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Abstract We present a dialogue system based on statistical classification which was
used to automate human-robot dialogue in a collaborative navigation domain. The
classifier was trained on a small corpus of multi-floor Wizard-of-Oz dialogue in-
cluding two wizards: one standing in for dialogue capabilities and another for nav-
igation. Below, we describe the implementation details of the classifier and show
how it was used to automate the dialogue wizard. We evaluate our system on several
sets of source data from the corpus and find that response accuracy is generally high,
even with very limited training data. Another contribution of this work is the novel
demonstration of a dialogue manager that uses the classifier to engage in multi-floor
dialogue with two different human roles. Overall, this approach is useful for en-
abling spoken dialogue systems to produce robust and accurate responses to natural
language input, and for robots that need to interact with humans in a team setting.

1 Introduction

A major drive in human-robot interaction (HRI) research is to enable robots to serve
as genuine partners in teams with humans. Such heterogeneous teams are intended
for use in a variety of applications including classroom tutoring, disaster-relief, and
military reconnaissance. In particular, there has been a great deal of research in task-
oriented remote communication for the purpose of urban search and rescue (USAR).
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HRI is desirable for these domains, as a robot can be used to explore a hazardous
area while a human monitors the situation and gives instructions remotely.

A critical requirement of effective teaming in collaborative USAR domains is
communication [7, 19]. Humans use communication to share task-relevant informa-
tion, give instructions, discuss plans, and many other functions. As a result, robots
will need to handle at least some of these functions if they are expected to fill the
role of a human teammate. At minimum, robots will need to interpret a command
in the form of speech input, perform the corresponding action of the command, and
produce a feedback response to the human. This involves bidirectional communi-
cation in which the robot not only takes orders but also responds in meaningful
ways. Error handling and dialogue management are additional requirements needed
for more robust interactions. Finally, naturalness and flexibility of the system are
also desirable: it is important that humans can talk to the robot in a natural manner,
which includes all the disfluencies and irregularities that arise in natural language
(NL), and the robot should be robust to variability in speech in order to serve as a
more effective conversational partner.

1.1 Background and Related Work

In order to meet the above requirements, various types of dialogue models have been
proposed and attempted. The most basic is finite-state systems in which dialogues
are represented as a pre-determined state transition network [18]. Finite-state sys-
tems are effective for small, highly-structured domains in which the flow of dialogue
is known in advance. However, such systems are generally inflexible to input that is
not in the network, and do not seem well suited to the complex USAR domains of
interest. Frame-based dialogue models have also been proposed, which involve fill-
ing in various slots in a “form” corresponding to an action or utterance [26]. These
offer more flexibility to handle increasingly complex dialogues, but struggle with
utterances that do not fit into a frame. As a result, frame-based models have been
mainly used in tasks with a fixed set of slots, such as travel booking [8]. Finally,
plan-based systems turn dialogue into a planning problem in which a human’s ut-
terance is mapped to a speech act and the system performs logical inference over its
beliefs and goals in order to select an appropriate response [1, 4]. While this kind
of model is very useful for handling complex dialogues, it relies on the difficult
problem of identifying speech acts and intentions.

We adopt the corpus-based robotics approach, wherein the system is trained
on corpus data from the target domain [3]. The corpus used for training could in-
volve human-human instruction [6], human-robot instruction [17], or human-robot
instruction in a Wizard-of-Oz (WoZ) paradigm [2, 5]. The corpus data includes ex-
amples of natural commands that robots will need to interpret and act on, and serves
as a source of interaction patterns to inform dialogue management policies. Through
the use of statistical techniques, systems using this approach have been very effec-
tive at modeling various aspects of dialogue [21, 24, 25]. This approach also offers
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flexibility, as data-driven models are often robust to noisy and disfluent data. How-
ever, a major drawback with many machine learning techniques is that large, anno-
tated data sets are required for training [20]. Such data sets are often unavailable or
infeasible to produce due to the large cost and effort needed to collect, transcribe,
and annotate data. Moreover, new ones are often needed for each target domain
because the systems do not usually extend beyond the particular training domain.

1.2 Motivation and Present Work

We are currently developing an end-to-end spoken dialogue system for use in a col-
laborative human-robot navigation domain. The system is trained on a small corpus
involving a dual WoZ setup in which one wizard handles the dialogue management
(DM) and the other handles robot navigation (RN). The rationale behind using such
a corpus is that we wanted the system to interpret speech and respond in an appropri-
ate, human-like manner. This approach provides data-driven insights into what such
a response would be, and what variety we should expect, in the context of a collab-
orative navigation task. Our ultimate goal is to create a fully autonomous robot. In
this paper we describe initial attempts to automate the natural language dialogue ca-
pabilities using a statistical classifier based on cross-language information retrieval.
The system operates across multiple floors (i.e., distinct communication channels)
and “translates” messages between the human user and the RN component or wiz-
ard, and gives positive and negative feedback to the human user.

Given our small corpus, we were interested in exploring how far we can get with a
data-driven approach using such limited training data and limited annotation. Most
end-to-end systems require large training sets to get reasonable performance, but
previous evaluations of a similar classifier have shown reasonably high accuracy
with only a few hundred utterances for training [9] compared to the hundreds of
thousands needed in other systems (e.g., [21]). Note that we do not claim that our
approach is immune to the limitations of other data-driven systems, and we discuss
some of these limitations in section 5. However, the goal is to mitigate some of these
limitations through our classification and DM approach.

Below, we introduce our task domain and provide details of the corpus used.
Next, we describe our classification approach as well as the DM policies that were
implemented. Finally, we evaluate our system on several data sets of varying size
from the corpus to compare response accuracy. In the evaluation, the following
points will be addressed: 1) accuracy of the classifier (especially as it relates to
the size and composition of the training data), 2) adequacy of the DM response, and
3) integration of the system in a robotic architecture.
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2 Collaborative Human-Robot Navigation Task

2.1 Task Domain

Our task domain involves collaborative navigation akin to a USAR scenario. In the
task, a human serves as a Commander and supervises a remotely-located robot to
perform a navigation task in an unfamiliar physical environment. The environment
is modeled after a house and includes various rooms and objects consistent with this
environment type (rooms, hallways, etc.). The goal of the task is to work together as
a team to accomplish two subtasks - one related to searching (e.g., locate shoes) and
one related to analysis (e.g., evaluate whether the area can serve as a headquarters).

Throughout the task, the Commander is seated in front of a computer with an
interface showing task-relevant information. The interface includes a 2D occupancy
grid showing the robot’s location, a snapshot of the last image taken by the robot,
and a textbox showing the robot’s dialogue responses (see top-right of Fig. 1). To
direct the robot, the Commander is able to speak freely using unconstrained natu-
ral language. Examples of common instructions include “Move forward 10 feet”,
“Take a picture”, and “Turn right 45 degrees”. People also used landmark-based in-
structions such as “Move to face the yellow cone”, and “Go to the doorway to your
right”, although these were less common than the metric-based instructions [14].

Fig. 1: Experimental task domain with dual-wizard setup (from [13])

The task was run using a dual-WoZ setup wherein one wizard controlled the DM
and the other controlled the RN. Importantly, the wizards had to communicate with
one another to ensure that actions and responses were performed correctly and in a
timely manner [16]. The task was run over several experiments, with additional ex-
periments currently in progress. In Experiment (Exp.) 1, the DM-Wizard typed free
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responses to the Commander and RN-Wizard according to pre-established guide-
lines (see [13]). From this, we developed a GUI that was used by the DM-Wizard in
Exp. 2 to provide quicker and more uniform responses [2, 15]. The same GUI was
used in Exp. 3, except that here we used a simulated robot and environment rather
than a physical one. Exp. 1 and 2 had 10 participants each, whereas Exp. 3 had 62
participants.

2.2 Corpus and Annotation

A corpus was created from the Exp. 1 and 2 data (annotation for Exp. 3 is still
in progress). Dialogues were annotated according to the scheme described in [23],
which was specifically designed to handle the multiple conversational floors in our
dual-wizard setup. These floors include: 1) Commander and DM-Wizard and 2)
DM and RN-Wizards. The main unit of dialogue in our annotation scheme is the
transaction unit (TU), which includes the initial utterance expressing the intent of
the speaker and all subsequent utterances across all floors that are used to achieve
the intent of the original speaker. An example TU can be found in Table 1. In ad-
dition, our scheme also includes three distinct types of relations, which are used
to characterize how an utterance is related to an antecedent (previous utterance).
These relation types include expansions, responses, and translations along with var-
ious subtypes of each. Expansions are continuations of a previous utterance by the
same speaker in the same floor. Responses are produced by different speakers in
the same floor, and include several types of acknowledgements, clarifications, and
answers. Finally, translations are used to relate utterances in different floors, and
include two subtypes: translation-right involves the DM-Wizard translating a Com-
mander’s instruction to the RN-Wizard for action (e.g., “Move forward three feet”),
and translation-left involves the DM-Wizard translating the RN-Wizard’s action to
the Commander in the form of feedback (e.g., “I moved forward three feet”). In total,
the corpus included 2230 TUs across 60 dialogues from 20 different Commanders
(each Commander participated in three dialogues) [23].

Table 1: Example TU and annotation from the corpus. The * indicates that the
antecedent is part of a sequence of expansions.

Left Floor Right Floor Annotation
# Commander DM ->Commander DM ->RN RN Ant. Rel.
1 rotate to the right ninety degrees
2 and take a photo 1 continue
3 ok 2* ack-understand
4 turn right 90 degrees 1 translation-r
5 then... 4 link-next
6 send image 2 translation-r
7 done and sent 6* ack-done
8 done, sent 7 translation-l
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3 Natural Language Dialogue Processing

In this section, we provide an overview of the NL approach toward mimicking the
DM-Wizard’s utterance selection policies based on input from Commander instruc-
tions. We first outline the classification approach and describe the data processing
that we carried out on the corpus data. We then describe the DM policies that were
implemented to make use of the classifier output in order to produce appropriate
responses across the multiple floors. Finally, we evaluate the output on new test data
from Exp. 3.

3.1 Classifier Approach

The task of the language classifier is to analyze the Commander’s instruction and se-
lect the appropriate utterances from the system’s collection of responses. It involves
the following three step process:

First, the classifier indexes the existing language data – a dataset of instruction-
response pairs that we have collected during WoZ experiments. It generates a sta-
tistical language model for each natural language utterance (both instruction and
response): P(w|W ), where w is a word in the vocabulary and W is the utterance.
Note that the vocabularies of instructions and responses are different.

Next, the classifier uses the indexed data to construct a joint model of the instruc-
tions and responses, and to compute the cross-language relevance model for each
new Commander’s instruction P(w|C), where w is a word in the response vocabu-
lary and C is the instruction. Please see our previous paper [11] for the technical
details of the approach.

Finally, the classifier compares the language model P(w|C) with the language
model of each response in the system’s dataset, P(w|Ri). Here Ri is the i-th response
in the dataset. It returns all the responses with the similarity score above a predefined
threshold. The threshold is determined during the classifier training phase.

The classifier implementation is part of the NPCEditor platform, which has been
used in the past to build effective question-answering conversational systems [10].
The approach requires a relatively small amount of training data, has a small number
parameters to tune (three parameters, including the threshold, in most cases), and is
robust to noise and errors in the input [9]. Next, we explain how we processed our
experimental data to train the classifier.

3.2 Data Processing

Instruction-Response pairs The first step was to constrain the multi-floor data to
something closer to what the classifier uses in terms of linked initiative-response
pairs. This is challenging because in our data there are two different types of re-
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actions to a Commander input: responses to the Commander (including positive
and negative feedback) and translations of actionable Commander instructions to
the RN. To create this dataset, we first used a script to parse the annotated corpus
data and link each utterance produced by the Commander with the DM-Wizard’s
responses to it. We did this for several relation types, including translation-right,
and several response subtypes (clarification, acknowledgment, answer, etc.); this re-
sulted in a set of instruction-response pairs. For example, “Take a picture” −→ “im-
age” is an example of a translation-right pair, in which a Commander’s instruction
is translated into a shorthand request sent to the RN-Wizard, and “Move forward”
−→ “Please tell me how far to move forward” is an example of a request-clarification
pair, in which the Commander’s open-ended instruction prompts a clarification re-
quest from the DM-Wizard.

Coherence rating Since the resulting set of instruction-response pairs were au-
tomatically generated from scripts, the next step involved filtering these pairs for
coherence. We used the 4-point coherence rating scale from [22], where a 1 repre-
sents a response that is either missing or irrelevant to the instruction, a 2 represents
a response that relies on external context to match, a 3 represents a response that
indirectly addresses the instruction but that contains additional (irrelevant) informa-
tion, and a 4 represents a response that directly addresses the instruction. Using this
rating scale, we manually inspected the instruction-response pairs from Exp. 1 and
2 and rated each one. In Exp. 1, out of a total of 999 pairs, 96 pairs had a rating of
1, 222 pairs had a rating of 2, 1 pair had a rating of 3, and 680 pairs had a rating of
4. In Exp. 2, out of a total of 1419 pairs, 50 pairs had a rating of 1, 387 pairs had a
rating of 2, 4 pairs had a rating of 3, and the remaining 978 pairs had a rating of 4.
For the final training set, we included all the pairs that had a 3 or 4 coherence rating.

Data smoothing Finally, we conducted a smoothing step in order to ensure that
the training data would cover the various fields in the most common instructions.
For example, a command such as “Move forward four feet” might not exist in the
corpus, but is nonetheless an instruction that the system should be able to carry out.
In order to capture these missing fields, we added a set of 250 pairs to the training
data. 196 of these “smoothing pairs” came from the table which was used to generate
the Exp. 2 GUI (see [2]). This ensured that the system could at least interpret the
most common actionable commands from the experimental studies. The remaining
54 pairs were hand-generated to fill in values that were missing from the corpus
data, and simply included additional values for the existing commands.

3.3 Dialogue Manager Policies

After being trained on the instruction-response pairs as described above, the clas-
sifier learned a mapping between commands and responses from the data. We then
implemented a DM whose role it was to use the classifier output to select appropriate
responses and send them to the corresponding floor (Commander or RN).
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The DM works in the following manner. First, it receives an utterance in the
form of a string after it has passed through the speech recognizer. The classifier then
ranks the top responses that match the instruction and sends this list back to the DM.
Upon receiving the matching response from the classifier, the DM then sends this
to the corresponding floor. Actionable commands are formatted and sent to the RN
whereas the corresponding feedback message (“Executing”, “Moving”, “Turning”,
etc.) is sent to the Commander’s interface. Non-actionable commands cause the
system to generate a response (usually a type of clarification or acknowledgment)
to the Commander in order to repair the instruction.

Some specific policies were implemented to handle problematic input. One such
policy handles the case when the classifier finds no match. This usually means that
the command was outside of the domain, or that any potential matches were below
threshold. In either case, the DM will cycle through several general clarification re-
quests when this happens, prompting the Commander to repeat and reformulate the
instruction. Another policy was implemented to handle cases in which the classifier
selected multiple responses. In this case, it always picks the one with the highest
score, but in the case of a tie, a random response is chosen from the tied options.

4 Evaluation

The DM in combination with the trained classifier allowed us to replicate many of
the dialogue behaviors from the experimental data. To evaluate the performance of
our system, we trained six classifiers using varying amounts of source data from
each of the first two experiments (Exp. 1 and Exp. 2). Training data for each clas-
sifier consisted of annotated user utterances from a given experiment, which were
processed using the methods described in section 3.2. Additional smoothing data
was added to each of the three original classifiers in order to test for the benefit of
including these extra pairs. A summary of the combinations of data, as well as the
number of training utterances, responses and links between the two is presented in
Table 2 below. The “# links” column refers to the number of connections between
utterances and responses in that set. These connections do not represent a one-to-
one relationship, as any given utterance can be linked to more than one response,
and vice versa. We also evaluated the DM separately from the classifier to test the
appropriateness of responses produced by the system.

4.1 Classifier Evaluation and Results

Each of the six trained classifiers was tested on a test set comprised of three previ-
ously unseen dialogues that were randomly selected from Exp. 3. These dialogues
were annotated, and the instruction-response pairs were extracted, but no other pro-
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cessing was done on these pairs as we sought to maintain the raw data for testing.
In total, the test set included 183 instruction-response pairs.

For each utterance in the test set, we compared the best classifier match to the
expected output, which is the one actually produced by the DM-Wizard in the test
data. Accuracy was calculated as the percentage of queries where the best classifier
match is the expected response. The results of our evaluation are displayed in the
right-most column of Table 2. Accuracy scores ranged from 61% in the Exp. 2
classifier to 75% in the combined Exp. 1+2 classifier with added smoothing pairs.
In general, we found that performance improved with the addition of the smoothing
pairs, and this improvement ranged from 2.7% to 5.5% depending on the original
training set. As expected, this largely benefited the Exp. 1 and Exp. 2 classifiers,
which had limited data and were missing many of the basic pairs that were part
of the smoothing set. Interestingly, we found that accuracy on the unconstrained
Exp. 1 data (65%) was higher than the GUI-based Exp. 2 data (61%). This is likely
due to the reduced number of responses in Exp. 2 caused by the standardization
of the GUI. Without the smoothing data added, there may not have been enough
unique responses to match the test queries. Overall, the highest accuracy (75%) was
obtained for the classifier trained on all the data. This is a promising result, and
suggests that relatively high accuracy can be achieved with under 1000 utterances
of training.

Table 2: Classifier Data Summary. Accuracy represents the proportion of the
classifier’s responses that matched the test query.

Training Data Test Data # Utterances # Responses # links Accuracy
Exp. 1 only Exp 3 347 247 366 .6503
Exp. 1 + smoothing Exp 3 593 436 614 .6831
Exp. 2 only Exp 3 424 141 429 .6066
Exp. 2 + smoothing Exp 3 670 328 675 .6612
Exp. 1 & 2 Exp 3 722 303 751 .7268
Exp. 1 & 2 + smoothing Exp 3 966 483 995 .7541

4.2 Dialogue Adequacy Evaluation

It is important to note that classifier accuracy is only part of what we are inter-
ested in. Perfect matches are of course desirable, however a response can still be
reasonably appropriate even if not an exact match of the corpus data (e.g., “turn
20 degrees” vs “turn 25 degrees”). In order to evaluate the classifier in terms of
expected impact on the dialogue, we examined the 45 (about 25% of test set) utter-
ances that the combined classifier got wrong in the previous evaluation. For each of
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these responses, we placed them into one of five categories: Felicitous - appropriate
responses that would have the same effect as the correct response, Approximate -
responses that differed only slightly from the correct one (e.g., variation in turn ra-
dius or movement distance), Context-Dependent - responses that could be correct,
but that depend on the context in which they occurred, Wrong - responses that were
not appropriate for the given command, and No Response - indicating that the clas-
sifier did not find a match. Table 3 summarizes the analysis of responses that did not
match the test-set, including examples of each type and the frequency of each.

Table 3: Dialogue Adequacy Evaluation showing the type and relative frequency
of the 45 system responses that did not match the test set.

Felicitous Approximate Context-dependent Wrong No response
Instruction turn one eighty go west five feet go to plant go back to table rotate toward camera towards calendar

Test-set response turn 180
turn to face west;

move forward 5 feet go to Dark room plant move back towards table move to conference calendar

DM response rotate 180
turn to face west;

move forward 10 feet go to Foyer plant return to starting point <no response>

Count (out of 45) 8 15 14 7 1
Proportion .18 .33 .31 .16 .02

Felicitous responses are expected to have no negative impact on the dialogue. Ap-
proximate responses might have a small delay to extend or correct the robot’s behav-
ior. Wrong responses are expected to have a more severe impact in terms of either
cancelling the instruction mid-operation, or undoing it after. Context-Dependent re-
sponses might either have no negative effect (like Felicitous responses) or a negative
effect (like Wrong responses), depending on how the context is applied to create a
full instruction. When the classifier does not find a match, the DM instructs the user
to repeat or rephrase the previous instruction, slowing down the dialogue, but not
impacting the robot’s physical situation.

In our analysis, we found that over half of the incorrect responses in the test set
were either Felicitous or Approximate to the correct response. This suggests that,
despite not matching the test data, these responses would still be appropriate and
would advance the dialogue. Only one case had no response, and the remaining
cases were split between the Context-Dependent and Wrong categories. Fortunately,
these responses were infrequent, representing only 11% of the total test set.

4.3 Demonstration: Integration in the ScoutBot Architecture

One of the primary goals of this research project is to develop a fully automated
end-to-end dialogue system for collaborative navigation. To that end, we (and col-
leagues) have implemented a system called ScoutBot, which was designed to au-
tomate the tasks of the dual wizards in our navigation task [12]. We have found in
pilot testing that Scoutbot can effectively interpret simple instructions and navigate
accordingly, but a more detailed evaluation is work in progress. Currently, the main
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limitation of Scoutbot is the inability to handle landmark-based instructions such
as “Move from A to B”. Addressing this will require additional mechanisms (see
below), but importantly, the system still works well for the majority of examples
and should be sufficient for the team to complete the task. A demonstration video of
ScoutBot can be found at the following link: http://people.ict.usc.edu/
˜traum/Movies/scoutbot-acl2018demo.wmv.

5 Conclusion and Future Work

The ability to converse with robots is an important part of human-robot teaming
envisioned for many applications. As a result, end-to-end dialogue systems that fa-
cilitate effective communication are becoming increasingly needed. We presented a
data-driven system to achieve this goal that uses a statistical classifier and dialogue
manager to interpret natural language commands, produce appropriate responses,
and carry out actions. In our evaluation, the system was shown to maintain rela-
tively high response accuracy even with limited and noisy training data.

Moving forward, we are in the process of extending the system to handle some of
the limitations we encountered, namely landmark-based instructions and complex,
multi-turn commands. The former will require a context model in which the system
tracks the robot’s location throughout the map and biases the DM to favor objects
and locations in the local context. A possible solution for the latter is supplementing
our system with an information extraction approach in which the key parameters of a
command (e.g., action, distance, etc.) are extracted and used to fill a semantic frame.
This will also enable us to provide more detailed clarification requests to obtain
specific pieces of information (e.g., “how far should I move forward?”). Finally, we
expect the additional data from Exp. 3 to further improve the classifier accuracy and
reduce the number of incorrect responses. Overall, this approach offers a practical
alternative to those that require large-scale corpora for dialogue systems, and shows
that good performance is possible with a data-driven approach using a smaller data
set.
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