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Abstract— It has been claimed that a main advantage of
cognitive architectures (compared to other types of specialized
robotic architectures) is that they are task-general and can
thus learn to perform any task as long as they have the right
perceptual and action primitives. In this paper, we provide
empirical evidence for this claim by directly comparing a
high-performing custom robotic architecture developed for the
standardized robotic “FetchIt!” challenge task to a hybrid
cognitive robotic architecture that allows for online one-shot
task learning and task modifications. The results show that
there is no disadvantage of running the hybrid architecture
(i.e., no significant difference in overall performance or compu-
tational overhead compared to the custom architecture) while
adding the flexibility of online one-shot task instruction and
modification not available in the custom architecture.

I. INTRODUCTION
Over the years, cognitive architectures have been repeat-

edly touted as meaningful additions to robotic architectures
as they could enable the latter to have better high-level
control and reasoning as well as interaction capabilities
with humans (e.g., [1]). While such “hybrid systems” have
been shown to be able to perform tasks on robots, the
tasks were often limited in complexity and usually lacked
a direct comparison to the performance of a mere robotic
architecture in the same task which would have allowed for
a substantiation of the claim that there is utility of the added
complexity of the cognitive architecture.

In this paper, we address this lack of a direct comparison,
and thus the missing support for the above claim about the
utility of cognitive architectures on robots, by performing the
first through empirical comparative evaluation of a purpose-
made robotic architecture for the standardized task designed
for the “FetchIt! The Mobile Manipulation Challenge” (at
ICRA 2019)1 with a hybrid cognitive-robotic architecture.
Critically, the mere robotic and the hybrid architecture used
the very same perceptual and action primitives, but the hybrid
architecture utilized explicit task script representations that
were accessible via natural language and could be modified
on the fly. We demonstrate through empirical evaluations
comparing both architectures in the “FetchIt!” task on the
same Fetch robot that there is no significant difference in
computational effort or task performance (both in terms
of time-to-task-completion and number of completed runs)
between the two architectures, while the hybrid architec-
ture allows for various extended features such performance
monitoring and task modifications through as spoken natu-
ral language dialogues that would require extra significant
development effort on the purpose-made architecture. The

1https://opensource.fetchrobotics.com/competition

evaluations provide evidence for the utility of a task-general
cognitive architecture for robotic task performance, specif-
ically showing that (1) the entire task can be instructed in
spoken natural language (NL) instead of having to be pro-
grammed, (2) the system can be queried in NL throughout the
task performance about its expected performance, next steps,
goals, etc., and (3) the task can be modified during execution
through NL dialogues with the modifications taking effect
immediately without the need to stop the operation. These
added features to task performing robots enabled by the
addition of a cognitive architecture without any downsides
will significantly improve the utility of robots for many
application domains, including versatile manufacturing as
demonstrated by the “FetchIt!” task.

II. MOTIVATION

Cognitive architectures like ACT-R, Soar, and others were
originally developed as models of human cognition, consist-
ing of various modules, representations, and processes that
together by way of their interactions are able to perform
a large variety of cognitive tasks [1]. Different from robotic
architectures, which traditionally were developed for specific
classes of (robotic) tasks (navigation, manipulation, etc.),
cognitive architectures have from the beginning aimed to
be task-general: given a set of task-specific percepts and
actions, and a task description with a task goal, a cognitive
architecture should be configurable to perform the task and
accomplish the goal. Ideally, it should be possible to learn
from the very same instructions that humans would receive
if they were to perform the task (e.g., [2]).

Recently, it has been demonstrated that cognitive archi-
tecture can learn a significant set of different tasks from
instructions and are even able to utilize the commonalities
among the tasks [3]. Clearly, this kind of capability would be
of great utility for the robotics community, as robots could
be instructed to perform a variety of tasks that share a set
of perceptions and actions. However, cognitive architectures
have not been designed with robots in mind and are thus
typically not able to easily control robots (e.g., for SOAR a
special interface had to be developed and much of the per-
ceptual system lives outside the architecture proper, similar
adaptations had to be made for ACT-R, e.g., see [4]).

One way to overcome the various challenges of run-
ning cognitive architectures directly on robots – real-time
processing of sensory data, temporally extended actions,
parallel operating of different components, etc. – while
preserving their advantages – task generality, instructibility,
high-level reasoning, etc. – is to integrate them with robotic



architectures that take care of the nexus between real-world
sensors and actuators and the robotic architecture’s high-level
percepts and actions. Two main integration methods have
been pursued over the year (e.g., see [4] for details). The
first is to use the robotic architecture as an implementation
environment for the cognitive architecture, transducing real-
world sensory data into the particular high-level perceptual
input form cognitive architectures require, and mapping high-
level atemporal action outputs from the cognitive architecture
onto time-sensitive real-time controllers or even complex
action scripts that implement the intended action on the
robotic platform. The second integration is to treat the
cognitive architecture as an additional component in the
robotic architecture that operates concurrently with all other
components. Different from the first integration where the
cognitive architecture is in control of the overall action
execution, both robotic architectures are jointly in control
(although the degree to which each has a say will depend on
how they specifically interact).

III. THE “FETCHIT!” MOBILE MANIPULATION
CHALLENGE

The goal of the “FetchIt!” competition tasks is for a Fetch
robot [5] to assembly a kit of parts from different stations
and transport it for inspection. The Fetch robot is a mobile
robot with a chest-mounted seven degrees of freedom arm
and a head-mounted RGBD camera. As shown in Fig. 1,
to reach the goal, the robot needs to navigate in a narrow
work cell by moving closely among different stations to pick
mechanical parts with the large raw gear machined, place
them into the correct compartments of one of the caddies
on the top table, and transport the caddy to the table at the
bottom left. Clockwise, the parts are small gears, large gears,
gearbox tops, gearbox bottoms, and screws2. For the large
gear, the robot needs to insert the raw version into the narrow
lathe chuck of the SCHUNK machine located to the right to
shape the gear thread; the robot can also push the door handle
to close before insertion or pull to open before removing.
After placing two screws, one small and machined large gear,
one gearbox top and bottom into the caddy, the robot need
to pick up the kit and transport it to the bottom-left table for
inspection.

Three major challenges need to be addressed in order to
reach the goal: navigation, perception, and manipulation. The
dimension of the arena is 3 × 3 meters, which is relatively
narrow for a Fetch with 0.6-meter-diameter round base: the
arena can only accommodate 9 Fetch robots (3× 3) with all
the tables. In order to reach objects on the farther half of the
table, the robot needs to stop in front of the table as close as
possible without any collisions. This capability is important
because Fetch’s arm is short when not counting the long
wrist link while grasping the caddy handle from a upright
position. It is also vital for the large gear machining task
for two reasons. First, the top door handle on the SCHUNK

2The CAD models are available at https://github.com/
fetchrobotics/fetchit
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Fig. 1. The “FetchIt!” environment. The robot’s goal is to place the irregular
parts into the correct sections of the concave caddy on the top table, and
transport the caddy to the bottom-left table for inspection.

machine needs to be reachable during the whole open/close
process. Second, the robot needs to see the whole lathe chuck
side for detection and large gear insertion.

IV. THE UML-HRI MOBILE MANIPULATION
FRAMEWORK AND DIARC ARCHITECTURE

Since we were interested in directly comparing a robotic
architecture with a hybrid cognitive-robot architecture, we
started with the high-performing robotic architecture specifi-
cally developed for the “FetchIt!” task (the architecture won
second prize in the competition, see [6]). We removed its
action sequencing component that implicitly encodes the
task and replaced it with the complete DIARC architecture
[7] which is then connected appropriately to sensory and
action processing components to allow it to perform the
task learning, task performance prediction, and task modi-
fication. In the following, we first describe the base robotic
architecture, followed by a short overview of the employed
DIARC architecture and how it was integrated with the base
architecture.

A. The UML-HRI Mobile Manipulation Framework

The architecture we developed for the 2019 “FetchIt!”
competition was not based on a particular robotic or cog-
nitive architectural paradigm, but rather consisted of a set
of existing and custom-built components utilizing the ROS
middleware. One component (to be replaced in the hybrid
architecture) is in charge of implementing the task flow
and coordinating the activities among the other components
(see Fig. 2) such as the detector components (“caddy”,
“dropoff”, “schunkdoor”, “chuck”), the manipulation com-
ponents (“caddy”, schunkdoor”, “widget”), as well as the
navigation components for moving within the arena.

We used the widely available ROS navigation stack [8],
originally designed for indoor office environment. Using this
technology, the robot is reluctant to move close to a table
less than 20 cm due to a rough base model, which is also
confirmed by [9]; it will get stuck and keep rotating for
localization. In their system [9], Ciocarlie el al. allow for
manual control by users to move the robot closer through a
GUI. Since the “FetchIt!” competition requires the robot to
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Fig. 2. Diagram for the task sequencer in the custom architecture and its
relation to other perceptual, manipulation, and navigation components; the
components are C++ libraries. In the hybrid approach, the task sequencer
component is replaced with DIARC, and all other components are converted
to ROS services for the DIARC integration.

be fully autonomous, we solved the issue by implementing
autonomous manual base movement, which moves the robot
towards the table after reaching an approximate goal and
moves away after finishing the manipulation task.

For perception, the task-based objects are complex and
irregular, unlike blocks or cylinder objects commonly seen
in the robotics field. The caddy is a concave object and has
a handle and three compartments. It is practically symmetric
but one side has a divider that can be easily omitted due to
occlusion, which is the case when the handle is horizontal
and the divider is behind the handle.

Because we have access to the CAD file of the caddy,
we tried to cluster the caddies and match the point cloud to
the CAD model, but none of them (correspondence grouping
[10], [11], hypothesis verification [12], hypothesis rejection
[13]) can detect the orientation of the caddy correctly and
consistently. We did not attempt the convolutional neural
network method [14] as data collection is difficult for the
unknown competition arena and the learned model using
data from our test arena may not transfer to the competition
arena environment. Instead, we used a height heuristic to
crop the point cloud of the caddy handles, clustered them
using Euclidean cluster extraction, determine the y axis
using the principle component analysis (PCA) technique, and
determined the divider by checking points at both sides of
the caddy.

For other objects such as large gears and gearbox
top/bottom, we used a simple plane model segmentation
to find the table in front and isolated the region directly
above the table. Then we obtained each cluster above the
table, examining the width, length and height of each and
comparing with the desired object, discarding any that do not
match. In addition objects that were too close together were
discarded. Since all objects involved have a main axis, we
used the same PCA technique to determine the orientation
of the object. For most objects, we could line up directly
above and come straight down, however for the large gear

Fig. 3. A diagram of a particular instantiation of the DIARC architecture,
showing the natural language processing components (ASR, Parser, Dia-
logue Manager, NLG, Speech Synthesizer) as well as the goal management
components (Goal Manager, Action Manager with Action Interpreter).

our grasp strategy required us to grab the gear end at a slight
angle. If no objects were detected within the first frame, the
robot would keep scanning until a valid object was found.

When choosing which object out of all the valid objects
to actually grasp, the strategy varied per object. Most objects
were on a table with one other object, each on opposite sides.
In those cases the chosen object would be the one furthest
from the other objects side, to reduce the chances of grabbing
the wrong object. In the case of screws, they were isolated
in a bin so the most desired object were the ones located
nearest the center of the bin. Once an object was chosen, the
robot would first plan the grasp, including the final position.
If no solution was found it would move on to the next best
object. If all objects were exhausted without a valid solution,
it would go back to the detection phase and attempt to find
the objects again.

For the actual grasp, the robot would check the position
of the gripper after grasping against the expected object size.
If there is a significant difference, such as the gripper fully
closed, the robot would release the gripper, go back up, and
repeat the detection phase. Most actions had simple retry
techniques if a failure was detected. For manipulation, if
planning failed, or the robot failed to execute a valid plan,
it would retry up to 5 times. If still unsuccessful, the error
propagated up and the previous step would be repeated. This
also applies to motion planning and higher level planning.

For full details of the framework and implementation
details, please refer to our work [6].

B. The DIARC Architecture

DIARC is a component-based distributed architecture
scheme (see Fig. 3) which can be configured for applica-
tions with different components present (a comprehensive
overview of the architecture is given in [7]). Most relevant
for the current setting, are two subsystems of DIARC: (1)
the natural language subsystem and (2) the goal management
subsystem, which we will briefly describe next.



The natural language subsystem is used for interactions
with the user about any aspect of the robot, including tasking
the robot (i.e., giving it new tasks and goals), querying the
robot (e.g., about its knowledge, performance state, etc.),
and teaching the robot new knowledge (e.g., new skills,
tasks, objects, etc.). Here we utilize DIARC’s instruction-
based one-shot learning capabilities [15] which allow us
to instruct the “FetchIt!” task in spoken natural language.
Once, instructed, the robot stores the new task knowledge
and is able to execute it at any subsequent time. We also
utilize DIARC’s capability to revise any type of knowledge
through natural language dialogues to demonstrate the utility
of explicit task representations that can be adapted during
task performance when needed. For the purpose of this paper,
we added the relevant nouns and verbs for the task-based
objects (e.g., caddy, screw, gearbox) and primitive actions
(e.g., fetch, navigate, place) to the lexicon of the semantic
parser. And we marked the perceptual and action primitives
available in the custom-architecture with the same semantic
labels as the natural language words in the dictionary to ef-
fect a mapping between words for object and their detectors,
and words for actions and their primitive action implementa-
tions. That way instructions that involve any of these words
will be semantically interpreted correctly and result in the
appropriate processing in the custom architecture.

The second relevant subsystem is the goal management
subsystem, which consists of the Goal Manager (which
stores all active goals and subgoals of the robot), the Action
Manager (which stores the agent’s procedural knowledge)
and the Action Interpreter (which takes an action script,
i.e., a procedural knowledge representation, and executes
it). The Goal Manager can receive goals from the natural
language subsystem as well as from other components in
the architecture, and upon receiving a goal, determines its
validity, and searches for known action scripts that will
accomplish the goal (otherwise, if no script is available, it
will consult a task planner to find a solution). Action scripts
are sequences of actions (which themselves could be scripts
or primitive actions) together with their pre-, operating, and
post-conditions or control instructions (such as conditionals
and loops). The Action Interpreter is responsible for execut-
ing an action script, performing the operations prescribed
in the script. When an action is a primitive, the Action
Interpreter requests its execution from the component in the
architecture implementing the primitive. In the case of the
action primitives in the “FetchIt!” task, control is passed
to the custom architecture for their execution. When pre-
or operating conditions are not satisfied, action execution
fails and the Action Interpreter stop execution, if requested
notifying the natural language subsystem to inform the user
of the failure.

V. ARCHITECTURE COMPARISON AND EVALUATION

Our evaluation focuses on a direct comparison between
the performance of a purpose-made robotic architecture in
the “FetchIt! The Mobile Manipulation Challenge” with a
hybrid cognitive-robotic architecture. While there are many

aspects that can be evaluated, we focus on two central com-
ponents: (1) any performance-based differences between the
two architectures, e.g., in terms of time-to-task-completion
or completion failures, and (2) any computational differences
with respect to CPU load and utilization. The first is a check
that adding a task-general cognitive architecture does not lead
to a drop in performance compared to a high-performing
architecture specifically designed for the task, while the
second attempts to quantify the computational overhead and
cost of adding a cognitive layer. We hypothesized that H1
the hybrid architecture would not show any statistically
significant performance differences from the specialized ar-
chitecture, and that H2 the computational overhead of the
hybrid architecture was not statistically significant. For H1,
we thus measured the overall duration of the task as well
as the task success and error rates (e.g., whether the robot
failed to complete the task altogether, but also when it
repeated actions due to action failures). For H2, we collected
information about the CPU load during task performance.3.

All experiments were performed on a Fetch mobile robot
which has a built in computer with a quad-core Intel Core
i5-4590S CPU @ 3.00GHz and 16 GB RAM. No external
computing was used except to ssh into the robot and run
the commands. First the navigation and motion planning
components were started. The robot was given its initial
starting position and drove to a center starting location. Then
a roslaunch file started the detection nodes, ROS services,
and the logging nodes. Finally depending on the condition, a
launch file was started launching the appropriate architecture.
The run was considered started when the first command was
given to assemble a caddy. Upon completion of a caddy, the
robot would report its success and the run would end.

A. Experiment 1: Procedure and Results

We performed 15 runs of the “FetchIt!” task with each
of the two architectures. Since the hybrid architecture does
not contain the task sequencing component implemented for
the custom architecture, a human instructor taught the task to
the hybrid architecture in spoken natural language before the
first run using the instruction-based one-shot task learning
capabilities of DIARC [15] (the remaining 14 trials were
run without the need re-teach the robot as the architecture
stored the learned task). To start each trial run of the hybrid
architecture, the instructor then issued the spoken natural lan-
guage command “assemble a caddy”, while task performance
in the custom architecture commenced automatically when
the architecture was started.

As hypothesized in H1, the task completion times are
very similar with both architectures: 16.27 ± 1.17 minutes
for the hybrid and 16.15 ± 1.53 minutes for the custom. A
two sample t-test finds no significant difference (t(28) =
.24, p = .81), hence we cannot reject the null hypothesis. In
fact, we obtain a Bayes Factor of 2.84 for the null hypothesis
showing that the null hypothesis is about three times as

3The script for data collection is available at http://bit.ly/
2wbtaWR



likely under the data than the alternative hypothesis. Fig. 4
shows the distribution of the task completion times for both
architecture. Both architectures successfully completed 15
runs, there was no difference in task success and failure
rates (although there was one operator override when the
robot got stuck in the hybrid case, where it was not clear
whether the robot would have gotten unstuck by itself). We
also investigated failures of individual actions (that ultimately
succeeded due to the built-in recovery methods that were the
same in both architectures) and did not find any significant
differences there either.

Surprisingly, a two sample t-test determined that the com-
putational load in terms of the average CPU usage percentage
per core for the hybrid architecture (54.77% ± 1.97%) was
significantly higher throughout the performance compared to
the custom architecture (29.56%±2.19%), thus requiring us
to reject H2 (t(28) = 33.19, p < .001). Since this difference
was counter to our expectations, we attempted to track down
the culprit of the additional load and found it to be in the
ASR component running the Sphinx speech recognizer. To
confirm that this was indeed the cause for the added load, we
performed an additional set of experiments without the ASR,
but with instructions entered in natural language through a
GUI.

B. Experiment 2: Procedure and Results

We ran an additional set of 15 trials in the modified
hybrid configuration with a GUI-based text input component
substituted for the Sphinx speech recognizer. The task was
then instructed by typing the instructions into the GUI instead
of saying them out loud. Every other aspect of the procedure
remained the same as in Experiment 1.

As shown in Fig. 4, the result with the modified hybrid
architecture showed again no significant difference in time-
to-task-completion in the hybrid architecture without speech
recognizer (15.90 ± 1.43 minutes) compared to the custom
(16.15 ± 1.53 minutes) with a two-sample t-test t(28) =
−0.46, p = .65 yielding a Bayes factor of 2.68 again in favor
of the null hypothesis. Moreover, all 15 runs of the modified
hybrid architecture were successfully completed without any
operator override. A two-sample t-test now also reveals
no significant difference in terms of CPU load between
the hybrid without speech recognizer (30.18% ± 0.94%)
and the custom (29.56% ± 2.19%) architectures (t(28) =
−1.01, p = .32), with Bayes factor of 1.98 showing that
the null hypothesis is twice a likely under the data than the
alternative, thus lending support to H2.

VI. DISCUSSION

The results from the experiments demonstrate that a task-
general hybrid architecture where the task is instructed at the
beginning of the run by a human instructor – either through
spoken instructions or through text-based written instructions
– can perform the task as well as a high-performing custom-
built architecture. Moreover, the experiments demonstrate
that at least in some cases there will not be any significant

computational overhead associated with the hybrid task-
general architecture.4 Overall, our evaluation shows that
there does not seem to be any disadvantage to using task-
general architectures.

On the flip side, there are several advantages to task-
general architectures that we will now briefly discuss (e.g.,
see also [3]), the most obvious being that it can perform
a large set of possible tasks even with a given set of
percepts and primitive actions (as with the above hybrid
architecture using only the percepts and actions used in the
“FetchIt!” task). In contrast, an architecture with fixed task
representations that are implicitly encoded in the architecture
needs to be manually adapted for every task modification.
Moreover, the fact that the task is not hard-coded and can be
instructed allows non-expert instructors to interact with task-
general architectures. This significantly widens the usability
of the architecture by including task domain experts that
would otherwise not be able to encode their knowledge in
the system.

The explicit task representations generated as part of the
task learning dialogues are also available for introspection,
thus allowing the robot to recount what it has learned and
permitting the human to determine whether the robot has
learned the task correctly. In case there was a misunderstand-
ing and some of the task aspects were not properly acquired
by the robot, the human instructor then has the opportunity
to make changes to the task, again through natural language
instructions. This interactive way of adjusting the robot’s task
representations until they match the human expectation allow
for an efficient form of debugging that does not require any
programming or program inspection, and thus can again be
performed by non-experts.

Here we briefly demonstrate a simple modification in-
structed by the human instructor after listening the robot’s
current task modification (see https://streamable.
com/9fyi0 for a video of the demonstration):

H: Hello Andy.
R: Hello Tyler.
H: Describe how to assemble a caddy.
R: To assemble a caddy, I fetch the screw, I fetch

the screw, I fetch the small gear, I fetch the
large gear, I fetch the gearbox top, I fetch the
gearbox bottom, I pick the caddy, I navigate to
the dropoff, I place the caddy on table, and I
reset arm.

H: When you assemble a caddy replace fetch a small
gear with fetch a large gear.

R: Okay.
H: Describe how to assemble a caddy.
R: To assemble a caddy, I fetch the screw, I fetch

the screw, I fetch the large gear, I fetch the
large gear, I fetch the gearbox top, I fetch the
gearbox bottom, I pick the caddy, I navigate to
the dropoff, I place the caddy on table, and I
reset arm.

H: Assemble a caddy.
R: Okay.

4We have not yet experimented with different configurations of the ASR
or different ASRs that might reduce the computational load in the spoken
instruction condition, but expect to be able to ultimately bring down the
computation needed (e.g., by detecting silence and turning off recognition
when not needed).
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Fig. 4. The time-to-task-completion distribution for all subtasks in the custom and hybrid architecture with and without ASR.

It is also worth pointing out that task modifications are not
restricted to dialogues prior to task execution, but can occur
at any time during task execution. Hence, if circumstance for
execution have changed, or if modifications to the task are
required (e.g., because certain parts are missing for assembly
or are no longer needed), the task can be modified online
during task performance and the modification will take effect
immediately. None of these capabilities are achieved with
modifying the architecture in the custom-built case.

VII. RELATED WORK

Only a few robotic researchers have been comparing
and evaluating robotic systems through its functionality and
overall architecture in the robotic domain. Some researchers
attempted to introduce the architecture research work in
software engineering to robotics by surveying to proposing
practical strategy and practices.

Shakhimardanov and Prassler are among the few re-
searchers to propose a formal comparative evaluation
methodology for robotic architectures and demonstrated the
method with an industrial case study [16]. Their approach
comprises four stages that gradually shift from general
to more specific aspects: non-functional quality attributes,
attribute refinements (i.e., measurements), experimental sce-
narios, and scenario dissections. A material handling task
with a robot arm on a conveyor belt is given as a case study
for three different systems. There are performance and ro-
bustness quality attributes and experiments. The performance
attribute is evaluated by cycle time (network time and execu-
tion time) and memory consumption. The robustness attribute
is evaluated by hardware and software faults (disconnecting
cables and software components).

In addition to manipulation tasks, researchers have eval-
uated architectures designed specifically for mobile robots,
i.e., navigation. In 1993, Orebäck and Christensen, defined
seven key requirements of a mobile robot architecture design
and comparatively studied three designs [17]. The key re-
quirements are hardware abstraction – high portability when
hardware changes, extendibility and scalability – support
for new software modules with efficient communication
and well planned data flow, run-time overhead – memory,

CPU, frequency and latency (deemed not important due to
cheap modern hardware), actuator control model – behavior
model, general software characteristics – simplicity both
in implementation and interface, correctness, consistency,
completeness, tools and methods – standardized tools, object-
orientation, architecture visualization and modeling, commu-
nication and monitoring, and documentation – be rigorous
and up-to-date. In the evaluation conclusion section, the
authors also mentioned distributed processes to achieve scal-
ability, extendibility and load balancing, and language bind-
ing. Sheikh et al. also compared different navigation control
architectures with similar characteristics [18]. Matamoros
et al. attempted to compare the complexity of component
updating and response time between a centralized and a
peer-to-peer mobile service robot architecture [19]. However,
component updating is defined rather at a micro function
level such as moving, splitting and merging in addition to
the counterparts of a component.

Instead of identifying commonalities and differences
among different architectures in a ad-hoc manner, Dittes and
Goerick proposed to scientifically compare existing robotic
system architectures by translating them into a high-level
common formal language SYSTEMATICA 2D (SYS2D) [20].
SYS2D is designed to have flexible expressions to translate
different architectures and be formal to identify common
patterns and architectural differences. In SYS2D, a robotic
architecture is separated into layers of semantic function
units or sub-architectures, which have dependencies modeled
by interfaces and connections through input and output (I/O)
ports. I/O ports, triggered by push or pull, have names,
types and three requirement roles: required (i.e., Driving),
optional (i.e., DrivingOptional) or modulatory (e.g., param-
eters). The authors evaluated the formal language by trans-
lating three robotic system architectures and found patterns
and differences. Three common patterns are found: closed
sensor-actuator loop for behavior generation (BG), scene
decomposition to support BG, and a binding architecture to
modulate the loop. For the differences, the authors found
that architectures tend to be specific to differently shaped
robots and applications, leading to various numbers of the



loops and different models of behaviors generated. However,
SYS2D focuses on the architecture concepts but omits robotic
behavior modeling. It also does not center around tasks.

In addition to the methodology proposed by Shakhimar-
danov and Prassler and the modeling notation of SYS2D,
other researchers has been investigating into architecture
paradigms systematically. To manage complexities of a robot
system, researchers have been in the unit of object, compo-
nent, or service.

Ahmada and Babar performed a systematic mapping study
to identify and classify software architectures for robotic
systems [21]. After classification of the existing architectural
solutions, 80% (35/44) of the researchers who modeled
their architectures have used Unified Modeling Language
(UML) diagrams as architectural notations. To model system
structure and behavior, a number of notations are used: use
case diagram for requirements modeling, component diagram
for components interaction, sequence diagram for execution.
According to Ahmada and Babar, four evaluation methods
are identified: controlled experiment, simulation, framework
evaluation, and real-world evaluation. In our work, we eval-
uate the two systems in real-world, a work cell.

Amorettia and Reggiani further reviewed three main dif-
ferent architecture paradigms with robotic applications and
summarized a set of characteristics as evaluation criteria [22].
The architecture paradigms are Distributed Object Architec-
ture (DOA) – an integration of object-oriented programming
with distributed programming, Component Based Architec-
ture (CBA) – compositions with contractual interfaces, and
Service Oriented Architecture (SOA) – on-demand resource
sharing. They are evaluated in terms of specification and
granularity – module interfaces defining abstraction granu-
larity, coupling – the dependency degree, state – memory
storage, workflow – communication, reusability – required
effort for adaptation to new environment, extensibility –
quick adaptation, and overhead – e.g., communication or
messaging.

VIII. CONCLUSION

In this paper, we have performed the first head-to-head
evaluation between a high-performing custom-made task-
specific architecture in a standardized robot competition
and a task-general hybrid architecture. We showed in two
experiments in the “FetchIt!” task on the Fetch robot that
there was no performance difference between the two ar-
chitectures with respect to overall time-to-task-completion
and task success/failure rates. Moreover, we demonstrated
that in some configuration (with text-based input vs. spoken
natural language input) there was no difference in com-
putational load either (the load differences in the spoken
case being entirely due to the computational demands of
the speech recognizer). The results demonstrate the utility
of a task-general architecture where task can be instructed,
immediately executed, debugged and modified at any time
during task performance by non-expert users without the
need for expert robot programmers to write code for every
task modification. Thus, the current paper also lends evidence

to the more general claim that cognitive architecture provided
added value to robotic architecture and that such hybrid
systems will be of great utility in a large range of future
robot applications and domains.
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