Shared Mental Models to Support Distributed Human-Robot Teaming in Space

Felix Gervits* Terry Fong[†] and Matthias Scheutz* *Tufts University, Medford, MA [†]NASA Ames Research Center, Mountain View, CA

AIAA Space 2018, Sep. 17-19 Orlando, FL

Human-Robot Teaming in Space

Robots as teammates

- Robots perform dull, dirty, dangerous tasks
- > HRI can offset limitations in autonomy
- Many different kinds of human-robot teams:
 - Supervised remote teleoperation
 - Co-located peer-to-peer interaction
 - Limited interaction

2

Need to coordinate activity in these different teams

Shaping the Future of Aerospace

Previous Work

3

> Approaches to coordinating HRI

- Collaborative framework Hoffman & Breazeal (2004)
- P2P HRI; HRI O/S Fong et al. (2005; 2006)
- ACT-R/E Trafton et al. (2013)
- + Core focus includes robot-as-teammate, maintaining shared goals, and using dialogue to establish common ground
- Not easily extensible to multiple robots and different team configurations

Present Work

4

Shared Mental Models (SMMs)

Task Model		Team Model	
Equipment	Task	Team Interaction	Team (Teammates')
Equipment Functioning	Task Procedures	Roles/Responsibilities	Knowledge
Operating Procedures	Likely Contingencies	Information Sources	Skills
Equipment/System Limitations	Likely Scenarios	Role Interdependencies	Attitudes
Likely Failures	Task Component Relationships	Communication Channels	Preferences
	Environmental Constraints	Interaction Patterns	Performance History
	Task Strategies	Information Flow	Tendencies

Effective human teams build and use SMMs (e.g., Cannon-Bowers et al., 1993; Mathieu et al., 2000)

5

Shared Mental Model (SMM) Framework

Computational framework that implements shared mental models (Scheutz et al., 2017):

- Data Structures: Capable(A, scan-room), Goal(A, scanned(room2)), etc.
- Update Processes: Goal(A, visited(A, room2)) ⇒ GoingTo(A, room2)
- Control Processes: Goal(A, scanned(room2)) ∧ ¬Capable(A, scanroom) ⇒ ChangeRole(A)
- > Information is synchronized between all robots on the team

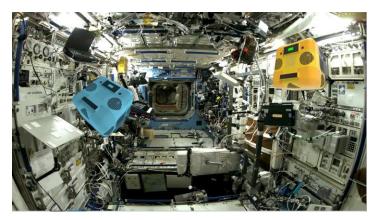
Overview of Present Work

Goal: test the potential of the SMM framework to improve humanrobot coordination and team performance

Formalize task domain

- > Apply it to virtual environment with simulated agents
 - Agents behave as if they have SMMs

> Run crowd-sourced human-subjects experiment


Task Domain

8

Supervised Emergency Maintenance Task

- Ground-based human operator supervising 2 semi-autonomous robots on a spacecraft orbiting the moon
- > Tool search / Panel repair task
- Actions involve navigating, scanning room, shutting off panel, and searching toolbox
- > Team roles
- > Equipment failure
- Loss of Signal
- Robot autonomy

Domain Formalization in SMM Framework - 1

> Domain Knowledge - Agents, Object Types, Activities, etc.

- Agent(R1); Object(wrench); Activity(search-toolbox)
- $located(A, room) \Rightarrow isOccupied(room)$

> Agent Capabilities - Capable(A, X, σ), Perceivable(A, X, σ), etc.

- Perceivable(R1, toolbox2, {located(R1, room2)})
- > Agent and Task States Knows-Of(A,X), Goal(A,γ), etc.
 - Knows-Of(R1, isScanned(R1, room5))

Domain Formalization in SMM Framework - 2

> Plans and Autonomy – Adopted(A, π, σ), Achieves(π, φ, σ), etc.

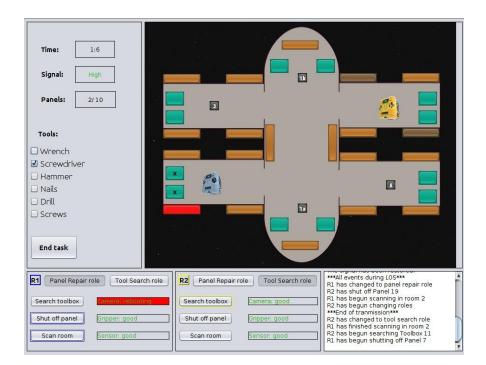
Iocated(A, room) ∧ ¬scanned(A, room) ⇒ STI(A, scanned(A, room))

> Obligations and Norms – Superior(A1, A2), Proposes(A1, A2, X)

- Proposes(O, R1, X) \land Superior(O, R1) \Rightarrow Accepts(R1, O, X)
- Accepts(R1, O, X) \Rightarrow Goal(R1, X)

> Role requirements – $Required(e, \varphi)$, Requires(A, e)

Required(gripper,shutoff(panel)); Requires(R1,gripper)



Preliminary Study

Study Overview

- Simulated task environment
 - Simulated agents that behave as if they have SMMs
- Crowd-sourced MTurk study
- Two experimental conditions -Baseline vs SMM
 - SMM agents share information
 - Common-Goal(γ), Common-Knowledge(φ)

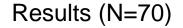
https://vimeo.com/284638484

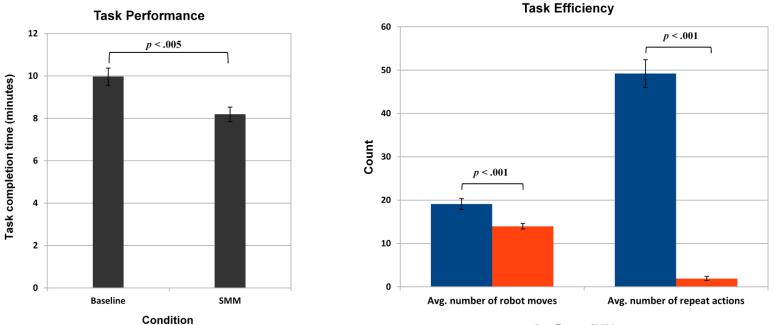
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

14

Metrics and Hypotheses

- > Objective:
 - Completion Time (-)
 - Robot Movements (-)
 - Action Repetitions (-)
 - Operator Interventions (-)
 - LOS productivity (+)
- Subjective:


15


- Workload (NASA-TLX) (-)
- Team Workload (TWLQ) (-)
- Situational Awareness (SART) (+)

> Hypotheses:

- SMMs will allow the task to be performed faster and more efficiently
- SMMs will reduce operator workload and improve SA

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

16

Future Work

> Implementation and evaluation of SMM framework

> Explore different team configurations and tasks

Resolving inconsistencies in synchronization and handling uncertainty

Conclusion

- > Extended our SMM framework to a space robotics domain
- Formalized and implemented the task domain in an environment with simulated agents
- Ran preliminary study showing the benefit of applying our coordination framework to space robotics teams

This work was funded by a NASA Space Technology Research Fellowship (NSTRF) Tufts Human-Robot Interaction Lab: <u>hrilab.tufts.edu</u> NASA Intelligent Robotics Group: <u>https://ti.arc.nasa.gov/tech/asr/groups/intelligent-robotics/</u>

Email: Felix.Gervits@tufts.edu

