
Gluck, K. A., Scheutz, M., Gunzelmann, G., Harris, J., Kershner, J. (2007). Combinatorics meets processing power: Large-scale
computational resources for BRIMS. In Proceedings of the Sixteenth Conference on Behavior Representation in Modeling
and Simulation (pp. 73-83). Orlando, FL: Simulation Interoperability Standards Organization.

73

Combinatorics Meets Processing Power:
Large-Scale Computational Resources for BRIMS

Kevin Gluck

Air Force Research Laboratory
Warfighter Readiness Research Division

6030 S. Kent St.
Mesa, AZ 85212

480-988-6561 x-677
kevin.gluck@mesa.afmc.af.mil

Matthias Scheutz
Department of Computer Science and Engineering

351 Fitzpatrick Hall
University of Notre Dame
Notre Dame, IN 46556

574-631-0353
mscheutz@nd.edu

Glenn Gunzelmann

Jack Harris
Air Force Research Laboratory

Warfighter Readiness Research Division
6030 S. Kent St.
Mesa, AZ 85212

480-988-6561 x-674; x-675
glenn.gunzelmann@mesa.afmc.af.mil;

jack.harris@mesa.afmc.af.mil

Jeff Kershner
L3 Communications at

Air Force Research Laboratory
Warfighter Readiness Research Division

6030 S. Kent St.
Mesa, AZ 85212

480-988-6561 x-677
jeffrey.kershner@mesa.afmc.af.mil

Keywords:

combinatorics, computational models, high performance computing, volunteer computing

ABSTRACT: The sophistication of computational cognitive architectures has opened the door to model development
across a range of human activity. However, a continuing challenge for model developers is validating the model both
by exploring the range of a model’s behavior and by optimizing mechanisms, knowledge, and parameters to best
account for human cognition and performance. We have been developing an infrastructure to facilitate this process
that takes advantage of high performance computing resources and technologies to allow for more ambitious model
development and validation efforts. This work involves a combination of increased computational power and
increased sophistication in running models using available resources. Examples of the promise of this work are
presented, along with current areas of emphasis and future directions.

1. Combinatorics in Cognitive Architecture
and Model Development

Cognitive architectures (e.g., ACT-R, Soar) are
intended to serve an integrating and unifying purpose
within the cognitive science community. The goal is to
bring together what are typically isolated mathematical
and computational theories of the many components of
the human perceptual, cognitive, and motor systems
into a unified account of the entire complex, integrated
system.

This is a fantastically ambitious scientific objective
because implementing the computational mechanisms,
representations, and processes that replicate and
explain human performance across the full range of
human experience requires simultaneous theorizing at
three levels: overarching architectural design and
control mechanisms, internal implementation of
architectural sub-components/modules, and
knowledge. Gray (in press) refers to these levels as

Type 1, Type 2, and Type 3 theories of the human
cognitive architecture.

Each of these three levels of theorizing has its own
associated quantitative and qualitative parameters, and
each of those internal parameter spaces is very large.
The implementation of any particular cognitive model
involves committing to a location at the intersection of
these three very large (perhaps infinite) theoretical
state spaces and subsequently evaluating the extent to
which that location in the joint state space is an
appropriate account of human performance in that
situation. If the account is deemed inadequate, then the
search is on for a different combination of qualitative
and quantitative parameters that will provide a better
account.

A thorough search and evaluation of even a modest
portion of the total possible theoretical state space will
require an unprecedented amount of computing power
because of the combinatorics associated with searching
a multi-dimensional space consisting of (1) additional

74

architectural components or modifications to existing
components, (2) changes to numerical parameters, (3)
changes to the initial knowledge state (including new
task strategies) of the architecture/model at the
beginning of a run, (4) changes to the simulated task
environment, or (5) all possible combinations of those
things. Seemingly innocuous assumptions and
implementation decisions can have dramatic
downstream consequences in a complex system like a
cognitive architecture that interacts with a simulation
environment (Gluck, Ball, & Krusmark, in press).

To make this combinatorics issue more concrete, we
will provide an example from an ongoing line of
research in the development of a computational
account of the effects of sleep-related fatigue on
cognitive functioning.

1.1 An Example from Recent Research in Fatigue
Modeling

Fundamentally, our research in this area involves
identifying parameters that can be associated with
fatigue within the ACT-R cognitive architecture
(Anderson et al., 2004), and then identifying how those
parameters change as fatigue levels increase. We
(Gross, Gunzelmann, Gluck, Van Dongen, & Dinges,
2006; Gunzelmann, Gluck, Van Dongen, O’Connor, &
Dinges, 2005) have developed an initial account of this
relationship for a sustained attention task (the
Psychomotor Vigilance Task, or PVT). The PVT
involves monitoring a known location for the
appearance of a stimulus. Participants respond as
quickly as possible to the stimulus by pressing a
response button. The stimulus appears at random but
relatively frequent intervals (ranging from 2-10 s).

One challenge that is faced in this research is
accurately replicating the changes in human
performance that occur across a range of psycho-
physiological conditions, from fully rested and awake
to severely sleep deprived and fatigued. Human
performance changes dramatically across this
continuum, and so parameter values for the model must
be determined and evaluated across a continuum of
values as well. In addition, we want to use the model’s
performance across a range of values to infer a
relationship between the parameters in ACT-R and
predictions about overall ‘alertness’ that come from
existing biomathematical models in the literature (e.g.,
Hursh et al., 2004; Jewett & Kronauer, 1999).

For our fatigue modeling efforts using the PVT, we
manipulated 3 parameters across a relatively modest
range of values to identify best fitting parameter
values. One of these was related to a new architectural
mechanism that we added to ACT-R, while the other

two were existing parameters in the architecture. The
full combinatorial parameter space had a total of
12,096 nodes (3 parameters, with 16, 21, and 36
different values respectively). Performing this
evaluation on local, independent machines was
manageable, but not efficient. It took nearly a month of
real time to complete the parameter space exploration
using 5 local computers. We manually divided the
parameter space into many smaller pieces, to avoid
system crashes from memory stack overflows. Thus,
the month-long process included significant down-time
resulting from situations in which the evaluation of a
particular subspace would finish in the middle of the
night or over a weekend, when no one was around to
manually start the next component. It also required
substantial hands-on involvement to run models,
monitor progress, and merge and analyze the resulting
data.

The results of this modeling effort have been
successful, leading to a tentative link between fatigue
and two procedural parameters in ACT-R (see Gross et
al., 2006). However, the story is more complicated.
There are actually substantial individual differences,
both in the effects of fatigue on human cognitive
performance and in human performance on particular
tasks (including the PVT). This, of course, suggests
that different individuals may be represented better by
models containing different parameters and by
different functions mapping alertness to ACT-R
parameters. More surprisingly, even in this simple
reaction time task, we have identified five ACT-R
model variations which differ in the micro-structure of
their psychomotor strategies for doing the PVT. These
variations produce qualitatively different reaction time
profiles, all of which can be observed in different
human participants.

Because of the complications associated with modeling
the effects of fatigue at this level of detail, exploration
of the full parameter space becomes untenable using
our local resources. For the PVT, we have access to
data from 13 participants, each of whom performed 44
sessions of the task across 88 hours of total sleep
deprivation. With five versions of the model, the
parameter space expands to 60480 nodes. Not only
does this increase the overhead associated with
managing the parameter space, but on local machines it
also results in an unacceptable lag between
conceptualization of the evaluation to be performed
and when the results are available for analysis. To
overcome these obstacles, we have turned to high
performance computing (HPC), which we describe
next.

2. High Performance Computing

75

There are two broad ways in which HPC can be used
in the context of cognitive architectures and in human
behavior representation more generally: (1) to explore
parameters and system configurations to improve the
performance of a particular model in a specific context
(improving goodness-of-fit or demonstrating sufficient
capability), and (2) to evaluate the performance of a
particular model in a broad range of conditions (testing
robustness, generalizability, and validity). Although (1)
is mainly aimed at the formative, design stage of a
model, and (2) is mainly aimed at the summative,
evaluation stage, it is possible to combine (1) and (2) in
either stage. For example, parameters can be
determined for a variety of initial conditions, or a
model can dynamically change parameters during
performance to adapt to changing circumstances. Our
use of HPC to date has focused primarily on use type 1
(improving goodness-of-fit and demonstrating
sufficiency), but as our computational theory of the
effects of fatigue on the cognitive system matures our
thoughts and actions are increasingly on use type 2
(robustness, generalizability, and validity).

Moreover, our use of HPC to date has nearly entirely
involved full combinatorial search of target parameter
spaces. There are three reasons for this. One is that it
can be informative to explore combinations of
parameter values over wide ranges. Sometimes it
confirms your knowledge and intuitions regarding the
functioning of the architecture and the influence of the
parameters, and other times there are interesting
surprises in the interactions. A second reason is that we
explicitly wanted to scale up our demands on the HPC
resources in order to learn how they held up and what
sort of return time we got from our batch run requests.
A third reason for our use of full combinatorial search
is that we wanted to get some baseline data on search
completion time, so that we can use those data as a
standard against which to compare the completion
times and conclusions regarding optimal parameter
combinations that come from more sophisticated and
efficient search techniques. These include sampling of
a given parameter space according to some
distribution, genetic algorithms that determine good
values in the space, different gradient-based methods
(e.g., gradient descent based on a cost-function), and
constraint satisfaction search methods. Moreover, it is
possible to use domain-specific heuristics that can
guide the search process, possibly including meta-
reasoning to evaluate the current state of a parameter
search and to determine which heuristics to employ in
addition to seeding genetic algorithms. For modelers,
the advantage of such methods is that they run
relatively autonomously, thereby dramatically reducing
the time required to explore the model implementation
space. Modelers can then use their expertise to define
heuristics and meta-rules and to interpret the results

streaming back from the HPC. Moreover, by
automating the process of parameter fitting, models can
be produced more quickly, alternative models can be
generated as part of the process, and different high-
quality models for one condition can be automatically
compared across a variety of other conditions to
determine their strengths and weaknesses.

2.1 Initial Demonstrations

Over the last year we have used internal research funds
from AFRL’s Human Effectiveness Directorate to
establish an account and begin performing ACT-R
model parameter searches using AFRL’s Major Shared
Resource Center for High Performance Computing,
which is located at Wright-Patterson Air Force Base,
Ohio. That facility has two clusters of 2,048 processors
running Linux RedHat 2.4. The less capable of these,
the SGI Altix 3700 (Eagle) cluster, has 1.6 GHz
processors, with 1 GB of memory per processor and
100 TB of data storage capacity. The more capable
cluster, the HP XC (Falcon) cluster, has 2.8 GHz
processors, with 2 GB of memory per processor, and a
97 TB workspace. Naturally, we chose to use the more
capable cluster for our four demonstration batch runs.

These demonstrations involved full combinatorial
searches of increasingly large parameter spaces using
an ACT-R cognitive model for the Walter Reed Serial
Addition-Subtraction Task. This task involves solving
simple, single-digit addition and subtraction problems.
For non-negative results, the correct response is the
ones digit of the result. For negative results, the correct
response is the result, plus 10. Thus, the task requires
participants to respond with the result of the operation,
mod 10. We also have performance data for this task
from human participants in a sleep deprivation study.
We use these data to evaluate the validity of the model
as a replication of human performance under varying
degrees of sleep deprivation.

For those who may be interested in such details, Table
1 provides the breakdown of ACT-R parameters used
in each of these four HPC batch runs. The table shows
the minimum and maximum values used for each
parameter, which defines the range across which we
searched. “Step” defines the grain size of the search
within that range. “Levels” is determined by the range
and the step size. For instance, in our first HPC batch
run we searched across values of G (interpreted as
“arousal” in this particular model) from 1.5 to 2.2, at a
step size of .1, which results in 8 levels of G. Since this
was full combinatorial search, multiplying the levels
for all of the parameters within a batch run reveals the
total number of parameter value combinations, or
number of nodes, across which we searched. These
values are presented in Table 2 and in Figure 1. The

76

first two searches were both 9,600 nodes, while the
third was 118,482 nodes. The last batch run was
1,777,236 nodes.

Table 1
ACT-R Parameters Used in Four HPC Batch Runs
 HPC Batch Runs
Parameter 1 2 3 4

G
Min 1.5 3.0 2.0 3.0
Max 2.2 4.5 5.0 5.0
Step 0.1 0.1 0.1 0.1
Levels 8 16 31 21

Tu
Min 1.6 1.6 1.5 1.5
Max 2.0 1.8 4.0 4.0
Step 0.1 0.1 0.1 0.1
Levels 5 3 26 26

BLM
Min 5,000 5,000 5,000 4,000
Max 25,000 25,000 25,000 30,000
Step 5,000 5,000 1,000 250
Levels 5 5 21 105

Tr
Min -3.0 -3.0 -2.0 -2.0
Max 0.5 0.5 1.0 1.0
Step 0.5 0.5 0.5 0.1
Levels 8 8 7 31

ANS
Min 0.20 0.20 0.25 0.25
Max 0.30 0.28
Step 0.02 0.02
Levels 6 5 1 1

Note. G traditionally refers to the value of the goal in
ACT-R models, but for our fatigue theory we have
reinterpreted it as arousal; Tu is the utility threshold;
BLM is a Base-Level Multiplier for chunk activations;
Tr is the chunk retrieval threshold; ANS is activation
noise.

In addition to the number of parameter combination
nodes in each batch run, Table 2 provides data on the
number of model iterations at each node, the precise
form of our requests to the HPC cluster (a request to
the cluster is called a “job” and each job specifies a
number of processors, each for a specific period of
time), how many CPU hours each batch run required,
and how long it took to get results back after we
submitted the request.

Figure 1 plots CPU Time (in 1000’s of hours) and
Total Time to complete (in hours) for each of our four
demonstration batch runs. These data are available in
Table 2, but they are worth plotting visually as line

graphs as well in order to emphasize three important
points: improvements in research efficiency, enabling
new research options, and the eventual exhaustion of
the HPC resources as parameter searches become more
aggressive. We discuss each of these points in more
detail below.

Table 2
Data on Batch Requests and Results Turnaround Time

 HPC Batch Runs
 1 2 3 4
Nodes 9,600 9,600 118,482 1,777,230
Iterations 25 25 50 50
Jobs 1 1 31 273
Processors 64 75 26 62
CPU Tm (hrs) 400 515 8,624 96,096
Wait Tm (hrs) 0.01 0.17 12 71.87
Run Tm (hrs) 6.25 6.87 10.7 5.48
Tot Tm (hrs) 7.32 7.37 44.25 205.18

Note. “Wait Tm” is the average time each job waited in
the queue before it started running; “Run Tm” is
average run time per processor once the job started;
“Tot Tm” is the amount of real time that passed
between submitting the first job request and
completion of the runs on the HPC cluster.

0

50

100

150

200

250

9,600 9,600 118,482 1,777,236

Total Parameter Value Combinations

H
ou

rs

Real Time (Submission to Completion)

CPU Time (1000's of Hours)

0

50

100

150

200

250

9,600 9,600 118,482 1,777,236

Total Parameter Value Combinations

H
ou

rs

Real Time (Submission to Completion)

CPU Time (1000's of Hours)

Figure 1. Use Data for Serial Addition-Subtraction
Task (SAST) Cognitive Model Batch Runs on the
AFRL HPC (Falcon Cluster)

In Section 1.1 we described the month-long process
associated with searching a fairly modest parameter
space (12,096 nodes) using five or so otherwise-idle
research computers in our local laboratory. Now
consider demonstration batch run 3, which was
118,482 nodes. Our best guess estimate of the
completion time for a run of this size using locally
available processors in our laboratory in Mesa, AZ is

77

1.5 years. The results came back from the HPC cluster
at Wright-Patterson AFB in less than 45 hours, for an
improvement in research efficiency of more than two
orders of magnitude. Two orders of magnitude
improvements in efficiency have a big impact on a
research program when the baseline completion times
are measured in months and years.

When we increase the size of the parameter space
another order of magnitude (and then some) to the
nearly 1.8 million nodes in batch run 4, any
comparison to completing that parameter search with
local resources becomes ridiculous. We simply would
not undertake a search of that depth and breadth with
local resources, because it would take 10 or more years
to complete. Thus, access to the HPC resources is
enabling us to ask research questions and do things
with our models that previously have not even been
possible.

Still considering the very large Batch Run 4, when we
divide total CPU time required to search that space
(96,096 hours) by the real completion time required for
the run (205 hours), we find that over the course of that
week we averaged 468 computer processing hours per
hour. The maximum allowable use of the Falcon
cluster per account is 1024 processors simultaneously,
so we were averaging slightly over 45% of our
maximum allowable usage during those 205 hours.

This level of usage appears to have been acceptable to
the automated HPC scheduler and to the human HPC
management and maintenance employees for a period
of a week, but clearly they are not going to allow a
single user to occupy 25-50% of their resource
indefinitely. This is relevant because it speaks to the
fact that it won’t be long before we exhaust the AFRL
HPC as a resource if we continue the brute force, full
combinatorial search approach we have been using to
date.

3. More Intelligent Use of HPC

Since we already envision a time in the not-too-distant
future in which our computational requirements will
exceed even the impressive resources available through
AFRL’s HPC, we have begun investing in ways to
decrease our total computational load per research
question through more intelligent use of the HPC
resources.

A key component of our emerging strategy is the use
of middleware that provides intelligent interoperability
between our cognitive models and whatever processing
resources are being used at the time, HPC or otherwise.
This system, called the SoftWare Architecture for Grid

Experimentation System (SWAGES), is described in
this section.

3.1 An Introduction to SWAGES

SWAGES1 is a grid-based experimentation
environment that is targeted at scheduling and
supervising possibly distributed runs of cognitive
models or agent-based simulations. It consists of
several heterogeneous, distributed components that
cooperate closely to achieve a high level of resource
utilization in a dynamic, possibly uncontrolled
computing environment (such as publicly accessible
computing clusters at Universities where the uptime of
machines cannot be guaranteed). SWAGES is
implemented in the distributed ADE system (Scheutz
2006), which provides a location-independent multi-
agent system infrastructure, with automatic error
detection and recovery, and works in homogeneous
fixed clusters (e.g., Beowulf clusters) and
heterogeneous ad-hoc clusters (e.g., individual
workstations that can only be used if nobody is logged
in) alike. It requires no set-up procedures on the host
participating in simulation experiments (as is required
by other distributed computation environments like
CONDOR or SETI@HOME) other than the commonly
installed secure shell tools for secure, remote login and
file transfer) and will run on all operating systems that
support the JAVA virtual machine.

Over the last several years, SWAGES has been used in
combination with the agent-based SimWorld
simulation environment for investigations of large
parameter spaces of agent architectures for various
kinds of agents, from simple reactive agents (Scheutz
& Schermerhorn, 2005, Schermerhorn, 2006) to more
complex, deliberative agents (Scheutz &
Schermerhorn, 2002). For example, a parameter search
involving over 2 million simulations (of 3 min. each) is
reported in Schermerhorn (2006). This parameter
search required three months of compute time on our
AIROLAB cluster, which consists of 22 nodes with
two 2.4 GHz Pentium IV CPUs each running Linux 2.6
kernels (on a single 2.4 GHz Pentium CPU the
computations would have taken over 11 years).
SWAGES has also been used in conjunction with a
neural network simulator to conduct parameter
searches for neural network-based cognitive models
(Scheutz & Gibson, 2006).

Recently, new components have been integrated in the
SWAGES system, which will significantly increase its

1 SWAGES can be obtained from the following site:

http://www.nd.edu/~airolab/software/. Please
contact Matthias Scheutz with SWAGES-related
questions.

78

utility for cognitive modeling by partly automating
several critical steps in the modeling process: (1)
automatic model discovery, (2) automatic parameter
fitting, and (3) automatic model verification.
Prerequisite for all three steps is the system's ability to
run simulations, analyze the results, determine whether
they fit a given criterion, and possibly scheduling more
simulations if the criterion is not met. In the following,
we will first briefly describe the overall SWAGES
architecture, and then show how the various parts work
together to allow for the automation of various aspects
of the modeling process.

The SWAGES architecture (see Figure 2) can be
divided into server-side and client-side components,
where the server-side components provide the
distributed computation infrastructure, and the client-
side components provide the communication
components and the simulation platform SimWorld.
Currently, all server-side components are run on a
single host – the grid server – while client-side
components run on multiple simulation hosts.

3.1.1 Server-side Components

The grid server is the central locus of control of a
SWAGES system, running various server-side

components to schedule, distribute, start, and monitor
the execution of distributed simulations and recover
from failures.

The experiment server is responsible for setting up
experiment sets (possibly consisting of large numbers
of individual experiments (see Fig. 1). Important
factors here are generation of initial conditions (unique
or identical) across different experiments in a set,
priorities of experiments and scheduling parameters,
levels of supervision and recovery parameters, format
of data collection and location for data storage,
statistical analysis of results and output formats, and
user notification of progress.

The scheduler is responsible for taking experiments
from several priority-based queues (in which new
experiments are submitted by the experiment server)
and starting them on remote hosts. The experiment
scheduler will dynamically create experiment data
structures for large-scale experiment sets (to avoid
memory shortages), and only schedule a new
experiment when new hosts are available that are not
needed for other experiments to finish.

79

Figure 2. Diagrammatic representation of the SoftWare Architecture for Grid Experimentation System

The client server is the server-side representation of a
remote simulation. It maintains an open
communication channel with the simulation instance,
keeping track of the simulation's progress, state,
update, and degree of parallelization. The client-side
simclient (described below) passes this information to
the client server periodically, which stores the
information for use by the watchdog and web server
components (below). In addition, the simclient can
request to be migrated to another host when user-
specifiable conditions on the current simulation host
are not met. When a new simhost becomes available,
the simclient is started there. It is critical for error
detection and recovery: when a simulation crashes
(e.g., due to OS problems on its host), is not
responding (e.g., due to network problems), or cannot
be continued (e.g., because its current host no longer
meets user-defined criteria for running simulations,
CPU load average or number of users), the client
server can resume the simulation elsewhere based on
saved state.

The watchdog implements a second level of
supervision which is particularly important for
dynamic computing environments where hosts can
“disappear” from a pool of usable machines. It
regularly checks each client's status (as recorded by the
client server) for progress. If the simclient has not
checked in with the client server within the specified
time frame, the watchdog assumes there has been a
failure (e.g., due to OS problems on its host, or to
network problems). The client is terminated on the
server side (i.e., the data structures associated with that
client are cleaned up), and the simulation is
rescheduled on a new host. The new simulation is
either restarted from the beginning, or, if there is saved
state available, continued from the most recently saved
state.

The web server provides a simple web-based interface
to SWAGES that can be used to submit experiments,
check their status, perform simple statistics and view
the results.

The simhost is the server-side representation of a
remote simulation host. It keeps track of which
simulations are running on each host. The simhost also
is responsible for monitoring the availability of the
host for simulations. The simhost detects when the
user-specified criteria for host availability are met
(either initially when SWAGES is started, or after a
simclient has requested to be migrated), as well as the
physical availability of the host (e.g., whether the host

is back up after a reboot caused the watchdog to
reschedule a simulation previously running there).

3.1.2 Client-side Components

The client-side components are responsible for running
the actual simulation and communicating its state to the
server-side components.

The simclient represents the simulation to the (server-
side) client server, periodically communicating updates
about the simulation (e.g., cycles executed). It is also
responsible for periodically saving the state of the
simulation and checking the host it is running on for
availability according to user-defined criteria. For
example, the user may specify that simulations may
only execute on hosts with no console user, or with a
particular maximum load average. When the simclient
detects a violation of these constraints, it can notify the
simulation to save its state (if this is supported) and
send it to the grid server, notifying the client server that
the simulation needs to be migrated and restarted.
Simclients also interact with simulations to gather
statistics and data that can be stored in a common place
and used for further analysis. The SimWorld simclient
is a specific extension of the default simclient which
can be used to automatically and adaptively parallelize
SimWorld simulation in SWAGES based on host
availability using a novel algorithm for automatic
parallelization of agent-based simulations (Scheutz &
Schermerhorn, 2006). Finally, simclients cannot only
be used to control simulations, but also for performing
statistical analyses, and for determining whether
additional simulations need to be run in order to meet a
modeling criterion (e.g., parameter fits).

3.2 SWAGES for Automatic Cognitive Modeling

Here we briefly describe our ongoing project on
automating parameter exploration, parameter fitting,
and ultimately model building itself using the
SWAGES environment. The first step in making
SWAGES work with any cognitive modeling
environment like ACT-R, SOAR, EPIC, and others is
to define a simclient in the programming language of
the modeling environment (e.g., LISP or C/C++) to
allow the client server to exchange message with the
simulation. By implementing the simclient in the target
language of the environment, the simclient works as a
mediator that can directly call functions or methods of
the modeling environment (e.g., to start, stop, and
resume simulations), while relaying information about
the simulation state in a generic way to the client
server. Communication between the simclient and the

80

client server is accomplished via sockets, where data
structures of the simulation's programming
environment are serialized and deserialized on the
SWAGES side (currently, serializers for JAVA, C,
LISP, and POP11 are available). That way it is possible
to let modelers define experiments in the environment's
native programming language (e.g., LISP for ACT-R),
while allowing SWAGES to extract generic parameters
from the experiment description (see below).

We have developed an ACT-R simclient for SWAGES
that provides access to the ACT-R modeling
environment and has specific support for automatic
parameter space exploration. This is best demonstrated
with the following simple example of an experiment
definition written in LISP syntax for the ACT-R
modeling environment (keywords for the ACT-R
simclient and for the client server are printed in bold):

;;; Model simulation parameters
(((initfile "actr6/load-act-r-6.lisp") ;;; load the ACT-R 6 virtual
machine
 (initfile "my-favorite-cognitive-model.cl") ;;; load the cognitive
model
 (quitafter 5000) ;;; quit the model simulation after 5000 model
cycles
 (eval (setf modelparameter (variate V from V_low to V_high step
V_step))) ;;; see text
 (record end modeloutcome)) ;;; record this value at the end of the
simulation
;;; SWAGES experiment set parameters
 ((name "myexperiment" "mydirectory") ;;; name of experiment and
storage location
 (quitif (< (compute average modeloutcome) threshold)) ;;;
condition for ending experiment
 (user "myself") ;;; the user name used for running the simulations
 (parallel 100))) ;;; how many random initial conditions

First note that the experiment description consists of
two parts: a specification of parameters necessary to
run the cognitive model (used by the simclient) and a
specification of information about what kinds of
experiments to conduct, where to store the results, and
how to analyze them (used by the client server). In the
particular example, the ACT-R 6 cognitive architecture
together with a particular cognitive model will be
loaded by the simclient, run for 5000 update cycles,
and the value of the “modeloutcome” variable in LISP
will be saved upon the completion of the simulation.
Before the model is run, the variable “modelparameter”
is set to a specific value as given by the “variate V”.
Variates are special variables in experiment definitions
that are parsed by SWAGES and set to particular
values in the set of values given by the lower (V_low)
and upper boundaries (V_upper) and the spacing in
between (V_step). For example, the expression
“(variate V from 1 to 10 step 1)” will result in 10
different experiment definitions. Thus, variates in
SWAGES effectively allow for the easy definition of
parameter spaces and subsequent samplings thereof. In
the above case, the variate specification is used to

schedule and run experiments until the outcome meets
a termination criterion. Specifically, for each value of
the variate starting from V_low to V_high in steps of
V_steps, the model will be run with the
“modelparameter” set to that value in 100 different
random initial conditions (as specified by the “parallel”
keyword), the average value of “modeloutcome” (over
the 100 conditions) will be computed as soon as all 100
simulations have finished, and the result will be
compared to the specified “threshold” according to the
criterion expressed in the “quitif” condition. If the
condition is met, the experiment is considered
complete and no more conditions for different variate
values will be generated. Conversely, if the condition
is not met, the next 100 simulations for the next variate
value will be generated and run, possibly exhausting
all variate values without finding a value that meets the
criterion.

While this is one of the simplest experiment definitions
possible, we believe that it already shows the potential
of SWAGES for automating the modeling process.
Clearly, parameter spaces can be explored using the
proposed mechanism in a systematic way, with or
without termination criteria, possibly leading to new
insights about the relation among different parameters
(e.g., automatic correlations could be performed among
variates to determine dependencies and searches
finished if dependencies are found). Moreover, by
systematically searching a parameter space until a
specific termination criterion is met, SWAGES allows
for model fitting – the parameter space to be searched
would be the space of free model parameters and the
termination criterion some error measure determining
the quality of the fit. Finally, if model rules were
allowed to be varied – a functionality not currently
possible, but planned for future development – then the
space of possible models itself could be searched in the
above outlined way, thus allowing for automatic model
discovery (within the confines of the automatic rule
variation and generation).

Recently, we finished the first proof-of-concept
demonstration of the above kind of automated
parameter space search for a simple ACT-R test model
on the AIROLAB cluster at Notre Dame. In a next
step, we will demonstrate this process on the AFRL
HPC cluster to perform more extensive evaluations of
our theory of how fatigue affects the cognitive system,
implemented as a computational theory in ACT-R.
This demonstration will have a twofold outcome: (1) it
will yield data that will help us to extend our account
of fatigue to include individual differences in the
impact of sleep loss on performance, and (2) it will
yield performance data for the SWAGES system that
can be used to quantify the utility of using SWAGES
to automate the modeling process (e.g., in terms of

81

time savings for obtaining good fits compared to
manual explorations of model parameters).

4. Volunteer Computing

In addition to investing in more intelligent use of HPC,
we have begun exploring the idea of volunteer
computing as a means of acquiring greater processing
power. In recent years, scientific communities facing
large, computationally complex problems have found
ways to leverage volunteer home computing nodes to
vastly increase their access to computing resources.
According to the University of California, Berkeley
website, volunteer computing grids “supply more
computing power to science than does any other type
of computing.” (See the volunteer computing website
at Berkeley for more information:
http://boinc.berkeley.edu/volunteer.php) A few of the
communities already using this vast resource include
astronomy, physics, chemistry, earth sciences, biology,
medicine, mathematics and strategy games. One of the
best known projects is Berkeley’s SETI@home
(Search for Extra Terrestrial Intelligence) which has
475,000 active computers worldwide processing on
average 615 Tera-floating point operations per second.
With funding from the National Science Foundation,
Berkeley has developed a software platform for
distributed computing using volunteered computer
resources called the Berkeley Open Infrastructure for
Network Computing (BOINC). A single BOINC
project with a single server can provide computing
power equivalent to a cluster with tens of thousands of
CPUs. To the best of our knowledge the HBR
community has not yet begun using this resource, and
we would like to change that.

Work on our BOINC-based cognitive modeling
infrastructure has recently begun, following the arrival
of seed funding from the AFRL Human Effectiveness
Directorate. The hardware and software used to
support a BOINC project have been configured, and
designs for the actually distributed cognitive model
application will begin soon. Once completed, the
project will become operational and cognitive models
can be distributed to volunteer clients. We plan to
report the results of this initial demonstration in a
future paper.

5. Summary and Concluding Comments

In this paper we described our initial forays into the
use of HPC resources for computational cognitive
modeling. Our interest in HPC arose, at least partially,
out of the realization that scaling up the computational
rigor and thoroughness of our search for a valid theory
of fatigue in the cognitive system was being impeded
by the limitations of our modest local computational

resources. This situation is far from unique to us. In
fact, this is the status quo among researchers in
cognitive modeling and human behavior
representation.

In the short time we have been investigating the use of
HPC for our research purposes, it has become apparent
that if we continue the path we are on (exponential
growth of computational load) then soon we will
exceed even the capacity of the very large HPC
resources available through AFRL. One strategy for
dealing with this is to search more intelligently and
therefore more efficiently. We think at this time that
the SWAGES system will serve a helpful role in
accomplishing that. Another strategy is to acquire
access to even more computational resources than
those available through the AFRL HPC. This is what is
motivating our interest in volunteer computing, which
has the advantage not only that it potentially creates
access to tens or hundreds of thousands of computer
processors, but it also is available to anyone (unlike the
AFRL HPC, which requires a security clearance in
order to set up a user account).

We hope this description of our progress motivates
other cognitive modelers and human behavior
representers to begin using HPC and/or volunteer
computing resources in their own research. We will
make faster progress as a field if we work together to
overcome the combinatorial nightmare inherent in the
development of formal models of human beings.

6. References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass,

S., Lebiere, C., & Qin, Y . (2004). An
integrated theory of the mind. Psychological
Review 111, (4). 1036-1060.

Andronache, V., & Scheutz, M. (2004) Integrating
Theory and Practice: The Agent Architecture
Framework APOC and its Development
Environment ADE. In Proceedings of AAMAS
2004, ACM Press

Davis, L. W., & Ritter, F. (1987). Schedule
optimization with probabilistic search.
Proceedings of the Third Conference on
Artificial Intelligence Applications. IEEE
Computer Society. 231-236.

Gluck, K. A., Ball, J. T., & Krusmark, M. A. (in press).
Cognitive control in a computational model of
the Predator pilot. To appear in W. Gray (Ed.)
Integrated Models of Cognitive Systems. New
York, NY: Oxford University Press.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley.

82

Gray, W. (Ed.) (in press). Integrated models of
cognitive systems. New York, NY: Oxford
University Press.

Gross, J. B., Gunzelmann, G., Gluck, K. A., Van
Dongen, H. P. A., & Dinges, D. F. (2006).
Prediction of circadian performance during
sleep deprivation. In R.Sun & N Miyake
(Eds.), Proceedings of the Twenty-Eighth
Annual Meeting of the Cognitive Science
Society (p. 297-302). Mahwah, NJ: Lawrence
Erlbaum Associates.

Gunzelmann, G., Gluck, K. A., Van Dongen, H. P. A.,
O’Connor, R. M., & Dinges, D. F. (2005). A
neurobehaviorally inspired ACT-R model of
sleep deprivation: Decreased performance in
psychomotor vigilance. In B. G. Bara, L.
Barsalou, and M. Bucciarelli (Eds.),
Proceedings of the 27th Annual Meeting of
the Cognitive Science Society (pp. 857-862).
Mahwah, NJ: Lawrence Erlbaum Associates.

Hursh, S. R., Redmond, D. P., Johnson, M. L., Thorne,
D. R., Belenky, G., Balkin, T. J., Storm, W.
F., Miller, J. C., & Eddy, D. R. (2004).
Fatigue models for applied research in
warfighting. Aviation, Space, and
Environmental Medicine, 75(3), A44-60.

Jewett, M. E., & Kronauer, R. E. (1999). Interactive
mathematical models of subjective alertness
and alertness in humans. Journal of Biological
Rhythms, 14, 588-597.

Kramer, J., Scheutz, M., Brockman, J., & Kogge, P.
(2006) "Facing up to the Inevitable:
Intelligent Error Recovery in Massively
Parallel Processing in Memory Architectures."
In Proceedings of the 2006 International
Conference on Parallel and Distributed
Processing Techniques and Applications, Las
Vegas, NV.

Schermerhorn, P. (2006). The cost of communication:
Efficient coordination in multi-agent territory
exploration tasks. Thesis. Department of
Computer Science and Engineering,
University of Notre Dame.

Scheutz, M. (2006). "ADE - Steps Towards a
Distributed Development and Runtime
Environment for Complex Robotic Agent
Architectures''. Applied Artificial Intelligence,
20, 4-5, 275-304.

Scheutz, M., & Andronache, V. (2004) The APOC
Framework for the Comparison and
Evaluation of Agent Architectures. In
Proceedings of AAAI Workshop on Intelligent
Agent Architecture 2004. AAAI Press.

Scheutz, M., & Gibson, B. (2006). Visual attention and
the semantics of space: Evidence for two
forms of symbolic control. Proceedings of the
28th Annual Meeting of the Cognitive Science

Society. Vancouver, British Columbia,
Canada.

Scheutz, M., & Schermerhorn, P. (2002). Steps
towards a systematic investigation of possible
evolutionary trajectories from reactive to
deliberative control systems. Proceedings of
the 8th International Conference on the
Simulation and Synthesis of Living Systems.

Scheutz, M., & Schermerhorn, P. (2005). Predicting
population dynamics and evolutionary
trajectories based on performance evaluations
in ALife simulations. Proceedings of the 2005
Genetic and Evolutionary Computation
Conference, Washington, D.C.

Scheutz, M., & Schermerhorn, P. (2006). Adaptive
algorithms for the dynamic distribution and
parallel execution of agent-based models.
Journal of Parallel and Distributed
Computing, 66 (8), 1037-1051.

Scheutz, M., Schermerhorn, P., Connaughton, R., and
Dingler, A. (2006) "SWAGES--An
Extendable Parallel Grid Experimentation
System for Large-Scale Agent-Based Alife
Simulations". In Proceedings of the 10th
International Conference on the Simulation
and Synthesis of Living Systems,
Bloomington, IN.

Author Biographies

KEVIN GLUCK is a Senior Research Psychologist at
the Air Force Research Laboratory’s Warfighter
Readiness Research Division, where he is the Senior
Scientist for the Integrated Research Operations
Branch and the Team Lead for the Performance and
Learning Models (PALM) research team. Kevin earned
his B.A. in psychology at Trinity University in 1993
and his PhD in cognitive psychology from Carnegie
Mellon University in 1999.

MATTHIAS SCHEUTZ is Assistant Professor of
Computer Science and Engineering and Director of the
Artificial Intelligence and Robotics Laboratory
(AIROLAB) at the University of Notre Dame. His
research interests include artificial intelligence,
cognitive science, and philosophy. Matthias earned a
PhD in Philosophy from the University of Vienna in
1995 and a joint PhD in Cognitive Science and
Computer Science from Indiana University
Bloomington in 1999.

GLENN GUNZELMANN is a Research Psychologist
with the Air Force Research Laboratory. His research
is oriented around the primary interest of developing
psychologically valid computational accounts of
human cognition and performance. Primary research
projects include using multiple tasks and contexts to

83

identify and validate mechanisms for human spatial
competence and for explaining the effects of fatigue on
human cognitive performance. Dr. Gunzelmann
received a B.A. in psychology from Albright College
(1997), a M.S. in psychology from the University of
Florida (1999), and a Ph.D. in cognitive psychology
from Carnegie Mellon University (2003).

JACK HARRIS is a Computer Scientist at the Air
Force Research Laboratory’s Warfighter Readiness
Research Division. His research interests include
artificial intelligence for high performance and
volunteer computing platforms and cognitive modeling
in dynamic, complex, time-pressured domains, such as

Predator reconnaissance missions. Jack earned his B.S.
in Computer Science from the Georgia Institute of
Technology in 2001.

JEFF KERSHNER is a Software Engineer with L3
Communications, working at the Air Force Research
Laboratory’s Mesa Research Site. His interests range
from web development to computer graphics to
database administration to high performance
computing. He received his A.A. in Music Theory at
Villa Maria (1996) and a B.S. in Computer Science at
the State University of New York at Fredonia (2000).

