.07 480000 <2.2e-16
minthresh 6 172.88 120000 <2.2e-16
minthresh 12 182.52 120000 <2.2e-16
minthresh 18 170.98 120000 <2.2e-16
minthresh 24 159.47 120000 <2.2e-16

Table 3. Paired-samples t-test to compare the number of
visited checkpoints in conditions where all encounters were
accounted and the same simulations where only non-accidental
encounters were accounted.
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Figure 4. Effects of accidents on the number of encounters for
each selection strategy. The bars represent the average number
of checkpoints visited by agents for all simulations runs and for
each strategy.

accidents hurt the performance of agents using the min-
threshold the most. Thus, even though the number of
accidents in min-threshold is the lowest, these accidents have
a big influence on the average quality of visited checkpoints.

Strategy t df p-value
random -81.939 12000 <2.2e-16
best-of-n -747.56 600000 <2.2e-16
best-of-1 -128.96 120000 <2.2e-16
best-of-2 -398.3 120000 <2.2e-16
best-of-3 -431.57 120000 <2.2e-16
best-of-4 -442.57 120000 <2.2e-16
best-of-5 -449.22 120000 <2.2e-16
minthresh -198.05 347460 <2.2e-16
minthresh 6 -175.3 120000 <2.2e-16
minthresh 12 -113.39 105820 <2.2e-16
minthresh 18 -115.67 75821 <2.2e-16
minthresh 24 -122.39 45821 <2.2e-16

Table 4. Paired-samples t-test to compare the quality of visited
checkpoints in conditions where all encounters were accounted
and the same simulations where only non-accidental
encounters were accounted.
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Figure 5. Effects of accidents on the quality of encounters for
each selection strategy. The bars represent the average quality
of checkpoints visited by agents for all simulations runs and for
each strategy.

What is the Influence of the Agent-Checkpoint
Ratio on the Number of Accidents?
We changed agent competition in two forms. We varied the
number of agents – more agents led to more competition –
and we varied the number of checkpoints in the environment
– fewer checkpoints led to more competition. Increasing the
number of agents increased the number of accidents in all
strategies. Figure 6 shows that the number of accidents in
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agents using the random strategy has the highest increase.
The other two strategies show a smaller slope. The reason
why the number of accidents with the two non-random
strategies does not increase at the same ratio as the number of
agents is the following: Consider an agent a moving towards
a checkpoint c1 that would lead to an accident with another
checkpoint c2. If there are more agents in the environment,
the probability of a different agent reaching c2 before an
accident can occur is higher, thus reducing the likelihood of
this accident happening.
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Figure 6. Effects of different selection strategies on the number
of accidental encounters for each number of agents. The line
represents the average number of accidental encounters at
each simulation.

Figure 7 shows the interaction between the number
of checkpoints and the number of accidents for each
strategy. Accidents are more frequent as the number of
checkpoints increase with all strategies. The reason is that
more checkpoints in the environment lead to more “clusters”
where accidents are more likely. Comparing all strategies,
agents using the random or best-of-n show a greater increase
of accidents than agents using min-threshold. This is because
in configurations with more checkpoints, agents following
the min-threshold strategy have to move shorter distances to
find a checkpoint with quality higher than θ, which reduces
the likelihood of accidents.

How Does the Moment of Appearance Change
the Accidents?
In our experiments, all checkpoints either exist at the
beginning of the simulation (cp = simultaneous) or they
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Figure 7. Effects of different selection strategies on the number
of accidental encounters for each number of checkpoints. The
bars represent the average number of accidental encounters at
each simulation.

emerge uniformly as time passes (cp = progressive)
through progressive placement which gradually increases the
density of checkpoints in the environment. Consequently, the
probability that more than one checkpoint would exist on a
straight line is lower. Figure 8 shows that the simultaneous
placement leads to more accidents than the progressive
placement method. In (Ferreira & Scheutz, 2015), we
showed that agents using best-of-n strategy with n = 1 can
not have any accidents. This is not true in the current setting
for two reasons: first, in the progressive placement, there is a
very small probability that a Type 2 accident exists. Second,
in configurations with ω = partially − observable, Type 3
accidents might exist with best-of-1 strategy.

Figure 9 depicts the effects of strategy parameters and
the placement methods on the quality of accidents. At first
glance, it is not obvious why the placement methods change
the quality of accidental encounters. As all checkpoints
appear at the same locations and with the same quality, one
would assume that the quality of accidents would not change.
However, what really happens is that in the progressive
placement, Type 2 accidents might exist, even though this
accident is not always detrimental.

More specifically, if a checkpoint with quality d emerges
near an agent pursuing another checkpoint with quality q
and d > q, then the agent would accidentally visit this new
checkpoint and the average performance would increase.
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Figure 8. Interaction between strategy parameters and the
different placement methods on the number of accidents. The
bars represent the average number of accidental encounters for
all simulation runs for distinct strategy plus parameter pairs for
each placement method.

Does the Quality of Checkpoints Change the
Dynamics of Accidents?

The quality of checkpoints is relevant for the number of
accidents only in configurations with agents using min-
threshold strategy. Figure 10 shows the average number of
accidents for all strategies and mean quality of checkpoints.
Agents using best-of-n are not influenced by the average
quality of checkpoints. They sample the closest checkpoints
and move toward the best among them, independent of its
quality.

On the other hand, agents playing the min-threshold
strategy only move toward checkpoints above a minimum
threshold. Hence, if the average quality is much lower than
the minimum threshold of agents, then those agents decide
not to move. As a result, agents do not visit any checkpoint,
neither on purpose nor by accident. At the other side of
the spectrum, if the average quality of checkpoints is much
higher than the minimum threshold, then the agents always
move toward the closest agent (same behavior as best-of-
1). Accidents in these configurations happen with invisible
checkpoints (i.e., accidents of Type 2 or Type 3).

Finally, when the average quality of checkpoints is close to
θ, there are some checkpoints above threshold that are worth
pursuing and there are also checkpoints below threshold that
can exist in a location closer to the agents than those above
threshold (the latter could become an accidental encounter).
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Figure 9. Interaction between strategy parameters and the
different placement methods on the average quality of
accidentally visited checkpoints. The bars represent the
average quality of accidental encounters for all simulation runs
for distinct strategy plus parameter pairs for each placement
method.

In our experiments we verified that the highest number of
accidents in min-threshold happened in simulations which
θ = µq . In these cases, half of checkpoints are below
threshold and might lead to an accident. Hence, there is a
high chance of an agent visiting one of these checkpoints. In
simulations where θ = µq + 3× σq (e.g., θ = 12 ∧ µq = 6),
on average, only 2.1% of checkpoints are above threshold.
Visitations to any other checkpoint count as an accident,
hence the chance of accidents is the highest. However, when
the agents finish visiting all good checkpoints they leave the
environment. As they spend less time in the environment, the
number of accidents is not as high as in configurations where
θ = µq .

Moreover, the quality of accidents changes as the mean
quality of checkpoints changes. Figure 11 shows that with
the best-of-n strategy, as n increases, the quality of accidents
remains approximately the same. On the other hand, with the
min-threshold strategy, the parameter θ is an upper bound for
the average quality of accidents. If the quality of checkpoints
is much smaller than θ, agents following min-threshold
do not spend energy on visiting checkpoints. Therefore,
there is no accident. If θ is slightly higher than µq, then
accidents hurt the performance the most because the quality
of an accidental checkpoint is much lower than the other
checkpoints the agents have been visiting (i.e., checkpoints
with quality above θ). If θ = µq then the accidents do not
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Figure 10. Effects of different selection strategies on the
number of accidental encounters for each mean quality of
checkpoints. The bars represent the average number of
accidental encounters at each simulation.

hurt the performance much, because the quality of accidents
is closer to the quality of selected checkpoints. Finally,
when µq is much higher than θ, agents pursue the closest
checkpoint. Therefore, accidents happen either with satellites
or because a new checkpoint just appeared in front of the
agent. The quality of these accidental checkpoints also does
not hurt the performance much because their quality is close
to the original choice of the agents.

What is the Influence of Satellites on Accidents?
Low quality checkpoints have a small chance of being
selected by agents using non-random strategies. These
checkpoints benefit from accidental encounters in situations
where an agent moving towards a better checkpoint
bumps into a low quality one. In a fully observable
environment, agents can explicitly avoid low quality
checkpoints. However, in a partially observable environment,
agents do not know the location of the worst checkpoints.
Hence, the chance of agents accidentally encountering these
checkpoints will increase.

Figure 12 shows the average number of accidental
encounters for different selection strategies and different
types of environments. In configurations with 10% of
satellites, when agents used any of the selection strategies,
more checkpoints were accidentally visited.

It is also important to identify how many of these
accidents happened with satellites in a partially observable
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Figure 11. Effects of different selection strategies on the quality
of accidental encounters for each mean quality of checkpoints.
The bars represent the average quality of accidental encounters
at each simulation.

environment. Figure 13 depicts the number of accidents
with satellites over the total number of accidents on ω =
partially − observable. In our experiments with a partially
observable environment, 10% of checkpoints were satellites.
The results showed that in configurations with agents using
either best-of-n with n = 1 or min-threshold with θ =
6, more than 15% of accidents happened with satellites.
In addition, all configurations except agents using min-
threshold with θ = 24, more than 5% of accidents happened
with satellites on average.

We also compared the average quality of accidents
with checkpoints not displaying their location and quality
(i.e., satellites) and with checkpoints displaying their
location. Looking at the results of all simulations with ω =
partially − observable, the average quality of accidentally
visited checkpoints displaying their location was 14.570 and
the average quality of visited satellites was 12.191. Table 5
shows the average quality of accidents with satellites for all
strategies. We can see that increasing the parameter θ also
increases the average quality of the visited satellites. This is
because when agents have a high threshold and the average
quality of checkpoints is low, they do not even enter the
environment, hence it does not matter whether checkpoints
display their location/quality or not.
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Figure 12. Effects of different selection strategies on the
number of accidental encounters for each ω. The bars represent
the average number of accidental encounters at each
simulation.

Strategy MVS
random 11.547 ± 6.709
best-of-n 11.567 ± 6.718
best-of-1 11.549 ± 6.723
best-of-2 11.558 ± 6.720
best-of-3 11.599 ± 6.712
best-of-4 11.568 ± 6.719
best-of-5 11.558 ± 6.718
minthresh 13.897 ± 6.223
minthresh 6 11.272 ± 6.791
minthresh 12 13.179 ± 5.855
minthresh 18 16.187 ± 4.147
minthresh 24 19.203 ± 2.603

Table 5. Summary of means and standard deviations for mean
visited satellites (MVS) for each strategy and parameter.

Where are the Best Locations for Checkpoints
to Increase their Chance of Being Visited?

The distribution of checkpoints is important for the
frequency of accidents. Figure 14 shows the number of
accidents for each distribution and different number of
agents. The Gaussian distribution led to more accidents than
the other two. This can be explained by the fact that in the
Gaussian distribution, checkpoints exist in big a “cluster”
in the center of the environment. Therefore, agents more
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Figure 13. Effects of different strategy parameters on the
frequency of accidents with satellites. The bars represent the
average of the number of accidents with satellites over the total
of accidents for each simulation.

frequently bump into unintended checkpoints also located in
the area.

To further investigate the spatial effects of checkpoint
placement, we created a “high-level” simulation that can
predict, for each distribution, the location where accidents
are more likely to happen. The goal of the high-level
simulation is to find checkpoint positions with high chances
of being visited by accident.

Algorithm 1 shows the main procedure of the high-level
simulator. It starts dividing the 20m X 25m environment
into 2000 50 cm2 square sites. Then, 100 checkpoints are
placed in sites according to the three distributions (Gaussian,
inverseGaussian or uniform). For each site in the sitesList,
one agent is placed in that site and the closest checkpoints
to that agent are stored in the closestCheckpoints list. The
size of this list depends on the strategy used by the agent.
When aπ(p) = random, closestCheckpoints contains all
checkpoints in the environment. When aπ(p) = best−
of − n, closestCheckpoints contains n elements. When
aπ(p) = min− threshold, closestCheckpoints contains
50 elements because we assume that half of the checkpoints
have quality above θ.

In the high-level simulation, it does not matter the actual
quality of a checkpoint, because the high-level simulation
tests all paths from the agent to the closestCheckpoints,
and check whether an accident occurs. For all checkpoints
in closestCheckpoints, we trace a line from the agent’s site
to the checkpoint. This line represents a possible trajectory
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Figure 14. Interaction between the distributions of checkpoints
and the number of agents on the number of accidents.

from the agent until it reaches the checkpoint. When this
trajectory intercepts a different agent, an accident occurs.

Let the checkpoint C(i) be the ith closest to the agent,
i.e., there are i− 1 checkpoints closer to the agent than
C(i). Also let Q(C(i)) be the quality of checkpoint C(i).
For best-of-n, ∀C(i) ∈ sitesList, i ≤ n, the probability that
the agent selects C(i) is equal to 1

n . In this case, all
checkpoints have the same probability of having the best
quality. However, for min-threshold case, this property does
not hold true. For min-threshold, the probability that an agent
selects a checkpoint C(i) is the probability of Q(C(i)) ≥ θ
and ∀C(j) ∈ sitesList, {j ≤ i and Q(C(j)) < θ}. Thus,
addAccident adds the probability of this checkpoint being
selected.

Figure 15 shows the heatmaps generated from the high-
level simulation. Each square shows the probability of an
accident from an agent starting in that site. As there is no
accident when agents used the best-of-n strategy with n = 1
(Ferreira & Scheutz, 2015), we did not add this configuration
to Figure 15.

Looking at heatmaps for each strategy, they showed
interesting patterns of accidents. Results from the random
strategy display a circular shape where agents located in
areas close to the edges have a higher probability of
encountering an accident in their paths toward a checkpoint.
In the inverseGaussian distribution, the vast majority of
accidents occur when agents are in the corners, while in
the Gaussian distribution more accidents occur close to the

Algorithm 1 Pseudo code of the process performed by the
high level simulation.
HLSim.run(seed, aπ(p), cδ)

1: sitesList⇐ divideEnvironment(2000, 2500, 50)
2: Agent a⇐ newAgent(aπ(p))
3: cpList⇐ createCP (seed, 100, cδ, 0)
4: for all Site s ∈ sitesList do
5: placeAgent(a, s)
6: closestCheckpoints⇐

getClosestCP (cpList, a, aπ(p))
7: for all Checkpoint c ∈ closestCheckpoints do
8: line⇐ traceLine(a, c)
9: hasCrossed⇐ checkLine(line, cpList)

10: if hasCrossed == true then
11: addAccident(s, aπ(p))
12: end if
13: end for
14: end for
15: return(sitesList.accidents)

center as there are more checkpoints near the center of the
environment.

The results of our agent-based simulation showed
a direct correlation between the parameter n in the
best-of-n strategy and the frequency of accidents. The
same outcome is replicated by the high-level simulation.
However, looking at the heatmaps of best-of-n strategy,
the distribution of checkpoints determines the accident
locations as the parameter n increases. More specifically,
for n = 2, the regions of accidents are more uniformly
distributed through the environment, even with the Gaussian
and inverseGaussian distributions. For n = 2, accidents
happen with the unchosen checkpoint in the set of 2-
closest. Independent of the distribution, in a set of 100
checkpoints, for all squares in the environment, there are
two checkpoints that are relatively close to them. Thus,
accidents happen in a more or less uniform fashion.
However, starting at n = 3, a cluster of accidents in the
middle of the environment starts to emerge in the Gaussian
distribution while accidents near the corners emerge in
the inverseGaussian distribution. The reason is that, as n
increases, the n− closest checkpoint tends to belong to
areas with more checkpoints. Therefore, as n increases, more
accidents happen in areas with more checkpoints. Finally,
in min-threshold the number of accidents depends on the
mean quality of checkpoints. Consequently, the location
of checkpoints uniformly determines the distribution of
accidents. Thus, the inverseGaussian distribution has more
accidents near the borders and the Gaussian distribution
shows some small areas with high density of accidents in the
center.

These results demonstrate that accidents happen with
higher frequency close to the beginning of the simulation.
More specifically, during the first cycles (i.e., as agents are
still close to the edges), the chosen checkpoint is positioned
inside a π

2 angle. In addition, when agents are located in
the center of the environment, the path towards the chosen
checkpoint is angled at 2π. Figure 16 shows an example of
agent near the bottom edge of the environment and another
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(a) random choice
Gaussian distribution

(b) best-of-2
Gaussian distribution

(c) best-of-3
Gaussian distribution

(d) best-of-4
Gaussian distribution

(e) best-of-5
Gaussian distribution

(f) minthresh
Gaussian distribution

(g) random choice
InverseGaussian
distribution

(h) best-of-2
InverseGaussian
distribution

(i) best-of-3
InverseGaussian
distribution

(j) best-of-4
InverseGaussian
distribution

(k) best-of-5
InverseGaussian
distribution

(l) minthresh
InverseGaussian
distribution

(m) random choice
uniform distribution

(n) best-of-2 uniform
distribution

(o) best-of-3 uniform
distribution

(p) best-of-4 uniform
distribution

(q) best-of-5 uniform
distribution

(r) minthresh uniform
distribution

Figure 15. Heatmaps of accidental matings. Each square represents a site where an agent can exist. The colors represent the
probability of an agent starting at that site accidentally visit any checkpoint in the environment, for each strategy and each
distribution of checkpoints.

agent already in the middle of the environment. The number
of possible paths through the environment when the agent
is located near the edges is smaller than when agents are
already in the middle of the environment. Therefore, there
is a higher probability that accidents will happen close to the
beginning of the simulation.

Finally, with best-of-n and min-threshold strategies, the
probability of accidents per site for each distribution can
be ordered in gaussian < inversegaussian < uniform.
These results are different from the results of the agent-
based simulation. Our hypothesis for that discrepancy is
that in the high-level simulation, the chance of an agent to
be in any location of the environment is the same (as we
systematically calculated accidents for each location), while
in the agent-based simulation some areas of the environment
are more likely to have an agent than others. For example,
as agents start at the borders of the environment, they spend
more time in areas close to the borders than in the center
of the environment. Still, the period agents spend in each
area varies according to the strategy agents use and the
distribution of checkpoints. In sum, the high-level simulation
is important as an estimate of accidents that can give us
an intuition of good and bad locations for checkpoints.
However, the complex interaction between strategies and
checkpoint distributions further justifies the use of an agent-
based model instead of just a high-level simulation.

Discussion

In (Ferreira & Scheutz, 2015) we performed experiments in
a mating task in which female frogs selected males using
best-of-n and min-threshold strategies, and after mating, both
frogs left the environment. In that paper, we reported that
min-threshold performed better not only because it had a
better performance than best-of-n in terms of average mated
male quality, but also because it led to fewer accidents than
the other strategy. We performed independent-samples t-tests
to compare whether both strategies perform significantly
different in the more general MATE task. When agents do
not leave the environment, the best-of-n strategy led to fewer
accidents than the min-threshold strategy (t(832080) =
503.13, p− value < 2.2e− 16). Moreover, agents playing
the best-of-n strategy also visited more checkpoints on
average than agents playing the min-threshold (t(998310) =
246.25, p− value < 2.2e− 16), although the latter had
a better performance in terms of the quality of visited
checkpoints (t(809440) = −183.05, p− value < 2.2e−
16).

A specific behavior emerged due to agent competition:
Agents were attracted by the best local checkpoints
according to their strategy. However, as agents remained in
the environment for the entire simulation, as time passed
and agents visited checkpoints, distinct agents started to
have the same local best. Hence, different agents chose the
same checkpoint. This continued into the next checkpoints,
leading to agent groups that followed the same path. The
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Figure 16. Environment with two agents. Agent close to the
edges (i.e., start of the simulation) has fewer possible paths
than another agent that is in the middle of the environment
which can move to any direction.

consequence of this behavior is that if a path would lead
to an accident, independently of the number of agents in
the same path, the number of accidents would always be
one. While increasing the number of agents increases the
probability of accidents, it also increases the chance that
various agents have the same path toward checkpoints, which
does not increase the frequency of accidents. The distance
between any pair of checkpoints is longer, on average,
in the inverseGaussian distribution. Consequently, it takes
longer for agents to have the same local best. Therefore,
this grouping behavior is rarer in the inverseGaussian
distribution.

In order to compare the performance of agents in a MATE
task, it is necessary to define which performance metric is
more relevant to agents. For example, if one is interested
in visiting most checkpoints within a given time, then our
results show that agents using the best-of-1 strategy (i.e.,
always move toward the closest checkpoint) is the best
approach (the same outcome can be achieved with a min-
threshold strategy where the threshold is lower than the
quality of any of the checkpoints). Moreover, if agents are
aware of all checkpoints from the start, best-of-1 eliminates
accidents and reduces competition among agents. However,
if the goal is to have a high quality of visited checkpoints, it is
important to avoid lower quality checkpoints. min-threshold
with a medium quality threshold can avoid these undesirable
checkpoints. Although agents using this strategy had a higher
frequency of accidents than the best-of-n strategy, the quality

of visited checkpoints is much higher than any parameter
assignment for the best-of-n strategy.

There are three types of accidents: accidents with visible
low quality checkpoints (Type 1), and accidents with
invisible “satellites” (Type 2 and Type 3). Accident of
Type 1 happens when an agent senses and ignores a “bad”
checkpoint (i.e., full observability), but the checkpoint is
directly in the agent’s path to another selected checkpoint.
On the other hand, the agent could not avoid an encounter
with a checkpoint that was just spawned in the agent’s
path or a checkpoint does not advertise its location (i.e.,
partial observability), using a better navigation strategy, say,
as would be possible in the case of visible low quality
checkpoints.

It is interesting to note that accidents in both cases of
visible and invisible checkpoints are not always bad for
the whole population. Looking at cases where accidents
happen with low quality checkpoints, we could see some
configurations in which accidents increase the average
quality of visited checkpoints. For example, Figure 17 and
Figure 18 show two similar environments that demonstrate
how accidents can be advantageous for the whole population
of agents. These two figures show two agents (F1 and
F2) and various checkpoints with different qualities, with
higher numbers representing better checkpoints. In these
examples, agents are following the best-of-2 strategy. Hence,
they sample the closest two checkpoints and decide to move
towards the best between those two. Moreover, for the sake
of simplicity, we will assume that agents stop after visiting a
checkpoint.

Figure 17a shows the start of the simulation. Agent F1
samples the checkpoints 10 and 6 and agent F2 samples
the checkpoints 6 and 4. At the moment of Figure 17b, F1
reaches the location of checkpoint 10 while F2 continues the
movement towards checkpoint 6. The simulation ends with
F2 reaching checkpoint 6. The average quality of visited
checkpoints in this example is 8.

Figure 18a shows a similar start configuration with the
only change being a new checkpoint 2 close to F1. In
this case, F1 samples the checkpoints 10 and 2, while F2
samples checkpoints 2 and 4. F1 moves toward checkpoint
10, however, at Figure 18b, F1 accidentally encounter
checkpoint 2. This leads F2 to change its choice to
checkpoint 20 (best between 4 and 20). At the end of the
simulation, F2 reaches checkpoint 20. In this simulation,
even though there is an accident, the average quality of
visited checkpoints is better than that in Figure 17 (11 against
8). This is an example of how accidents can be beneficial to
the average quality of the encounters.

Agents in the previous examples use best-of-2 as selection
strategy. The same behavior might exist in other values of
n. However, one might wonder whether agents using min-
threshold display accidents that might increase the average
fitness of the population. This type of accident does not
happen with agents following min-threshold because agents
always move towards the closest checkpoint with quality
above θ. Therefore, agents only select a different checkpoint
when another agent visited their original choice.

Assume agent a1 is moving towards chigh but accidentally
visited checkpoint clow. Agent a2 has the same θ as a1. As
a result, it is impossible for a2 to select clow on purpose.
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(a) F1 samples checkpoints 10 and 6 and
starts moving towards 10. F2 samples
checkpoints 4 and 6 and starts moving
towards 6.

(b) F1 visits checkpoint 10. F2 maintains
your original sample subset to checkpoints
4 and 6 and it continues its trajectory
towards 6.

(c) F2 visits checkpoint 6. Final average
quality is equal to 8 ( 10+6

2
).

Figure 17. Environment configuration with two agents (F1 and F2) following the best-of-2 strategy and four checkpoints (blue
circles) with distinct qualities (numbers inside the circles). The blue circles inside the red ellipse are the checkpoints sampled by F1
and the blue circles inside the green ellipse are the checkpoints sampled by F2. 17a shows a possible initial condition. 17b shows
the environment at the moment that F1 visits the checkpoint with quality 10. And 17c shows the final configuration at the moment
that F2 visits the checkpoint with quality 6.

(a) F1 samples checkpoints 10 and 2 and
starts moving towards 10. F2 samples
checkpoints 2 and 4 and starts moving
towards 4.

(b) F1 accidentally visits checkpoint 2.
Thus, F2 changes its sample subset to
checkpoints 4 and 20 and starts moving
towards 20.

(c) F2 visits checkpoint 20. Final average
quality is equal to 11 ( 2+20

2
).

Figure 18. Environment configuration with two agents (F1 and F2) following the best-of-2 strategy and five checkpoints (blue
circles) with distinct qualities (numbers inside the circles). The blue circles inside the red ellipse are the checkpoints sampled by F1
and the blue circles inside the green ellipse are the checkpoints sampled by F2. 18a shows a possible initial condition. 18b shows
the environment at the moment that F1 accidentally visits the checkpoint with quality 2. And 18c shows the final configuration at the
moment that F2 visits the checkpoint with quality 20.

Hence, a2 does not change its original choice. We know
that clow has quality below chigh, otherwise a1 would have
selected clow. Therefore, accidents in min-threshold always
reduce the average quality of the population in a fully-
observable environment.

Type 3 accidents happen between an agent and a “satellite”
checkpoint. A satellite is a checkpoint that does not advertise
its quality. For example, the mating task in some species
of frogs contains some males that do not call, hence,
they are not sensed by females (because they do not
call and the females cannot see them at night). Instead,
they position themselves near “good callers” and intercept
females approaching the calling site. Thus, females use
strategies to avoid bad callers, however, they cannot avoid
males that they can not sense.

In our experiments, we saw a small increase in the
number of accidents in partially-observable environments.
In a biological mating task, the worst 10% of male mates
are unlike to be selected by female agents, even though they
might be important to maintain a diversity in the gene pool.
For those males to have a chance at mating, they would
need to adapt their strategy and avoid calling to increase
their possibility of being intercepted by a female. Satellite

behavior is more advantageous at high densities of males,
which could be at the beginning of the breeding season, when
the majority of females has not mated. Males may thus have
to perform different strategies according to their own call
quality and the probability of an accidental mating.

Figure 19 and Figure 20 show an example of the advantage
of checkpoints becoming satellites. Figure 19a shows the
start of the simulation. Agent F1 samples the checkpoints
10 and 6 and agent F2 samples the checkpoints 4 and 2.
F2 reaches checkpoint 4 at Figure 19b, and F1 reaches
checkpoint 10 at Figure 19c. Figure 20 depicts the same
environment, but checkpoint 2 (the worst checkpoint in the
environment) becomes a satellite. In this case, F2 samples
checkpoints 4 and 20. In the path towards checkpoint 20, F2
accidentally encounter the satellite 2. This is the only way
for checkpoint 2 to be visited by an agent. Therefore, it is
advantageous for this checkpoint to become a satellite.

Accidents may happen in foraging, mating, predator-prey
tasks among others. In this paper, we did not plan to have
a biologically plausible simulation for a specific task, yet,
we proposed a general instance of the MATE task in order
for the conclusions drawn here could provide explanations
of accidents in these different natural tasks. For example,
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(a) F1 samples checkpoints 10 and 6 and
starts moving towards 10. F2 samples
checkpoints 4 and 2 and starts moving
towards 4.

(b) F2 visits checkpoint 4. F1 maintains
your original sample subset to checkpoints
10 and 6 and it continues its trajectory
towards 10.

(c) F1 visits checkpoint 10. Final average
quality is equal to 7 ( 10+4

2
).

Figure 19. Environment configuration with two agents (F1 and F2) playing the best-of-2 strategy and five checkpoints (blue
circles) with distinct qualities (numbers inside the circles). The blue circles inside the red ellipse are the checkpoints sampled by F1
and the blue circles inside the green ellipse are the checkpoints sampled by F2. 19a shows a possible initial condition. 19b shows
the environment at the moment that F2 visits the checkpoint with quality 4. And 19c shows the final configuration at the moment
that F1 visits the checkpoint with quality 10.

(a) F1 samples checkpoints 10 and 6 and
starts moving towards 10. F2 samples
checkpoints 4 and 20 because checkpoint
2 is a satellite.

(b) F2 accidentally visits satellite 2. F1
maintains your original sample subset to
checkpoints 10 and 6 and it continues its
trajectory towards 10.

(c) F1 visits checkpoint 10. Final average
quality is equal to 6 ( 10+2

2
).

Figure 20. Environment configuration with two agents (F1 and F2) playing the best-of-2 strategy and four checkpoints (blue
circles) and one satellite (gray circle) with distinct qualities (numbers inside the circles). The blue circles inside the red ellipse are
the checkpoints sampled by F1 and the blue circles inside the green ellipse are the checkpoints sampled by F2. F2 can not sense
the satellite. 20a shows a possible initial condition. 20b shows the environment at the moment that F2 accidentally visits the
satellite with quality 2. And 20c shows the final configuration at the moment that F1 visits the checkpoint with quality 10.

while an accident that leads to an interspecies mating may
bring the female’s breeding season to an end, the same
accident when led to a intraspecies mating may be beneficial
to maintain the diversity in the gene pool. Looking at a
foraging task, a food source that would only be gathered
by accident would benefit of a high probability of accidents,
a hidden predator would also benefit from staying on areas
where the likelihood of accidents is higher. However, when
the animal can only gather a small amount of food, accidents
would damage its performance. Therefore, in order to draw
conclusions of particular instances of the MATE task, a
particular simulation must be implemented and then the
results may be compared with our findings.

Conclusion

Accidental encounters typically decrease performance of
agents in multi-agent territory exploration (MATE) tasks.
In this paper we investigated the frequency of accidental
encounters and the influence of those accidents on the
overall performance of an agent group in an instance of
the MATE task. After running a large parameter sweep

in which we varied the type of environment (partially-
observable vs. fully-observable), ratio of agents and their
strategies, as well as the mean quality, distribution and
method of placing checkpoints, we showed that using non-
random checkpoint selection strategies overall decreased
the frequency of accidents compared to random checkpoint
selection.

There are, however, cases in which accidents are beneficial
for the agent and the agent population as a whole. One
example is a situation where a new high-quality checkpoint
appears near an agent before the agent could sense it, which
can increase the average performance of the population and
also lead agents to visit those checkpoints right away. We
also showed a more complex scenario in which an accident
led agents to select a better checkpoint that would not have
been selected without the accident.

In biological settings, accidents might ensure the diversity
of the gene pool and thus be adaptive. I.e., without ways
for low quality males to mate, the diversity of the gene
pool would shrink over time, thus potentially leading to too
much specialization with all of its consequence (e.g., lack of
adaptability to environmental changes).
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We also found an emergent behavior that happens in
MATE tasks where agents are allowed to visit any number
of checkpoints. In those cases, agents tend to group
themselves and move together to visit local best checkpoints.
This emergent behavior reduces the quantity of visited
checkpoints as well as the number of accidents, because
agents wander through the same path, therefore a large group
can visit only one checkpoint at a time. This behavior might
be beneficial for satellites and assist them in finding a good
location where they increase the likelihood of accidental
mating. Because more agents would be approaching local
bests, there is a higher chance that the satellites would
intercept some of them.

While in the instance of the MATE task we investigated
in this paper checkpoints remained stationary, it is useful
to consider instances where they can move as well.
Evidence from preliminary simulations shows that allowing
checkpoints to place themselves based on other checkpoints’
placements move improves the average performance of the
population (see (Scheutz, Smiley & Boyd, 2013)). It remains
unclear, however, whether this improvement in performance
happens because of accidental encounters. We hypothesize
that the strategy used by checkpoints is determinant on
the frequency of accidents. Therefore, understanding the
accidents in the view of checkpoints, (i.e., what is a
good strategy to increase a checkpoint’s chance of being
selected) would be an interesting direction for future work
on accidental encounters and their potential adaptiveness for
biological agents.

There are instances of MATE tasks where more or less
accidents are desirable. Using the data we present in this
paper, we plan to suggest changes on selection strategies to
account for accidental encounters. These altered selection
strategies may generate novel hypothesis about biological
instances of the MATE task.
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Appendix A: Model Description

In this section, we present the model description according
to the ODD (Overview, Design concepts, Details) protocol
(Grimm, Berger, DeAngelis, Polhill, Giske & Railsback,
2010).

Purpose
The purpose of this model is to investigate the conditions
that increase the probabilities of accidental encounters in a
MATE task and the effects they have on the average task
performance. In our experiments, we report the frequency of
accidents and average quality of accidents and we compare
these values to the frequency and average quality of non-
accidentally visited checkpoints.

Entities, state variables and scales
Our model runs as a discrete-time simulation with a
minimum time measure called (simulation) “cycle”. Two
entities exist in our simulations: agents and checkpoints.
Agents move in a two-dimensional environment visiting
checkpoints. On the other hand, checkpoints remain in the
same place during the entire simulation. All entities have
a unique identification name aid, and their position in the
environment (ax, ay). Agents also have a fixed velocity av
and an orientation aα. Agents distinguish checkpoints by the
checkpoints’ quality aq .

Agents select checkpoints based on a strategy aπ(p).
The selection strategy π may be either the best− of − n
or min− threshold. The strategy parameter p may be
assigned either to n for specific size of the set of closest
checkpoints or θ for the particular minimum threshold,
respectively. In addition, a random choice strategy serves as a
baseline. Each agent stores in achosen the identification name
of the selected checkpoint.

The environment has dimensions equal to Ex and Ey and
the simulation finishes after Term cycles. The quality of
each checkpoint is defined by a Gaussian distribution with
mean µq and standard deviation σq . An agent m will always
visit a checkpoint c if their distance is smaller than dvisiting
(i.e., d(m,c) ≤ dvisiting).

Checkpoints might display their quality or remain
“hidden”. The checkpoints that do not show their qualities
are called “satellites”. The variable ω defines whether
there are satellites in the environment. If all checkpoints
display their quality, ω = fully − observable. Otherwise,
ω = partially − observable.

All mn of agents are positioned on the edges of the
environment through a distribution mδ . All cn checkpoints
are placed inside the environment according to a distribution
cδ and a placement method cp. All checkpoints may be
placed in the environment at the start of the simulation (cp =
simultaneous) or a new checkpoint may be placed at each
Term
cn

cycle (cp = progressive).

Process overview and scheduling
The scheduler controls the simulation, creating agents,
placing checkpoints, and counting the number of cycles
until the end of the simulation. The scheduler starts by
creating agents and storing them in a list. It also places
agents according to mδ . Next, the scheduler creates all
checkpoints and stores them in a list, noting whether agents
are satellites according to ω. The list checkpointList
contains cn elements and each element has an associated
quality defined by µq and σq . The next step is to create
the list availableCP which consists of all checkpoints
that exist at every cycle. If cp = simultaneous, then
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availableCP contains all elements in checkpointList.
Otherwise, availableCP contains only one element.

The update phase happens until the number of cycles
reaches the value defined by Term. First, the scheduler
verifies whether it is time for placing a new checkpoint, in
which case a new element is added to availableCP . Next,
the sensing phase starts. First, agents verify whether they
reached a checkpoint location. Then agents decide the next
checkpoint to move towards based on their strategy. Finally,
the acting phase starts and then all agents move one step
towards the selected checkpoint.

Algorithm 2 Pseudo code of the process performed by the
scheduler.
Sim.run(seed, aπ(p),mn,mδ, cn, cδ, µq, cp, ω, Term)

1: agentList⇐ createAgents(seed, aπ(p),mn,mδ)
2: checkpointList⇐ createCP (seed, cn, cδ, µq, ω)
3: addCP (availableCP, checkpointList, cp)
4: cycle⇐ 0
5: while cycle < Term do
6: if cp == 1 then
7: if cycle == Term

cn
then

8: addCP (availableCP, checkpointList, cp)
9: end if

10: end if
11: for all Agent m ∈ agentList do
12: m.sense(availableCP )
13: end for
14: for all Agent m ∈ agentList do
15: m.act()
16: end for
17: end while
18: return(visited, visitedSumvisited , accidents, accidentsSumaccidents )

Submodels
Sensing process At each cycle, agents start looking into the
list of checkpoints to decide which checkpoint to visit (see
Algorithm 3). During this process, agents first iterate through
availableCP testing whether the checkpoint is in reachable
distance. If the agent reaches the checkpoint, the checkpoint
is removed from availableCP and the number and quality
of visited checkpoints (accidentally or not) is stored.

Algorithm 3 Pseudo code of the sensing process performed
by agent i.
sense(i, availableCP )

1: for all Checkpoint c ∈ availableCP do
2: if d(i, c) ≤ dvisiting then
3: if ichosen 6= cid then
4: accidents⇐ accidents+ 1
5: accidentsSum⇐ accidentsSum+ cq
6: end if
7: visited⇐ visited+ 1
8: visitedSum⇐ visitedSum+ cq
9: availableCP.remove(c)

10: end if
11: end for
12: ichosen ⇐ selectCheckpoint(availableCP )

At the second part of the sensing process, all agents
run Algorithm 4 to select the next checkpoint to move
towards. If the agent i uses the best-of-n strategy, then
first the scheduler creates, in linear time, a list of n-closest
checkpoints that are not “satellites” (i.e., n-closest that
display their qualities). Afterwards, the agent chooses, in
constant time, the checkpoint with the highest quality. If
the agent i uses the min-threshold strategy, the scheduler
iterates through availableCP and creates a temporary list
of checkpoints that are not satellites and have quality above
θ. This first process takes linear time. Then agents iterate
through this temporary list of checkpoints and select the
closest one to them. This second process also takes linear
time in the worst case (i.e., when all checkpoints in the
environment have quality above θ). Finally, the random
choice strategy performed by agents takes constant time.

Algorithm 4 Pseudo code of the selecting process performed
by agent i.
selectCheckpoint(i, availableCP )

1: chosen⇐ null
2: if iπ(p) == best− of − n then
3: nClosest⇐ chooseNClosest(i, availableCP )
4: chosen⇐ chooseBest(nClosest)
5: else if iπ(p) == min− threshold then
6: aboveT ⇐ selectAboveTheta(i, availableCP )
7: chosen⇐ chooseClosest(i, aboveT )
8: else if iπ(p) == random then
9: chosen⇐ selectRandom(availableCP )

10: end if
11: return(chosen)

Acting process During the acting process, agents perform
two mathematical operations: change their heading toward
the chosen checkpoint and then perform one step in that
direction (see Algorithm 5 which takes constant time).

Algorithm 5 Pseudo code of the acting process performed
by agent i.
act(i)

1: if ichosen 6= null then
2: c⇐ ichosen
3: iα ⇐ atan(

cy−iy
cx−ix )

4: ix ⇐ ix + (iv ∗ cos(iα))
5: iy ⇐ iy + (iv ∗ sin(iα))
6: end if
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