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ABSTRACT
Autonomous robots with sophisticated capabilities can make it
difficult for human instructors to assess its capabilities and profi-
ciencies. Therefore, it is important future robots have the ability to:
introspect on their capabilities and assess their task performance.
Introspection allows the robot to determine what it can accomplish
and self-assessment allows the robot estimate the likelihood it will
accomplish at given task. We introduce a general framework for in-
trospection and self-assessment that enables robots to have task and
performance-based dialogues before, during, and after a mission.
We then realize aspects of the framework in the cognitive robotic
DIARC architecture, and finally show a proof-of-concept demon-
stration on a Nao robot showing its self-assessment capabilities
before, during, and after an instructed task.
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1 INTRODUCTION
Imagine you are tasked to search for wounded people in a natural
disaster zone with a team of humans and robots. You know the
general capabilities of the robot, for example, that it can search
buildings, or avoid obstacles, but you are uncertain whether it will
actually make its way through the rubble into a partly collapsed
building. You ask, “Robot 7, will you be able to enter the building by
parking lot?” “Yes, I have determined that there is an open path I can
use,” the robot may respond. “Great, go right ahead and search the
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building for wounded people,” you order the machine. As the robot
enters the building, you want an update on what it is doing. The
robot informs you, “I’m trying to enter a room but the door does
not seem to open.” “Can you break it open?” you ask. “I don’t think
I can,” the robot replies. “Look for a hole in the wall and if there is
one, drive through it,” you order. “Roger that,” the robot confirms.
Eventually, the robot is able to make its way in and reports that
there are no people in the room. Upon its return, you ask the robot
how it got into the room and it tells you it found an opening in the
wall. “Remember to look for such holes in the future,” you instruct.
The robot stores the new information for future missions.

While these types of task-based interactions are not quite attain-
able yet, they point to an important capability future robots need to
have: introspection into their capabilities and assessment of their
actual and predicted task performance. Introspection enables the
robot to evaluate what it can accomplish and self-assessment allows
the robot to provide estimates of the likelihood it will complete a
given task. Self-assessment here can be based on past performance
or different ways to extrapolate known performance to unknown
cases (e.g., using analogical reasoning [7]).

In this paper, we introduce a framework for introspection and
self-assessment that enables robots to have task and performance-
based dialogues before, during, and after a mission about the likeli-
hood that theywill be able to complete their tasks. The framework is
general in that it lays out functional and architectural requirements
for self-assessment without prescribing any particular assessment
algorithm or architecture, even though the extent to which a robot
will be able to assess its performance will depend on the extent to
which it can introspect its internal states, track its performance over
time, and estimate action success in light of environmental varia-
tions. We have implemented the core framework in the cognitive
robotic DIARC architecture [4–6] as it provides the natural lan-
guage capabilities for performance and self-assessment dialogues.
We then show a proof-of-concept demonstration on a Nao robot
showing its self-assessment capabilities before, during, and after
an instructed task.

2 INTROSPECTION AND SELF-ASSESSMENT
FRAMEWORK

We start by distinguishing three different types of assessment in-
teractions one could have with a robot: before task execution (a
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priori), during task execution (in situ), and after task execution (a
posteriori)1. Each of these interactions have different purposes and
require the robot to have different introspective capabilities.

A priori self-assessment enables dialogues about what a robot
can do and when it might do it. The robot could figure, as part of
a larger mission planning process, what the robot should do, or
in the context of team tasks, what role the robot should assume
and its specific goals. The in situ interactions take place during
task execution and are typically aimed at providing performance
updates to the human as well as expected or actual deviations
from the planned execution. The third, a posteriori assessment,
is a retrospective dialogue about what happened, possibly why,
and how it could be improved in the future. All three forms of
self-assessment can be enabled in the same architecture assuming
the necessary introspection mechanisms available which we will
discuss next in detail.

2.1 A Priori Self-Assessment
When an agent receives an instruction to perform a task, it is desir-
able for the agent to assess whether it is able to accomplish the task
and report back to the human instructor any limitations instead
of simply attempting to perform it and possibly failing. Several
factors must be taken into consideration for these assessments, for
example, what other goals the agent is pursuing or supposed to
accomplish, and which of them should take priority. For instance,
a new goal to radio headquarters may be of less priority than a
current goal of helping someone trapped in a burning building. The
agent ought to consider various factors (e.g., task complexity, re-
sources, or time) when assessing which goal to immediately satisfy.
To handle this type of assessment, the agent must keep track of all
goals it is actively pursuing and must assess tradeoffs among goals.

Once the agent knows what goals to accomplish, it can attempt
to determine whether it will be able to perform the associated tasks.
This may require it to perform various types of actions (internal on
its system and external on the environment). To assess whether an
action is applicable in a given context and how likely it will succeed,
the agent needs to maintain a set of action pre-conditions, operat-
ing conditions, and effects together with associated probabilities.
It can then use these probabilities to reason about the likelihood
of action success. The agent then needs to repeat the assessment
for all actions required to perform each task, possibly making as-
sumptions about various aspects of an action: (1) the likelihood
of the pre-conditions being met, including the likelihood that it
will get all necessary perceptions right, (2) the likelihood of the
operating conditions holding, including the likelihood that it will
perform all necessary motor actions right, and (3) the likelihood
of the post-conditions holding given its performance of the action
and various extraneous circumstances. The way probabilities are
combined will depend on the particular action, e.g., whether the
actions are performed by the agent alone using only its effectors
(e.g., lowering an arm) or whether they require manipulation of an
object (e.g., grasping an object) or those of other agents (e.g., hand-
ing over an object). Moreover, how the joint task probabilities are

1The categorization is based on the one in Topic 24 of the ONR program announcement
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calculated will depend on the available information about individ-
ual actions (e.g., whether single success probabilities are known or
whether the information is distributional) as well as the way tasks
are represented (e.g., in terms of mere action sequences of the agent,
in which case success probabilities could simply be multiplied, or in
terms of conditional action sequences where distributions of over
conditions have to be taken into account).

If there are multiple options for achieving goals, the agent must
introspect on these options and assess their likely outcomes and
tradeoffs, including estimate time for completion, probability of
success, or available resources. For example, if the agent has two
sequences of actions A and B which allow the agent to save a
person in a burning building, then it should base it preference on
an assessment of action success: If action A has a mean success
probability of 80% and action B of 40%, then A is the better choice,
as executing B may result in an unsuccessful retrieval of the trapped
person. Similarly, action duration should be assessed in a similar
manner when duration, not success is the critical measure: If action
A takes two hours to remove fallen structural beams, but action B
takes 30 minutes to knock down a door, then it might be better to
execute action B to enter a room.

2.2 In Situ Self-Assessment
In situ self-assessment enables an agent to provide an update on
how well it is progressing towards its goals based on the state
it currently is in. This measure is a combination of tracking past
performance, possibly including deviations from initially expected
actions and durations, and estimating expected performance for
the remaining tasks to performed in the service of the agent’s goals.
For the latter all the a priori assessment capabilities can be utilized,
in particular, in cases where a pre-determined action plan has to be
changed and new options need to be evaluated, or when new goals
are given to the agent that need to be accommodated (e.g., when
a new goal with higher priority like saving a person trapped in a
burning building needs to be prioritized and satisfied immediately).

During task execution, the agent needs to continuously observe
the environment to ensure it can still execute the planned action
sequences required to achieve its goals (e.g., a structural piece of
the building might collapse and require the robot to work faster or
find an alternative route). Additionally, some actions (e.g., travers-
ing an unstable floor) may require certain environmental states
for the action execution to be successful and thus the agent must
monitor these states for possible changes throughout execution.
Any detected changes could then potentially force the agent to
replan by selecting among viable plans based on assessed expected
performance and then update its in situ performance estimate.

2.3 A Posteriori Self-Assessment
After completing a task, a posteriori assessment allows the agent to
determine in hindsight what options would have been preferable
and update its performance estimates. This can enable changes in
the agent’s task knowledge and self-assessment that will lead to
better action choices in the future and more accurate assessments.
To enable a posteriori assessment, the agent needs to have access
to memory traces of what it did and what happened, and calculate
actual and possible performance information from those traces. For



HRI ’20 Workshop on Assessing, Explaining, and Conveying Robot Proficiency for Human-Robot Teaming, March 23, 2020, Cambridge, UK

example, when the agent accomplished the goal in a given context,
it needs to update the estimated duration of execution as well as
probability of success. Even if the agent did not accomplish the goal,
it still needs to update the success probability and ideally assess
why it failed and how it can improve its execution. For example, it
may explore options based on questions like “why did it take me
so long to remove the rubble blocking the door,” “did I need to pick
up the rocks to move them or could I have pushed them,” or “what
would have happened if I could not move the rubble.” By including
observations of the environment in addition to its own performance,
the agent can learn more about how its actions affected the world
and will thus have a better understanding for when to execute the
action in the future and how likely it will succeed.

3 INTEGRATION INTO DIARC
Based on the general introspection and self-assessment framework
discussed in Section 2, we extended the cognitive robotic DIARC
architecture to enable all three assessment methods through nat-
ural language dialogues. DIARC was selected because it already
provides both deep introspection capabilities [3] and extensive nat-
ural language capabilities [6] (however, the system is not limited
to dialogue based assessment, GUI-based interactions are possible
as well). DIARC utilizes declarative and procedural knowledge to
explicitly represent beliefs and actions, respectively, which allows
it to introspect on its knowledge and connect these representations
to natural language forms. For the purposes of self-assessment, we
extended the action script representation to include action probabil-
ities, and also the Goal Manager component, to improve assessment
by enabling more detailed information about action execution.

In order to enable self-assessment dialogues, the robot needs to
have access to various knowledge bases, including beliefs, past and
current goals, and actions. Hence, we start off by discussing some of
the core data representations in DIARC which enable the agent to
assess its performance and then discuss how the system leverages
these representations for the three types of self-assessment.

3.1 Beliefs
To enable assessment, the robot needs to have access to the world
state. Additionally, throughout the robot’s execution, it will need
to evaluate the truth values of certain observable conditions; this
“Belief database” generally serves as the transfer point for this type
of environmental knowledge between components of the system.
The Belief database stores such information in facts (predicate
statements of truth) and rules (conditional relationships between
statements). Since the state of the world is constantly changing,
this database is likewise mutable, and new beliefs can be added
or retracted at any time. Queries can be submitted to Belief either
to evaluate the truth value of a particular predicate, or to obtain
all possible value-bindings to free variables in the predicate that
would make it true.

3.2 Action Representation
Action scripts are compact ways of specifying hierarchical robot
behavior without explicitly modeling the entire state relative to
each action. Table: 1 shows an example script for the “Dance” action.
They are defined by an action name and associated parameters each

Action Script
Name: Dance
Arguments: agent
Pre-Conditions: arms(down) head(straight)
Steps: raise(arms) lower(arms)

look(left) look(right)
look(forward) raise(arms)
lower(arms)

Operating-Conditions: standing(agent)
Post-Conditions: danced(agent)
Success Probability: 0.9

Table 1: The action script for the dance action.

with their own given type (e.g., a reference to a graspable object).
Each action has a set of pre-conditions that need to be true before
the robot can execute the action, operating conditions which must
be true throughout execution, otherwise the action will fail, success
post-conditions that will be true when execution succeeds, and
failure post-conditions that will be true when execution fails. All
condition sets are finite, containing first-order formulas over a finite
set of predicates. Semantically, pre-conditions determine an equiva-
lence class of world states in a transition system and the operating
conditions hold true throughout the execution, the system will end
up in a successor state which is a member of the equivalence class of
states defined by the success post-conditions; otherwise it will end
up in a state in the equivalence class of the failure post-conditions.
They contain a finite sequence of action steps (without any ad-
ditional non-action expressions such as control expressions like
“if-then-else” conditions, “for” and “while” loops, event descriptions,
observer expressions). Each action step represents another action
script, or an action primitive, which is represented in the same
manner, except it provides a single operation instead of containing
a sequence of steps.

We extended the action representation to include success proba-
bilities based on the specific parameterized arguments during execu-
tion. Once an action is completed, the probability of the associated
parameterized action is updated. Currently, each parameterized
action is represented by a single probability, however a distribution
or bounds also can be defined.

The DIARC architecture stores these actions in a local database
which can be accessed based on name and parameters, or post-
conditions. Depending on the situation the agent may need to look
up a specific action to execute, e.g. walk forward in which case it
will query the database for the action “walk” with the parameter
“forward”. Additionally, the agentmay need an actionwhich satisfies
a goal, e.g. holding cup, and will query an action with a matching
post-condition.

3.3 Goal Manager
In DIARC, the Goal Manager (GM) is the component responsible for
managing agent goals. When the agent receives a goal, specified as
a desired state in predicate form, the request is sent to GM, which
determines if and when the goal should be pursued, and how to
accomplish it. As GM receives goals from other DIARC components
(including sub-goals from itself), it first assesses whether the goals
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are properly formed, and then adds them to an active goal queue.
This queue provides a means for the GM to introspect on goals
it still needs to satisfy as well as goals that are currently being
pursued. To enable introspection of non-active goals, goals that
are rejected or have reached a terminal state are removed from the
active goal queue and placed in a past goal queue. Each goal has an
associated GoalStatus which can change between pending, active,
suspended canceled, satisfied, or failed.

When GM decides that a goal should be pursued (using priority
calculations based on utility, cost, etc), the goal is added to an Action
Execution Tree. This tree keeps track of all goal executions for both
current and past goals, action sequences for each goal, as well as
action parameters and ActionStatuses for each action step. This
explicit representation is a critical mechanism for introspecting on
current and past goals.

As the first step of goal execution, an ActionSelector is used
to generate or plan a sequence of one or more actions to execute.
When a sequence of actions is found, the selected sequence is added
to the Action Execution Tree, where each node corresponds to an
action step which has been or will need to be executed. Each node
also contains the action name, action parameters, ActionStatus and
Justification for why an action step has succeeded or failed. The
ActionStatus changes during the stages of execution, and allows
GM to easily traverse the Action Execution Tree to find the step(s)
being executed or the step(s) that have failed.

When GM is about to execute an action step, it first assesses
if the agent can execute the action by checking the action’s pre-
conditions against the current world state, as well as if it will lead
to any forbidden states. If all pre-conditions pass, the system begins
to observe the operating conditions to ensure they hold throughout
execution. The system then attempts to execute the action, which
either executes a primitive action, or in the case of a higher-level
action, grows the Action Execution Tree by adding all action steps
to the tree. This process is repeated until all actions terminate as
primitive actions, or until an action fails. After an action step has
been executed, there is a final check to verify that all post-conditions
hold. Notice that checking pre-, operating, and post-conditions
might also require performing actions, for instance, observing that
some world-state has been achieved (e.g., robot is holding an object).
These condition checking actions are also stored as part of the
Action Execution Tree, making them accessible to the introspection
and self-assessment algorithms.

After each action step is executed, the results of the action are
used to update the self-assessment model. This might include updat-
ing success/failure probabilities, as well as other meta-data relevant
to the model (e.g., actions that came before, world state, etc). After
all actions have been executed, and goal execution has terminated,
the goal is moved from the active goal queue to the past goal queue,
but critically the Action Execution Tree for this goal remains intact,
enabling a posteriori self-assessment and introspection.

3.4 Introspection in DIARC
As we mentioned in Section 2, there are three main task phases
when an agent could be required to introspect on its capabilities
and goals: a priori, in situ, and a posteriori. Currently, we have

incorporated aspects of each into and will use the “Dance” action
described in Table: 1 as a running example.

3.4.1 A Priori Self-Assessment. Prior to executing an action to
satisfy a new goal, for instance to perform the dance action, the
agent may want to assess its other active and past goals. Since GM
in DIARC maintains active and past goals, it is able to assess which
goal to select and try to accomplish. Additionally, we incorporate
the ability for the robot to assess if it can accomplish the goal, how it
would accomplish the goal, and the probability it would accomplish
the goal. In order to assess if it can accomplish the to dance goal, GM
queries the action database for a sequence of actions that results
in the agent having danced. Currently, if the agent queries the
database and assesses that it doesn’t know how to accomplish the
goal, then it will fail. However, the selection process can be extended
to consider exploring the environment, creative problem solving,
or asking another agent for assistance. When the agent finds an
action, it plans or extracts the steps required to complete the goal.
It is then able to evaluate if it is capable of performing each of the
action steps, including raising and lowering its arms and looking
left and right. To calculate the probability of completing a goal, the
system will first check the action representation to see if one is
known, which is 0.9 for the dance action. However, say the robot
has no experience executing the action or it just learned the action,
then it will calculate the probability by the computing the product
of the action’s step success probabilities. Currently, if this novel
action is a primitive action then it will assume a probability of
0.5. After the action is executed, the system updates it the action
representation to include the additional experience and if it was
completed successfully.

3.4.2 In Situ Self-Assessment. In order for a human interlocutor to
query a robot about what action it is performing for a particular
goal (e.g., what is the current/next/previous step of goal-X), DIARC
has been extended with several key pieces of functionality: (1)
action traces are explicitly represented in the Action Execution
Tree, (2) goals and actions have semantic representation in first-
order predicate logic, and (3) the GM allows the Action Execution
Tree to be searched by other DIARC components by way of several
exposed actions. For example, GM might receive a goal of the form
“did(AGENT, getActionDescription(stepOf(LOCATION,GOAL)))”.
Here, the goal semantics specify that the AGENT should adopt
a goal to perform the “getActionDescription” action which takes
in the action argument “stepOf(LOCATION,GOAL)”. The action
argument specifies that an action description should be generated
for the LOCATION step of GOAL (e.g., stepOf(current, dance)).

During execution of the “getActionDescription” action, the se-
mantics of GOAL are used to search the active goal queue to find
the relevant goal. Once the relevant goal is found, for example the
dance goal, the Action Execution Tree for can be searched to the find
node (i.e., action step) corresponding to the specified LOCATION,
in this case the current step. Then, the semantic representation
of the desired action step can be built using the action name, for
instance “look”, and action parameters, “right”. This information
is then asserted into the Belief system where it can be used by the
natural language understanding system to respond the interlocutor.
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One open question about queries of this form is how deep to
search into an execution tree. For example, an action to go-to-
breakroom might consist of several sub-actions (e.g., go-to-hallway,
navigate-to-breakroom, open-door, go-inside), which themselves
have several sub-actions. It’s unclear if a query about what step
is being executed should result in the most low-level sub-action,
top-level action, or somewhere in between. The heuristic currently
used in DIRAC is to use the top-level action, but more complex
goals, such as those that are executed over the coarse of days or
weeks will likely need to modulate this heuristic based on several
factors (e.g., interlocutor, world state, context, etc).

Additionally, the system is still able to query the probability that
an action will succeed. Currently, the system still calculates the
probability with respect to all the actions even if it has completed
some, thus in the case of the goal to dance it will extract 0.9. The
mechanism to extract this information is all there andwe can extend
this to consider the remaining actions it needs to complete.

3.4.3 A Posteriori Self-Assessment. Thus far, DIARC is currently
only able to query how the probability of success updates after
action execution. However, the framework is set up so it can in-
corporate additional performance assessments and reasons why it
failed.

4 DEMONSTRATION
We now demonstrate the introspection and self-assessment capabil-
ities of the framework described in Section 2 which were realized
in the DIARC architecture. In this scenario, the robot, a Nao, is
asked to assess its knowledge about a goal at three points: a pri-
ori, in situ, and a posteriori. A video of the demonstration can be
found at: https://youtu.be/gqEqH00JzRI. Note, to demonstrate the
Nao’s introspection and assessment capability, the instructor has
a dialogue with the robot; however, we are not focusing on its ca-
pability to provide explanations. Additionally, because the robots
movements are relatively short and quick, the instructor asks the
robot to pause execution so the instructor has time to query the
assessment capabilities. The ability to pause and resume may be
useful for online debugging.

The instructor starts off by greeting the Nao.
Human: Hello Dempster.
Robot: Hello Tyler.

A Priori Assessment
The instructor then, prior to asking the robot to dance, asks it to
assess its capability to dance.

Human: Do you know how to dance?
Robot: Yes.
Human: Describe how to dance.
Robot: To dance, I raise my arms, I lower my arms, I look

left, I look right, I look forward, I raise my arms,
and I lower my arms.

Human: What is the probability that you can dance?
Robot: The probability that I dance is 0.9.

This dialogue segment demonstrates the Nao is able to query
its knowledge about what it can do, how it would do it, and the
probability the robot would accomplish the goal. In this demon-
stration, the Nao is configured with a prior probability of 0.9 to

(a) The Figure above shows the instructor asking the robot if it knows
how to dance.

(b) The Figure above shows the instructor asking the robot to assess the
likelihood it will be able to dance.

dance, however as the robot gains experience it will update this
probability.

In Situ Assessment
The instructor ask the robot to dance and then to pause execution
so it has time to demonstrate the assessment capabilities of the
robot in situ.

Human: Please dance.
Robot: Okay.
Human: Pause.
Robot: Okay.

Now that the robot has paused, the instructor can query the
current progress of the dance action

Human: What is the current step of dance?
Robot: The current step of dance is that I look right.
Human: What is the previous step of dance?
Robot: The previous step of dance is that I look left.
Human: What is the next step of dance?
Robot: The next step of dance is that I look forward.

The robot pauses executing after looking to the left and is able
to provide this information to the instructor by using the Action
Execution Tree and the ActionStatuses. Once it locates the step in
progress, it responds to the instructor.

The instructor tells the robot to continue executing.
Human: Resume.
Robot: Okay.

A Posteriori Assessment
Finally, after dancing, the instructor asks the robot to assess the
updated success probability.

Human: What is the probability that you can dance?
Robot: The probability that I dance is 0.91667.

By comparing the new probability to the original, it is evident the
robot successfully updated the probability and is able to introspect
on it.

https://youtu.be/gqEqH00JzRI
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5 DISCUSSION AND RELATEDWORK
There are currently only a few proposals for robotic self-assessment
in the literature (e.g., [2] for navigation, [8] for vision, [1] for human-
robot interaction in teams). We have provided a novel proof-of-
concept demonstration showing that a robot’s introspection capa-
bilities can be used to access different types of task-based knowledge
in a systematic fashion, regardless of whether it is before, during,
or after task execution. We demonstrated the core functionality
of utilizing deep introspection for self-assessment, even though
not all introspection capabilities available in DIARC have been
utilized (e.g., component-internal introspection [3]) and only one
type of self-assessment – probability of task completion – has been
implemented, independent of context.

There are two important shortcomings with the current imple-
mentation that we will address in future work. Currently the robot
needs to have full prior knowledge about the success probabilities
of all involved actions, otherwise it cannot compute the overall suc-
cess probability. However, this information might not be available
for all Additionally, it records success probabilities independent
of environmental context, but environmental context can have a
major impact on action success (e.g., a manipulation action such as
“pick-and-place” being performed in an open vs. a cluttered environ-
ment). While the agent could either estimate the likelihood of the
action completing based on similar actions or use a “default value”
that can later be updated, it might be better to determine a rough
estimate through repeated mental simulation of the action. DIARC
has the ability to perform these simulations through duplicating
parts of the architecture and connecting it to a physics simulation
environment [7]. This type of simulation might also help address
the more challenging second point where the robot needs to esti-
mate the success probability of an action under new environmental
conditions. Note that in addition to performing actions and learning
the probability of them succeeding in different contexts, the agent
needs to learn about possible objects and the probability that it
will be able to detect them when needed (e.g., [8]). To the extent
that the robot has a sufficient model of the environment and can
perform mental simulations of the action in the envisioned con-
text, it might be able to generate a sufficiently accurate distribution
of success probabilities across multiple simulation runs that can
serve as a proxy for the true probability. However, this will impose
significant common-sense knowledge requirements on the robot
about the objects, including their physical properties and function.
Additionally, the robot needs to use models of these objects in the
simulated environment that are accurate enough for the robot to
perform actions on them that mirror the real world.

6 CONCLUSION
Autonomous robots with sophisticated capabilities can make it
difficult for human instructors to assess if the robots can accomplish
a given task, especially if the humans have not observed them
performing the task. This is particularly important in the context
of mixed-initiative teams where an unexpected event requires the
team to adjust its goals and activities. Being able to query the robot
in natural language about its abilities as well as the likelihood of
completing a task will go a long way towards making robots more
useful team members and building human trust.

We presented a unified self-assessment framework based on deep
architectural introspection that enables robots to have dialogues
about self-assessment before (a priori), during (in situ), and after (a
posteriori) a task. We implemented the framework in the DIARC
architecture and demonstrated its core functionality on a fully
autonomous Nao robot.

The refinement of the assessment algorithms is ongoing work.
This includes the ability to perform simulation-based assessments of
actions and tasks the robot has never performed, which will enable
the robot to engage in hypothetical and counterfactual dialogues
about performance assessment.
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