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Abstract

Many organisms can regenerate their bodies, but it is cur-
rently unclear how they accomplish this feat. In this paper,
we introduce a cell-to-cell communication mechanism that
allows a 3D arrangement of cells to discover its structure and
maintain it in the light of random cell death, even at very
high death rates. We report results from simulations of an
agent-based model that demonstrate the effectiveness of the
proposed approach for Planarian worm-like shapes, but the
proposed model is general and applies to any shape.

Introduction
Biological organisms have the ability to regenerate them-
selves (Birnbaum and Alvarado, 2008), i.e., they are able
to detect and reproduce damaged cells that make up their
morphological structure. In some cases, whole body parts
(e.g., limbs, tail, etc.) can be regenerated and the question
arises how this information is encoded and where it is stored
(Friston et al., 2015; Pezzulo and Levin, 2015)? While cur-
rent orthodoxy would still point to genetic encodings and
thus morphological information being stored in and recov-
ered from gene expressions, there is converging evidence
that this might not be so, at least not in all cases (see the
next section). Some of the evidence (reviewed in Lobo et al.
(2014)) comes from studies where morphological changes
performed on organisms were regenerated after they were
lesioned (e.g., damage to deer antlers can result in ectopic
growths at the same spot of injury and these growth persist
through several subsequence shedding and regenerations of
the deer’s antlers (Bubenik, 1990)). Since there were no op-
portunities for genes to encode those initial morphological
changes, the information must have been stored elsewhere.
But if morphological information is not stored genetically,
what other mechanisms could be accountable for represent-
ing the morphological structure of an organism?

In this paper, we propose a dynamic messaging mecha-
nism that while not yet mapped on biological substrate can
functionally explain how morphological information can be
obtained, stored, and used to repair structural damages to
organisms. Specifically, different from genetic encodings

where information is local to each cell, statically encoded
in the gene and thus retrievable only locally, the proposed
mechanism is distributed, dynamic, and integrates informa-
tion across cells. Hence, it is able to detect when cells are
missing in a structure and start a regrowth process that gen-
erates exactly and only the missing parts. We will demon-
strate the operation of the mechanism using an agent-based
model of cell-to-cell communication and prototypical 3D or-
ganismal shape of a flatworm and show that for various rates
of random cell destruction (e.g., due to radiation) the organ-
ism is able to maintain its structure. In concluding, we dis-
cuss next steps for further simulations and validations of the
employed principle.

Background and Previous Work
One of the major questions facing biology and biomedicine
is how groups of cells cooperate to build and maintain
complex anatomical structures. In many animals, this oc-
curs over long time-spans, counteracting aging, carcino-
genic transformation, and tissue abrasion. An understand-
ing of the information structures and algorithms that keep
cells orchestrated towards maintaining a large-scale body-
plan would be very important for regenerative medicine,
aging research, and degenerative disease, as well as hav-
ing basic implications for understanding pattern regulation
in evolution (Ingber and Levin, 2007).regenerative biology
is the Planarian flatworm – a complex bilaterian organism
that regenerates amputated pieces, and continuously main-
tains its bodyplan despite significant turnover and remod-
eling (Oviedo et al., 2003). While progress is being made
with models of gene regulation (Lobo and Levin, 2015), we
still seek testable models of cellular communication that ex-
plain pattern memory (Tosenberger et al., 2015). Deriving
generative, fully-specified models of pattern regulation in
this kind of model species is an essential goal for converting
molecular-genetic insights into actionable strategies for ma-
nipulating growth and form in regenerative medicine, birth
defects, cancer, and synthetic bioengineering (Doursat et al.,
2013).

The problem of structural maintenance has been ap-



proached by the artificial life community using genetic algo-
rithms, agent-based models and cellular automata to model
the behavior of how a single cell could multiply and gen-
erate a whole tissue, and after some time, this tissue could
maintain its shape against some external or internal pertur-
bations. Andersen et al. (2009), for example, used a genetic
algorithm to evolve a gene regulatory network which con-
trols the behaviors of cells. The authors put specific shapes
that they want to create in their fitness function, thus the GA
could find a network (i.e., genotype), which, starting using
a single cell, generates that specific shape (i.e., phenotype).
They concluded that different networks can lead to the same
phenotype, and more interestingly, the shape become capa-
ble of healing wounds even though this process was not en-
coded in the fitness function.

In Gerlee et al. (2011), the authors use a genetic algorithm
to evolve a 3-dimensional cellular automaton that creates
and maintains a mono-layer tissue structure. First, the au-
thors wanted to show that a cellular automaton could evolve
from a network containing just one cell, to a 2-dimensional
structure similar to how epithelial cells are organized in most
of the organs of the body. Further, the authors put some ex-
ternal and internal perturbations to verify if the model was
capable of returning to its original structure. Similar to our
proposed model, each cell is a discrete agent which interacts
with its neighborhood, and in their paper, depending on its
concentration of oxygen and a generic growth factor. How-
ever, in that model the network will grow indefinitely until
it reaches a pre-defined area.

Basanta et al. (2008), also used a 3D cellular automaton
to model the interaction among neighbors cells and used a
genetic algorithm to find a good genotype to perform the
procedure. In this work, a 3D shape is created based on
the cellular automaton’s rule coded in the genes of all cells,
and at some point, some genotypes achieve a state of home-
ostasis. After that, lesions were performed on the shape,
and some genotypes were able to regenerate their structures.
The authors verified that the organisms which perform best
in this “wound recovery” were the ones which had a specific
direction by which the cells evolved in the tissue creation.

Overall, past approaches (to the extent that we could find)
used some kind of genetic encoding to define how interac-
tions among cells should take place. Thus, cells behaviors
depend on their neighborhood and are encoded in the geno-
type. Our proposed model, on the other hand, does not rely
on any genetic encoding, because the behavior of the cells
depends on the messages they receive. The critical advan-
tage is that our model does not have any local storage of
shape data nor does it rely on it; rather, it can dynamically
learn and maintain new morphologies using the same under-
lying mechanism.

The Communication Model
We start by first presenting the idea of the proposed cell-
to-cell communication mechanism, followed by the detailed
agent-based model implementing it based on the now cus-
tomary ODD (Overview, Design concepts, Details) protocol
(Grimm et al., 2010).

Discovery and Regeneration
The purpose of the agent-based model is to investigate pos-
sible structure monitoring and regeneration process for 3D
cell structures, possibly resembling organismal bodies such
as the Planarian flatworm. Specifically, we intend to pro-
pose mechanisms for such 3D cell structures to dynamically
discover their morphology and then maintain it indefinitely
in the light of random damages happening to parts of it such
the damages that occur as part of natural aging. The basic
idea is that cells can send messages to other cells or forward
messages they receive from other cells which contain infor-
mation about the path they traveled. This information can
then be checked as a packet travels through the body’s cells
and if a cell along the way is missing, it must have been
damaged and thus needs to be repaired. To illustrate how
this works, consider the 2D arrangement of cells in Fig. 1.

The packet originating at the bottom right cell during “dis-
covery” (where packets are randomly generated and only
those are kept whose paths actually reflect paths that can be
taken) consists of three segments of variable length – (0,4),
(1,2), and (0,2) – where the first number in each pair indi-
cates a direction (with 0 being West, 1 being SW, 2 being
SE, and so on) and the second indicates the distance mea-
sured in cells (4 means four cells across). Thus, this packet
structure can specify arbitrary paths with up to two direc-
tional changes to cover cells in a 2D arrangement.

If that packet were now to retrace its path back to its ori-
gin in a lesioned structure and thus could not find the fourth
cell in a row as predicted by its (0,4) segment, this detec-
tion failure could be used by the cell where the packet got
stuck to grow a new cell in the missing position (as the old
cell residing there must have died). The regrowth now al-
lows the packet to complete the first segment of its path and
the same process of regeneration repeats itself for the second
and third segments up until all missing cells along the path
have been recovered. Note that not all missing cells were
regenerated, only those discovered by the particular packet
along its path. For the other missing cells to be regenerated,
additional packets with paths going through them would be
needed.

The 3D Spatial Agent-Based Model
The proposed ABM model has just one type of agent rep-
resenting the cells of the organism. Each agent has some
attributes that describe them at a given time. Each agent i is
defined by an unique identity number iid and its location on
the organism’s body < ix, iy, iz >.



Figure 1: Example of cell discovery, damage detection, and
repair.

The specific shape of the evaluation organism, a Planarian
worm, is a 3D structure called rhombic dodecahedral honey-

comb. One can imagine each cell as an hexagon with three
other hexagons stacked above it and three other hexagons
behind. Therefore, each cell is a rhombic dodecahedron
hence it has at most 12 neighbor cells which is stored in
a list iNeighbors.

Cells hold and send packets to its neighbors. A packet
β contains a list of vectors βV , of distance and direction
that describe the path that a packet has traveled across the
cell network. The packets are organized in temporal order,
with the most recent vector at the top of the list. Thus, each
cell contains one list containing the packets received from
its neighbors during a cycle iReceivedPackets and a list of
packets the cell is holding iHeldPackets.

Each vector v has an integer vDistance representing the
number of cells the vector traveled through, vDirection rep-
resenting one of the twelve directions in which the vec-
tor traveled, and vMode which stores whether the packet is
charting its path and adding to v or backtracking and taking
data from v.

At each cycle, each cell generates PacketFreq packets
and sends them to adjacent cells in random directions. When
a cell receives a packet, it increments its top vector’s dis-
tance. For each packet, received in a given cycle, the cell
will either (1) send the packet along the same direction as its
top vector’s direction, (2) send the packet in a new direction,
or (3) hold the packet. In order for a cell to hold a packet,
this packet must have at leastMinV ectorsToHold, and the
top vector must have a distance of at least MinTopLen. If
the packet is not held, there is a BendProb probability that
the packet will be sent in a new direction. This new direc-
tion should be different from the opposite direction of the
top vector’s direction.

When a packet reaches a cell, the cell verifies the num-
ber of bends until that moment. If this value is equal to
MinBends, then the packet will backtrack, regenerating
dead cells during this process.

The model runs as a discrete-time simulation for a defined
number of cycles, RunCycles. And at each cycle, the cells
perform only two processes: sensing and acting. In the first
they receive packets from their neighbors and decide if the
packets will be held or sent (see Algorithm 1). Moreover, if
a packet is backtracking, and the neighbor is dead, then that
neighbor is regenerated during sensing process. The acting
process is just the cells sending packets to their neighbors
(see Algorithm 2).

In the proposed model, each cell creates packets to send
to its neighbors, the only interaction between agents. This
local interaction creates an emergent behavior of structure
maintenance where cells along the travel path are restored.
As long as some packets will eventually hit each dead cell,
the system is guaranteed to keep the structure intact.

Regarding the stochastic procedure, there are two cases
where they occur. First when a cell needs to decide the di-
rection of a packet (a new packet or a received packet that



Algorithm 1 Pseudo code of the sensing process performed
by the cells.
Sense(i)

for all packetβ ∈ i.ReceivedPackets do
top← β.TopV ector
if top.Mode == Charting then
top.Distance← top.Distance+ 1
if β.Bends ≥ MinV ectorsToHold
and top.Distance ≥ MinTopLen and
isAlive(i.Neighbors[top.Direction]) then
i.HeldPackets.add(β)

else
if random() ≤ BendProb then
β.addV ec(getNewDirection(top.Direction))

else
β.addV ec(top.Direction)

end if
i.SendingPackets.add(β)

end if
else
top.Distance← top.Distance− 1
if top.Distance ≤ 0 then
i.ReceivedPackets.pop()

end if
if top 6= nil then

if !isAlive(i.Neighbors[reverse(top.Direction)])
then
regenerateCell(i, reverse(top.Direction))

end if
i.SendingPackets.add(β)

end if
end if

end for
if i.HeldPackages.size() ≥MinBends then

for all packetβ ∈ i.HeldPackets do
β.Mode← Backtracking
i.SendingPackets.add(β)

end for
end if

Algorithm 2 Pseudo code of the acting process performed
by the cells.
Act(i)

for all packetβ ∈ i.SendingPackets do
top← β.TopV ector
if top.Mode == Backtracking then
top.Direction← reverse(top.Direction)

end if
if isAlive(i.Neighbors[top.Direction]) then
sendPacket(i, top.Direction, packet)

end if
end for
i.SendingPackets.clear()

needs to change direction). The second stochastic procedure
is the random death of cells which will be explained in the
next section.

Simulation Experiments
The goal of the experimental evaluation was to see whether
the proposed cell-to-cell communication mechanism would
be sufficient to maintain the structure of an organism over
time in light of random cell death. The model was imple-
mented in our Java-based agent-based SimWorld simulation
environment (Scheutz and Harris, 2011).1 For all simu-
lations runs, we consider a prototypical 3D Planarian-like
structure with a fixed shape of 8 layers containing 339 cells
each, resulting in 2712 cells total (the top-most layer of cells
of the employed shape is depicted Figure 2).

Figure 2: Shape of the topmost layer of the worm containing
339 cells.

To simulate the process of structural deterioration (e.g.,
due to a toxic or radioactive environment, or the natural ag-
ing and death of cells), we fixed a particular cycle in the
simulation when this process would start to occur (Death-
Time=80). At the moment that a cell dies, all held packets
are lost and consequently it cannot transmit other packets
that reach it later. To verify whether enough of the struc-
ture of the organism’s body was still intact, we fixed the
Threshold as 90% of alive cells for the entire simulation,
i.e., for the organism to be considered “intact” at least 90%
of its cells must be alive at any given cycle.

The function isAlive verifies if a specific cell is alive and
can transmit packages. If a cell tries to send a packet which
has its top vector in theBacktracking mode, and the neigh-
bor cell supposed to receive this packet is not alive, then
the alive cell calls the function regenerateCell which “re-
vives” the dead neighbor. The function getNewDirection
randomly chooses a new direction distinct from the direction
passed as a parameter and also distinct from the reverse of
this direction, to assure that the packet would not return from
the cell it comes. Thus, reverse is a function that given the
direction to one side of the dodecahedron, returns the direc-
tion to the reverse side of this polyhedron. Finally, the func-

1SimWorld is a versatile environment with support for graph-
ical and batch runs of models. It is easy to program and easy to
extend, and it provides an interactive graphical interface user in-
terface for inspecting agent behavior (and novel mechanisms for
playing a simulation forward and backward, which supports the
modeller in detecting interesting emergent behaviors). SimWorld
has been under development in our lab for over a decade.



tion sendPackets adds the packet to theReceivedPackets
list of the cell that exists on the direction of the top vector.

Simulation runs can terminate in two different cases: for
every cycle during the simulation, the organism must have at
least Threshold percent alive cells otherwise the simulation
stops. The second condition is when the simulation reaches
the pre-determined limit of 500 cycles (if the organism can
maintain its structure through 420 cycles, then we assume it
can do so indefinitely, at least in approximation).

To explore the parameter space of the model, we first
varied the probability of a cell dying on a given cy-
cle (DeathProb) in order to simulate the death of cells
as time passes. For our experiments, DeathProb ∈
{0.0, 0.01, 0.02, 0.03, 0.04}. For example, with a 2% death
rate per cell per cycle, every cell will on average die every 50
cycles or 10 times in the course of the 500 cycle simulation.
Since there are 2712 cells in the body, over 54 cells will die
on average at any given cycle which is significant structural
damage that accrues over time if not repaired quickly.

We also varied the number of new “packets” a cell pro-
duces on each cycle (PacketFreq). In our experiments, we
varied PacketFreq ∈ {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31}.

In order to control the variety of navigation patterns of
packets, we varied the minimum size of the vector of bends
before a packet can backtrack (MinBends); the minimum
length the top vector of a packet should be to be able to bend,
by adding a vector in new direction (MinTopLen); the prob-
ability that a packet will bend, given the top vector length is
at least MinTopLen (BendProb). For our experiments, Min-
Bends ∈ {1, 3, 5, 7}, MinTopLen ∈ {1, 3, 5, 7} and Bend-
Prob ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

As our model has stochastic processes, we need to explore
this parameter space using different random number gener-
ator seeds. Thus, for each point in the parameter space, we
ran 8 different simulations resulting in a total of 47520 sim-
ulations. The dependent variable was the number of cycles
the simulation ran with more than Threshold alive cells.

Results and Analyses
From 50688 different data points that have DeathProb >
0.0, 28961 points maintained a rate of 90% of cells alive dur-
ing the whole simulation, i.e., 500 cycles. More specifically,
11801 points were with rd = 0.01, 9685 with rd = 0.02,
5802 with rd = 0.03 and 1673 with rd = 0.04 as shown
in Figure 3. These results show that there exists a parameter
space in which our model can repair death cells and maintain
the individual’s structure indefinitely. The mean number of
cycles with number of alive cells above 90% for all simula-
tions was 388.521.

In order to compare the main effects of each indepen-
dent variable on the cycles above threshold, we performed
an ANOVA with PacketFreq, MinBends, MinTopLen, Bend-
Prob and DeathProb as independent variables and the Cy-
clesAboveMin as dependent variable. The ANOVA shows

Figure 3: Histogram of points which maintain the structure
of the worm after 500 cycles.

Figure 4: Interaction between RandomDeath and Cy-
clesAboveMin for each number of produced packets per cy-
cle.

significant main effects for all independent variable other
than BendProb. Significant two-way, three-way and four-
way interactions among variables other than BendProb
were also found. These results confirm our hypothesis that
variance in the packet vector is not relevant for the process



of structure maintenance.
As expected, there was a significant negative effect be-

tween DeathProb and CyclesAboveMin as shown in Fig-
ure 4. We also found a positive correlation with PacketFreq
and CyclesAboveMin as shown in Figure 5. Increasing the
value of PacketFreq means more variations of possible pack-
ets are explored, and from a certain point on increasing this
value will generate more redundant packets than novel ones,
maintaining an asymptote. The point by which the perfor-
mance does not change depends on the probability of cell
death, because as we increase the probability of cells deteri-
orating, more packets are not redundant; more specifically,
more packets are necessary to maintain the structure of the
organism.

Figure 5: Interaction between PacketFreq and Cy-
clesAboveMin for each probability of a random cell death.

Regarding the MinBends (see Figure 6), a moderate level
(MinBends= 3) of minimum bends (before a packet can
backtrack performed best. This value shows the optimiza-
tion between the tradeoff of a longer packet covering a large
area of the individual but also being more at risk of losses
happening due to random cell deaths.

Figure 7 shows the interaction between MinTopLen and
CyclesAboveMin. It is important to note that as MinTopLen
increases, the length of the packet increases, therefore the
packet must spend more time traversing before backtrack-
ing. Consequently, it increases the chance of a packet be-
ing lost to random death before it can repair another dead
cell. Thus, for lower values of RandomDeath, it is good to
have high values of MinTopLen. However, increasing Ran-
domDeath confirms the tradeoff between better coverage

Figure 6: Interaction between MinBends and Cy-
clesAboveMin for each probability of a random cell death.

and the risk of longer packets shifts, and for RandomDeath
= 0.04, MinTopLen = 1 performs best.

The interaction between MinTopLen and MinBends shows
an optimal combination with MinTopLen = 1 and MinBends
= 3 (see Figure 8). Inverting the values of the two variables
reduces the performance, even though these two combina-
tions yield the same total packet length. The explanation for
this is that the same length of packet can cover a wider space
if it has more bends. This tradeoff is most pronounced when
changing from a single bend to two bends.

Discussion
Our results show that organisms were able to maintain
their structure using the proposed cell-to-cell communica-
tion mechanism for the right set of parameters: a high Pack-
etFrequency > 22, a moderate MinBends = 3, a low MinTo-
pLen = 1, and the value of BendProb not being relevant.
Without modifying the algorithm, we hypothesize that it is
possible to regenerate the worm from various more system-
atic cuts as well where a large part of the body is removed.
For such a lesion to be healed, the packets residing in alive
cells in the remaining body would have to be such that their
collective paths would cover all excised cells which would
then be regenerated during backtracking.

Space limitations allowed us to only discuss one particular
structure but the proposed mechanisms are general enough
to work for a very large set of structures. Whether a struc-
ture will be maintainable will effectively depend on both
how cells die (e.g., randomly or because of lesions cutting
of whole segments of the body) and how many bends pack-
ets can have which they will need to recover complex struc-



Figure 7: Interaction between MinTopLen and Cy-
clesAboveMin for each probability of a random cell death.

tures that require many path segments to hit all component
cells (e.g., to regenerate a cut-off arm packets need to travel
through the upper arm, the lower arm, the wrist, the palm,
and the various finger segments, thus requiring a larger num-
ber of segments in the packet).

Bi-directional cell communication in vivo takes place via
several kinds of physical media (Edelstein et al., 2016),
including chemical signals (diffusible molecules), physical
forces (pressures and tensions), and bioelectric signaling
(voltage gradients) (Levin, 2012). The latter is especially in-
teresting because it enables many of the functions described
in our model (Funk, 2013). Indeed, brains evolved by spe-
cializing such communication functions that were present
from the dawn of multicellularity, and optimizing it for
communication and message-passing functions in the cen-
tral nervous system (Keijzer et al., 2013). The more an-
cient form, developmental bioelectricity (Bates, 2015)m is
a modality by which collections of cells communicate, store
memory, and make group decisions about growth and form
during embryogenesis and regeneration (Pezzulo and Levin,
2015). Using proteins such as ion channels and pumps,
cells regulate their bioelectric dynamics (Levin, 2014; Mus-
tard and Levin, 2014). However, using electrical synapses
(gap junctions), cells can detect the presence and physio-
logical state of neighbors (Palacios-Prado and Bukauskas,
2009). Communication via gap junctions has recently been
shown to exert significant instructive control over growth
and form during regeneration in planaria and other model
systems (Emmons-Bell et al., 2015).

Figure 8: Interaction between MinTopLen and Cy-
clesAboveMin for each minimum number of bends before
backtracking.

Conclusion

In this paper we introduced the first agent-based model of
structure discovery and repair which allows 3D cell structure
to discover their organization and repair it from damages
occurring due to cell death. We demonstrated the efficacy
of the mechanism in large set of simulations of random cell
death occurring at different rates in simulated body shaped
as a Planarian. For even high cell death rates, we found pa-
rameters for the proposed cell-to-cell communication mech-
anisms that could maintain the structure indefinitely.

As a next step, we would like to verify how the model
behaves with non-equally distributed cell death, i.e., where
a cluster of adjacent cells dies at the same time due to, for
example, the action of some toxin or an impact on a specific
area of the organism. If for all dead cells there is a remaining
packet held by an alive cell, then all cells can be regenerated.

In addition, we intend to investigate the regeneration from
cuts that in vivo worms present. It is well known that the
Planaria is capable of regeneration from cuts 1

279th
of the

intact animal volume (Morgan, 1898). Our hypothesis is that
there exists a parameter assignment by which our model is
capable of regenerating structure from simultaneous death
of a large area of cells and also from any number of cuts for
the right set of communication parameters.
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