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Abstract

One-shot learning techniques have recently enabled robots to learn new objects and actions from
natural language instructions. We significantly extend this past work to one-shot interaction learn-
ing, from both natural language instruction and demonstration, where a robotic learner not only
learns the actions appropriate for its role in the interaction, but also the roles of the other interac-
tors. The resulting knowledge can be used immediately such that the robot can assume any role of
the learned interaction, to the extent that it can perform the required actions. We demonstrate the
operation of the integrated architecture in a handover task in real-time on a robot.

1. Introduction

Human actions in the social domain are intrinsically characterized by their social context, and often
depend on sequences of actions performed by multiple agents. Consider simple social tasks such
as shaking hands, holding a door for someone, waiting in line, or passing an object to another
person. Current techniques for online robotic action learning cover a broad range of approaches,
from “learning from demonstration” to “learning from (natural language) instructions”, but none of
them allow robots to learn interactions among multiple agents, let alone in “one shot”.

We propose the first approach to social one-shot interaction learning, from both natural lan-
guage instructions and human demonstrations, combining aspects of learning from demonstration
and learning from instruction, while doing so (1) in “one shot”, i.e., from one instruction or demon-
stration, and (2) for interactions among multiple agents. We leverage the perceptual, learning,
reasoning, and action capabilities of a cognitive robotic architecture that allow us to ground actions
through natural language instruction as well as visually observed demonstrations. In order to incor-
porate the new interaction learning method, we significantly enhance a cognitive robotic architecture
to allow the system to model multiple agents, observe the actions of those other agents including
their conditions and effects, and understand references objects involved in the agent’s own actions
and the actions of others.

With these extensions in place, we can integrate the novel interaction learning system into the
architecture’s action system. The most important benefit of this integration is that after learning an
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interaction from one exposure, the agent does more than perform the actions it just learned for its
role in interaction: it can also perform the role(s) of any other interactants without requiring any
additional training. For example, if the agent learned how to pass a knife safely, it can also safely
receive the knife.

The rest of the paper expands on these ideas as follows. We start with a brief survey of recent
work on robotic learning (in particular learning from demonstration) which motivates our chosen
approach. After describing the functionality required for an agent to be able to learn multi-agent
interactions from a single exposure, we explain our approach to interaction learning, which involves
extending the functionality of several components of a cognitive robotic architecture. We demon-
strate our approach in an example scenario where a human teaches a robot how to hand over an
object and demonstrate that when the interaction is finished, the robot can perform the interaction
in either role. We conclude with a discussion of our approach in the context of the existing body of
work and suggest directions for future work.

2. Motivation and Background

Learning from demonstration is the process through which a robot is taught new actions online
through a human guided interaction with the environment. Work in this field has primarily focused
on teaching robotic agents how to perform actions through kinesthetic learning (e.g., Akgun et al.,
2012a; Akgun et al., 2012b) and from observing demonstrations (e.g., Chernova & Veloso, 2007,
Ghalamzan et al., 2015), possibly aided by natural language (Argall et al., 2009). More recently,
there has also been interest in making these demonstrations more interactive by allowing agents
to actively seek out information (e.g., Mohseni-Kabir et al., 2014; Hayes & Scassellati, 2014; and
Mohan & Laird, 2011).

Most of these techniques (1) are unimodal (relying only on kinesthetic learning, observation, or
natural language) and (2) require multiple demonstrations to learn the structure of the action or skill.
The approach described in Akgun et al. (2012a; 2012b) focuses on learning low-level manipulation
trajectories through kinesthetic demonstration. Instead of recording all the points along a specified
trajectory only the most relevant points are acquired, and then after multiple demonstrations, the
agent is able to generalize the trajectory based on those keyframes. Although this approach is
effective for learning trajectories, it is context specific and requires teaching all possible trajectories.

Other approaches rely on observing a demonstration and extracting relevant information. For
example, policy learning observes and learns mappings between states of the environment to actions
(Chernova & Veloso, 2007; Ghalamzan et al., 2015). In a real-world setting it might not be feasible
to provide enough demonstrations for each action to learn the correct policy. This is especially
relevant in social situations where the actions of other agents may greatly expand the space the
policy must consider. Other techniques generalize over different observations by using high-level
task representations. Nicolescu and Mataric (2001; 2003) describe an approach which use natural
methods for task learning through human-robot interactions. After multiple demonstrations, the
agent is able to create a generalized task representation. Hayes and Scassellati (2014) have extended
hierarchical task networks to encapsulate subtask ordering constraints. Their approach finds a clique
of tasks that have common preconditions and postconditions. Then the method finds chains of tasks
where the postconditions of one task satisfy the preconditions of the next task.

160



ONE-SHOT INTERACTION LEARNING

More recently, learning from demonstration has been extended to incorporate more interactive
demonstrations. Mohseni-Kabir et al. (2014), Hayes and Scassellati (2014), and Mohan and Laird
(2011) have developed approaches that let agents actively learn missing information. Using a mixed-
initiative collaboration, Mohseni-Kabir et al. (2014) report a system that learns hierarchical task
structures by finding temporal constraints and asking questions. Mohan and Laird (2011) discuss
the processes and challenges of designing an agent capable of learning through interactions. They
propose integration of a component into the Soar cognitive architecture which, if the agent cannot
derive the required knowledge, allows the agent to ask the human for information.

All the previously discussed methods require multiple demonstrations to learn task representa-
tions. However, in social situations, robots will need to learn task representation within a single
demonstration. The use of natural language instructions and a shared understanding of concepts
between instructor and agent, over comes this need for multiple examples. Allen et al. (2007) de-
veloped the PLOW system, which teaches an agent how to perform a task through natural language
in a single demonstration. Rybski et al. (2007) created a framework that utilizes natural language
and a single demonstration to learn hierarchical task representations. More recently, the system de-
scribed in Scheutz et al. (2017, 2018) learns new objects and actions through natural language from
individual examples.

These approaches focus on learning actions for a single agent, but they are insufficient for learn-
ing interactions among multiple agents. To learn an interaction, the learner must be able to under-
stand actions from the perspectives of all interactants. Consider an interaction between two agents
where one agent hands the other an object. For this transfer to succeed, both agents must understand
when an agent is offering the object and when it is released. Both agents need to recognize the ac-
tions the other has performed and use that information to determine their own actions. If the agent
holding the object cannot detect when the other agent is ready to grasp, it may release it too soon or
perhaps never release it at all. In short, an agent’s representation of the interaction must include the
actions of all of the participants.

Our goal of one-shot interaction learning, therefore, relies on the learner observing, identifying,
and tracking the actions of all agents involved in the interaction, and representing them in order (i.e.,
when an action occurred and when its execution was successful in producing its effects), irrespective
of whether the learning agent can carry out all the actions.

3. Interaction Learning among Multiple Agents

Before we introduce the interaction learning algorithm, we briefly describe the DIARC' cognitive-
robotic architecture (Scheutz et al., in press) which we use as an implementation environment. The
functionality required to support the interaction learning method was not present in DIARC, so we
also describe the extensions we made to enable it. Existing functionality provides many critical aux-
iliary functions, including full-fledged one-shot action learning from natural-language instructions
(Scheutz et al., 2017, 2018). Prior to our extensions, the actions learned using DIARC involved only
those of the robotic agent itself, not the actions of others. Additionally, objects involved in these

1. DIARC is a Distributed Integrated Affect, Reflection, Cognition architecture for robots.
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Figure 1. Overview of relevant components and their connections (modified components with white back-
ground, see text for details). The architecture receives information about the world through its Automatic
Speech Recognition (ASR) and Vision components. The information from the Speech Recognition is passed
to Natural Language Understanding (NLU) and the Parser (PARSE) converts text to a semantic representa-
tion. Reference Resolution (RR) then grounds the semantic information with its perceptions of the world.
This semantic information is used by the Dialogue Manager, the Goal and Action Manager, and the Belief
component. These components allow the agent to reason about language. They also let the agent reason
about visual information. They interact with the Vision component to search for and ground visual informa-
tion about entities in the world. The reasoning done by these components lets the agent interact with the world
through language via the Natural Language Generation (NLG) component and Speech Synthesis component.
The agent can also interact with the world physically via the Robot Controller component.

actions were not consistently modeled over the course of action execution. To enable the learning
of interactions, we extended DIARC for multi-agent action execution, the detection and observation
of other agents, and the tracking of task-related objects across the execution of an action. Figure 1
depicts all components involved in interaction learning, with the components extended in this work
highlighted (white background). We modified: (1) the Goal Manager component to include mod-
els of other agent’s actions, observations of those actions, and the ability to learn new interactions;
(2) the Vision component to observe the actions of other agents, and to ground specific agents and
objects in the physical world across action sequences; and (3) the Natural Language Understanding
component to understand references to objects and agents across sequences of instructions, allowing
the agent to know which objects and agents are involved across every step in a sequence of actions.
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3.1 Action Representation and Execution with Multiple Agents

The Goal Manager component determines what the agent should do and how to do it. This section
provides an overview of how the module works and what we have added to prior versions to enable
one shot interaction learning. The module receives goals, in predicate form, from running DIARC
components (including itself). These goals represent states desired by their requesting component.
When a goal is received, the Goal Manager first determines if it is a suitable goal, if so, it selects an
appropriate action to satisfy that goal, and finally manages the execution of the selected action in an
effort to reach the desired goal state.

Action Representation. The actions available to the Goal Manager are stored within the Action
Database. Each action in the database is represented by a name, arguments, conditions which must
be true to execute it, and the effects of execution. An action is either primitive or an action script.
Primitive actions are advertised by components and provide the core set of functionality available
to the system. These map to some functionality of their advertising component. For instance, a
vision component might advertise actions like findObject, while a manipulation component might
advertise actions like graspObject or moveObject. Primitive actions are dynamically updated in
the database whenever a component initializes or terminates. Action scripts are composed of a
sequence of primitive actions and other action scripts with the required agents, action operators
(e.g., arithmetic, comparison, etc.), and control elements (e.g., conditional statements and loops).

Action Execution. When the Goal Manager receives a goal submission (specified by a desired
postcondition), it initializes the action selection process and then, if a suitable action is found,
manages the execution of the action. Otherwise, execution fails and failure conditions are reported.

To start the execution of the selected action, the Goal Manager must first verify its precondi-
tions. Previously, when checking to see if the preconditions held, the Goal Manager only checked its
record of previously recorded states which have come about through the execution of previous ac-
tions. However, this record might not accurately depict the current state of the world, because there
may be states relevant to the action that are not related to any of the agent’s previous actions. Thus,
to ensure the preconditions hold in the current environment, we extend the Goal Manager to give
the agent the ability to observe the conditions of the action. The observation mechanism described
in Section 3.2 can be used to make observations about the world state, checking the state of events,
objects, and agents. If the preconditions are not satisfied after observation, execution is canceled,
and failure conditions are reported. In this case the failure condition is that the preconditions of the
action could not be met.

Because actions can also have overall conditions which need to be true throughout the execution,
the Goal Manager needs to be able to continuously observe the environment. Previously, it assumed
the conditions held for the entire action execution. However, with stochastic environments this is
not always the case. Thus, the Goal Manager is extended to start observers for overall conditions.
If at any point an observer finds that an overall condition no longer holds, it will cancel the action
and the Goal Manager reports the failure conditions.

Once the agent knows the preconditions are met and it has initiated the overall condition ob-
servers, it can continue the execution process by checking if the selected action is a script or a
primitive. If the action is a script, its subactions are added to an execution stack and execution
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continues with the first subaction. Otherwise the action is a primitive action, in which case the Goal
Manager checks the agent assigned to perform the action.

Previously, the Goal Manager only handled actions with a single agent, so it did not need to
determine which agent would perform the action. However, in a social environment, robots must
perform actions with other agents, so we have extended the Goal Manager to check the assigned
agent for each action. If the agent is a DIARC agent that the robotic architecture controls, then it
will proceed normally with the execution by directing the appropriate agent. However, if it is not
a DIARC agent (e.g., humans or other agents the system cannot control), the Goal Manager knows
that another agent is tasked with carrying out the execution. Here, the Goal Manager must observe
the other agent and the effects of the action so the agent knows when to execute the next action.

At the end of an action, the agent needs to confirm that the effects of the action have been
satisfied. Previously, for each effect, the Goal Manager assumed the effects held and recorded them.
However, it is not always the case that the actions complete successfully. Thus, we have extended
the Goal Manager to first spawn an observer, if one is available, to check the environment and then
record state. If no observer is found, the Goal Manager assumes the effect holds, and records the
state. Because the effects of the action can contain the agents and objects involved in the action,
the observers are used to confirm that other agents have performed their appointed tasks. If all
the effects of the action are met, the action succeeds and further execution continues; otherwise
execution fails and failure conditions are reported. Here the failure condition is that execution of
the action did not produce the intended/expected effects. Extending the Goal Manager with the
observation mechanism and multi-agent action execution allows the system to not only learn single
agent actions, but also actions containing multiple agents.

3.2 Observers and the Actions of Other Agents

In order to track the progress of an action in a demonstration or execution, an agent must be able to
observe the conditions and effects of every step of that action. For instance, when an agent picks up
an object, it must observe that the object is lifted off the table and is in its end effector. Of course,
the agent can blindly execute the action sequence, never making observations about the progress,
and assume a successful completion if no motor commands failed, but it will never truly know if
the action is successful unless the necessary observations are made. This blind execution, while
sometimes sufficient for execution of individual actions, is never sufficient for multi-agent interac-
tions, where an agent’s only means for tracking the progress of another agent’s action is through
observation. Critically, this mechanism is what enables the Goal Manager to leverage perception
components in the system to track the progress of action execution and follow demonstrations.

Before the Goal Manager tries to observe the environment for a condition or effect, it checks
to see if there are any available observers for that condition/effect. If an observer is found, the
Goal Manager executes the observation. If an observer is not found for a precondition or overall
condition, the Goal Manager reverts to checking whether it holds using its record of states produced
by previous actions. We extend the Goal Manager to let the agent observe the conditions and effects
of the action. When no observer is found for an effect, then the module assumes that the effect holds
and records it.
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Observers are special case of primitive actions, and are automatically discovered in much the
same way as action primitives. For a primitive action to be an observer, it must adhere to a particular
method signature and explicitly advertise the types of observations that can be made via predicate
descriptions (e.g., touching(X, Y')). The observers available to the Goal Manager are automatically
updated in the Action Database when a component connects and disconnects from the running
instance of DIARC, and can easily be looked up by their advertised predicate description.

To make use of these observers during action execution, the Goal Manager looks for available
observers in the database while attempting to verify the effects and conditions for an action. If
an observer is found for a condition or effect, a new observer subaction is spawned by the Goal
Manager. If the observer is in service to a precondition or postcondition, then the Goal Manager
waits until the observer succeeds or times out and fails. If the observer is in service to an overall
condition, a concurrent observer is launched that is capable of interrupting the Goal Manager if at
any point a required observation is not met.

The same observation mechanism used for individual action execution can also be used for
multi-agent interactions by leveraging the multi-agent task representation presented in Section 3.1.
If, for example, an agent is performing a pick-up action, an observer for touching(self, object) might
be used to verify the pick-up action completed successfully. By swapping an agent’s role, the same
mechanism can also be used to observe another agent performing the same pick-up action, where
the observation might instead be touching(Sam, object). This swapping of roles is crucial, and is
what lets the same action representation be used by an agent to assume any role in an action.

It should be noted that this flexible role switching within Goal Manager is tightly coupled with
the system’s ability to make observations about the world and other agents. The kinds of observers
in the cognitive robotic architecture are dependent on the kinds of sensors and perception com-
ponents available to the system. More sophisticated perception components will allow for richer
observations and more complex multi-agent interactions. For the work presented here, we have
extended the Vision component to include an observer capable of observing touching(X,Y) events.
This observer is capable of detecting touching events between any two objects (i.e., X,Y) that can be
detected by the Vision component. Here, the touching event is determined based on the proximity
of the point clouds representing the detected objects in the scene.

3.3 Understanding References Across Actions

As described in Section 3.4, in order to learn generalizable representations of actions an agent must
know which steps of an action involve specific entities in the outside world. To model these entities,
an agent must be able to visually perceive them as well as understand when they are referenced
in natural language. The GH-POWER (Givenness Hierarchical — Probabilistic Open World Entity
Resolution) algorithm provides a framework with which an agent can understand references to en-
tities in natural language, and ground them in its perceptions of the world (Williams et al., 2016;
Williams & Scheutz, 2017). To integrate GH-POWER, we extend the Natural Language Under-
standing, Vision, and Goal Manager components beyond the versions used in Scheutz et al. (2017).

In DIARC, the Natural Language Understanding component receives natural language utter-
ances in text form from the Automatic Speech Recognition component and converts them into the
semantic representation used throughout the rest of the architecture. We extended the functionality
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of the Natural Language Understanding component in two ways. First, we changed the semantic
representation it produces so that information required for GH-POWER is included, when previ-
ously it was ignored. Second, we added a reference resolution step which occurs after the initial
parse is generated. This step grounds references to objects in terms of real world (or hypothetical)
objects, which allows them to be tracked across multiple instructions, and their associated actions.

Syntactic and Semantic parsing is done in the Natural Language Understanding component
using a combination of syntactic rules in Combinatorial Categorial Grammar and semantic rules
in lambda calculus. The parser maps natural language to a semantic representation which can be
understood by the other components in the system (Dzifcak et al., 2009; Scheutz et al., 2017). Prior
to this work there was not a notion of consistency of referents across utterances. For example, if the
agent is instructed to “grab the knife” and then to “release the knife” it knows that the object that
it has grabbed is a knife, and the object it has released is a knife, but it does not have an explicit
representation that it was the same knife in both cases. As actions grow more complex, an explicit
understanding of such references is required.

The integration of GH-POWER allows for such an understanding. The semantic representation
previously used in Natural Language Understanding did not include all of the necessary information
required by GH-POWER. We modified the parser so that it (1) explicitly labels all of the referring
expressions in an utterance, and (2) adds syntactic information to the parse which was not previ-
ously included. Take for example the semantics of the utterance “grab the knife” (spoken by the
interlocutor “Sam”):

old: INSTRUCT (Sam, self, grab(self , knife))
new: INSTRUCT (Sam, self , grab(self, X) A kinfe(X) A definite( X))

In the new semantic representation the referring expression is denoted with the variable X and the
information that referring expression X is included. Such information is present nowhere in the
previous representation.

Now that there is this richer representation of the referring expression it is possible to per-
form reference resolution using the GH-POWER algorithm. While reference resolution is executed
by the Natural Language Understanding component, it requires information that is stored in other
components, and those components must be updated to provide the Natural Language Understand-
ing component with this information. In order to ground referring expressions in real-world entities,
Natural Language Understanding must consult with components that can perceive the outside world.
In the case of our example the Vision component is consulted. (In the case of location a mapping
component could be used, or in the case of speaker verification a speech component.) To enable the
appropriate access of information, we created a new connection between the Vision component and
Natural Language Understanding through which the former advertises all of the types of objects it
is able to detect in the real world, as well as specific properties of objects that it can detect (shape,
color, etc.). When Natural Language Understanding receives a reference to resolve it checks the
reference’s semantic descriptors against the descriptors advertised to it by other components, like
the Vision component. When there is a match the GH-POWER algorithm is used to consult with
that component. If it is the first time the consultant has been queried about this specific reference it
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creates an internal representation of it. If not, the reference is matched with its previously generated
representation within the consultant.

Once all of the references have been resolved the semantics of the utterance are updated to
reflect the IDs of the resolved references. The utterance from our previous example would have
the semantics: INSTRUCT (Sam, self, grab(self, objects_0)) where the reference id objects_0
represents the consultant and index of the reference.

This reference id representation is used during action execution in the Goal Manager. Conse-
quently the representation of objects used in its actions must be updated to use this new format. In
some cases a reference id may not be grounded in a real-world object until it has been used in an
action. If an action occurs that grounds a reference (such as a visual search) the consultant respon-
sible for the reference is updated as a result of the action. In our working example, until a visual
search is done, the Vision component knows that there is some entity with the property knife that
has been referenced but it has not yet associated it with any of its perceptions of the real world.
When the knife is grounded through a visual search (for example the agent being instructed to “find
the knife”), the result of the search is bound to the entity which is bound to the reference id for
the object. The visual search results associated with the knife are now available to any subsequent
actions which involve references to the knife.

The ability to understand these references and ground them in perceptions allows for actions
that can have consistent representations of the objects involved in them. This ability allows for
generalizations in the learning process where the agent is able to understand which arguments need
to be consistent across multiple actions, and which do not.

3.4 Learning Actions With Multiple Agents

The DIARC extensions described in the previous sections enables the system to execute and learn
actions with multiple agents. The action learning process is initiated through the submission of
a goal containing the post condition of the action to be learned. For example, if the action to be
learned is ‘pick up the knife’, then the goal is startActionLearning(pickUp(self, object_0)). This
triggers the creation of a new Learning State which keeps track of information relevant to the action
being learned: (1) name of action (pickUp), (2) initial arguments (self, object_0), (3) action step
queue, (4) sets of action effects and preconditions (lines 3-4, Table 1). When a new Learning State
is created, the learning framework checks to see if the agent is already in the process of learning
an action, in which case the newly generated Learning State is stored as a child of the current
one to allow for recursively learning actions (lines 5-8). Since subactions have their own distinct
representation, they can also be used outside of the action in which they were learned.

When the learning process begins, the only information that the Goal Manager has about the
action that is being learned is the goal that describes it. The Goal Manager knows the name of this
goal as well as the number of arguments it has and their values. The values of the predicate which
describes the action are used in the execution of its action steps. The reference resolution process
described in Section 3.3 guarantees that when these arguments correspond to entities in the real
world the same entity will always have the same value. The steps of the action that is being learned
are built from the actions that the agent performs after the learning process has begun.
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Table 1. The Learn Interactions module takes in a goal and creates a new Learning State when initiating a
new action learning phase, or creates a new action when completing action learning.

function learnInteraction(goal):

| action < analyzeArguments(goal)

2 ADB « actionDatabase

3 if action = startLearning

4 newLearningState < LearningState(action, args)

5 if currentLearningState # null

6 parent(newLearningState) < currentLearningState
7 currentLearningState <~ newLearningState

8 else if action = endLearning

9 newAction < generateActionDB(currentLearningState)
10 add(ADB, newAction)

11 actionQueue = getActionQueue(currentLearningState)
12 if parent(currentLearningState) # null

13 currentLearningState <— parent(currentLearningState)
14 add(actionQueue, newAction)

15 else

16 add(actionQueue action)

While the agent is learning, following Table 2 and Table 3, the learning framework pops actions
off the Learning State ActionQueue. For each popped action a new action step is created with the
required agent (lines 2-6, Table 2). Because each action step may be executed by a different actor,
the value of its actor is matched against the input arguments of the learned action. The arguments
of the popped action are checked and their values are aligned with the input arguments of the action
corresponding to the current Learning State (lines 10-12, Table 3). In subsequent executions of the
learned action the action step arguments whose values matched the top level action’s arguments’
values during learning will be replaced with the values of the top level action’s corresponding argu-
ments (lines 2-7, Table 3). Arguments that did not match will always use the values they had during
learning (line 2-14, Table 3).

The learning process is completed in a similar fashion to how it is initiated, a goal indicating
the ending of the process is submitted to the Goal Manager. For example if the robot is learning
‘pick up the knife’, then the goal is endActionLearning(pickUp(self, object_0)). When the process
is complete the new action is added to the database and is immediately available for execution (lines
10-11, Table 1). Once the action is generated, the Goal Manager checks to see if the parent of
the current Learning State is empty. If a parent Learning State exists, the Goal Manager restores
the prior Learning State and adds the newly learned action into the sequence of actions in parent
Learning State. After the unknown subaction is learned, the agent can continue learning the original
action (lines 12-17, Table 1).
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Table 2. The addActionStep procedure takes in a Learning State creates and adds a new action step.

function addActionStep(ls):

| while learning:

2 actionQueue = getActionQueue(ls)

3 if = empty(actionQueue)

4 actionStep < pop(actionQueue)

5 newActionStep < new ActionStep()

6 arg < getAgent(actionStep)

7 addArgument(ls, newActionStep, arg)

8 append(newActionStep, getName(ActionStep))
9 forall arg in getArguments(action)

10 addArgument(ls, newActionStep, arg)
11 addActionStep(ls, newActionStep)

4. System Demonstration

We can demonstrate the operation of interaction learning with an example that involves picking
up and passing a knife. This shows how learning an interaction (1) requires recursively learning
subactions, (2) involves references to external objects, and (3) involves the actions of multiple actors
(video at https://youtu.be/t8300vAxcCY). Initially, the instructor asks the agent to pass
the knife.
Human: Pass me the knife
Robot: Sorry, I don’t know how to do that

The robot does not have “pass” in its lexicon, but is able to infer that it is a verb, and that the
sentence is a command, from the syntax of the rest of the words in the utterance Scheutz et al.
(2017). The resulting semantic representation for the utterance is INSTRUCT(human,self,pass(self,
human, object_0)).

This semantic representation is used to generate the goal pass(self, human, object_0) which is
sent to the Goal Manager, but execution fails (and is stated by the robot) because the robot has no
procedural knowledge of the “pass™ action.

Human: I will teach you how to pass me the knife.
Robot: Ok.
The goal derived from the human’s utterance startActionLearning(pass(self, instructor, object_0))
is passed to Goal Manager. Here, object_0 represents knife as described in Section 3.3, initiating
the learning process as described in Table 1. Because the Goal Manager is not currently learning an
action, it starts the learning phase, extracts the first argument of the startActionLearning predicate,
pass(self, instructor, object_0), and creates a new Learning State for the action “pass” with the
arguments: self, instructor, object_0. The agent then acknowledges that it has started learning.
Human: Pick up the knife.
Robot:  Sorry, I do not know how to do that.

169



T. FRASCA, B. OOSTERVELD, E. KRAUSE, AND M. SCHEUTZ

Table 3. The addArguments function takes in a Learning State, an action step, and the argument to be added
to the action step. The method then adds the argument or argument value to the Leaming State and action
step based on the Learning State input arguments.

function addArguments(ls, actionStep, arg):

1 arguments <— getArguments(ls)

2 if contains(arguments, getName(args))

3 argument <— get(arguments, getName(arg))
4 if getValue(argument) # getValue(arg)
5 modifyName(arg)

6 add Argument(ls, arg)

7 append(actionStep, arg)

8 else

9 inputArgs = getlnputArgs(ls)

10 if contains(inputArgs, getValue(arg))
11 addArgument(ls, arg)

12 append(actionStep, getName(arg))
13 else

14 append(actionStep, getValue(arg))

The Goal Manager receives the goal pickUp(self, object_0), but the robot does not have knowledge
of this action, which it indicates to the human.
Human: I will teach you how to pick up the knife.
Robot: Ok.
In order to continue learning the “pass” action, the instructor now needs to teach the robot how
to pick up the knife, initiating a sub-learning phase for “pickUp”, which generates the semantics
startActionLearning(pickUp(self, object_0)).

The Goal Manager then creates a new Learning State for pickUp(self, object_0) and the parent
Learning State for “pass” is stored within the new Learning State. Once again, the agent acknowl-
edges that it has started learning.

Human: First, find it
Robot: Ok

To ensure the agent knows what it will be manipulating, the teacher instructs the agent to find the
knife. This results in the submission of the goal findObject(self, object_0) to the Goal Manager
(the reference to “it” is correctly resolved to “object_0"). The Goal Manager then selects and
executes the “find” action. Once complete, the action is added to the ActionQueue in the current
Learning State causing the Goal Manager to create an action step by considering the actor tasked
with executing the action and its arguments. The Goal Manager pops an action off the Learning State
ActionQueue. The action contains the bounded arguments for the findObject action: ?actor: self
and ?object: object_0. To let the agent know who is executing the different parts of the action, the
action name is added to the beginning of the action step followed by the actor “findObject ?actor”.
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Figure 2. The PR2 observing the human grabbing the knife.

The Goal Manager proceeds to check if the ?object argument is already stored in the Learning
State. Since it is not, the Goal Manager checks and notices it matches the value found in the
argument of the pickUp predicate. Now, the Goal Manager adds it to the current arguments in the
Learning State and adds it to the action step. Finally, the Goal Manager adds the findObject action
step to the “pickUp” Learning State.

Learning State
Name: pickUp
Args:  ?actor ?object
Steps:  findObject ?actor ?object

Human: Grasp the knife.
Robot: Ok.
Next, the teacher tells the robot to grasp the knife. The system is able to determine, through ref-
erence resolution, that the knife in this context is the same one from the previous action. It then
proceeds to execute the graspObject action, and adds it to the Learning State. The Goal Manager
creates a new action step and, since both values self and knife are already in the Learning State’s
current arguments, the ?actor and ?object are added to the action step.

Learning State
Name: pickUp
Args:  Tactor ?Zobject
Steps:  findObject ?actor ?object
graspObject ?actor ?object

Human: Move it up.
Robot: Ok

The teacher instructs the agent to move the object up.
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Learning State
Name: pickUp
Args:  Tactor ?object

Steps:  findObject ?actor ?object
graspObject ?actor ?object
moveObject ?actor ?object up

Human: That is how you pick up the knife.
Robot: Ok.
Finally, the teacher indicates the end of learning of “pickUp” by saying, “That is how you pick up
the knife” and the agent acknowledges the command. The Goal Manager constructs a new action
script from the Learning State with the added effect did(pickUp(?actor, ?object)). This script is then
inserted into the Action Database and can now be executed any time.

Learning State
Name: pickUp
Args: Tactor ?object

Steps: findObject ?actor ?object
graspObject ?actor ?object
moveObject ?actor ?object up

Effects: did(pickUp(?actor,?object))

Because the agent was interrupted during the learning of “pass,” the Goal Manager restores the

parent Learning State and adds the newly generated “pickUp” action to the Learning State, which
then is processed.

Learning State
Name: pass
Args:  2actor ?object
Steps:  pickUp ?actor ?object

Human: Move the knife forward.

Robot: Ok.
Human: Look up.
Robot: Ok.

Now the original learning phase, “pass,” continues with the instruction to move the knife forward
and then look up. The agent moves the knife forward and looks up, then processes them and adds
the action steps to the Learning State ActionStepQueue.

Learning State
Name: pass
Args:  7Tactor ?Zobject
Steps:  pickUp ?actor ?object
moveObject ?actor ?object forward
look ?actor up
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At this point the robot is holding the knife out in front of its body where the instructor can grab it.
Human: I will grab the knife.

Robot: Ok.
Human: Release the knife.
Robot: Ok.

The teacher tells the agent, “I will grab the knife,” resulting in the goal graspObject(instructor;
object_0). Unlike the prior goals submitted, the actor is the instructor. When checking the pre-
conditions for “graspObject”, Goal Manager detects that the actor is not a DIARC agent, and that
the preconditions of the action are not observable. Therefore, the robot assumes the condition is
true and continues with the execution sequence. However, since the action is being executed by the
human, Goal Manager does not direct the robot to perform the action, but rather continues to the
effect checking phase by starting up an observer for the touching(instructor, object_0) goal.

Because the action is part of the overall “pass™ action, it is added to the Learning State. When
processing the action, Goal Manager notices that the ?actor does not equal self and since an ?actor
variable already exists in the Learning State with a different value, it creates and adds a new variable
?var_0 to the Learning State. Goal Manager then adds the ?object to the action step. Finally, the
“releaseObject” action is processed and added to the Learning State.

Learning State
Name: pass
Args:  Tactor ?7object ?var_0
Steps:  pickUp ?actor ?object
moveObject ?actor ?object forward
look ?actor up
graspObject ?var_0 ?object
releaseObject ?actor ?object

Human: That is how you pass me the knife.
Robot:  Ok.

Now the teacher indicates the end of learning phase by saying, “That is how you pass me the knife.”
Then Goal Manager constructs a new action script from the Learning State.

Learning State
Name:  pass
Args: Tactor ?object ?var_0
Steps:  pickUp ?actor ?object
moveObject ?actor ?object forward
look ?actor up
graspObject ?var_0 ?object
releaseObject ?actor ?object
Effects: did(pass(?actor, ?var_0, ?object))

After the agent has learned the new action and added it to the Action Database, it becomes immedi-
ately available for execution. To verify that the agent properly learned the new action, the instructor
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asks the agent to pass a plate. Changing the knife to a plate demonstrates that the action is not
specific to the knife and can be executed on various objects. After picking up the plate and moving
it forward, the agent starts an observer for the touching event and waits for the instructor to grab the
plate. Once the agent has confirmed the instructor is grasping the plate, it releases the object.

In addition, we have also verified in simulation, without action execution, that the actions
learned during this demonstration can be executed by the agent from the perspective of the other
agent, effectively using the learned action in reverse, to be handed an object. This simulation envi-
ronment does not perform any actual perception or manipulation and is aimed at evaluating the core
action execution mechanisms. The only addition needed to run this configuration on the physical
robot is the addition of more complex observers, but that is beyond the scope of this paper.

5. Discussion and Conclusion

We presented the first interaction learning method by significantly extending past work on one-shot
action learning to one-shot multi-agent interaction learning. The trace above shows how to learn
about multi-agent interactions with only a single demonstration. Unlike other systems that learn
from demonstrations, which focus on individual behaviors or skills and do not take into account
who is performing the action, our representation explicitly denotes the agent carrying out each step,
letting our system handle tasks with multiple agents. Although we only showed the agent learning a
joint action, with some extensions to the dialog capabilities of DIARC, the system can learn social
action consisting of joint action collaboration, question answering, and explanations of reasoning.

We introduced a mechanism which allows an agent to observe the actions of other agents and
determine if those actions are successful and showed how these observations can be grounded in
a cognitive robotic architecture. We also provided the learner with a mechanism that allows it to
understand how objects are used across the steps of an interaction and thus which entities in an
interaction can vary across instances of that interaction. Understanding what can vary, and when,
enables generalization of learned actions to different objects and contexts. In addition, because the
task representation has been extended to incorporate the agent associated with each subaction, an
agent can partake in the interaction in any role as long as it is able to execute the actions defined for
that role in the interaction.

While the current system is still fairly limited in the way it can be instructed, the focus in this
paper was not on the natural language side or on learning all actions from scratch, but on the ar-
chitectural representations and mechanisms enabling interaction learning for agents that are already
capable of performing some actions and some observations with sufficient natural language un-
derstanding capabilities to be able to understand the teacher’s instructions. Before conducting a
full-fledged evaluation with different types of interaction learning, the system must be more robust
when learning new actions. The learning system needs an additional mechanism to let the teacher
provide additional information about conditions and effects, as well as the capability to modify
action scripts if there are issues during learning. Future work should allow the teacher to provide
feedback to the agent so the action scripts are more robust, expand on the number and types of ob-
servers, and extend the instruction understanding capabilities to allow for more free-form teaching,
as in the case of recursive instructions.
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