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ABSTRACT: The sophistication of computational cognitive architectures has opened the door to model development 
across a range of human activity. However, a continuing challenge for model developers is validating the model both 
by exploring the range of a model’s behavior and by optimizing mechanisms, knowledge, and parameters to best 
account for human cognition and performance. We have been developing an infrastructure to facilitate this process 
that takes advantage of high performance computing resources and technologies to allow for more ambitious model 
development and validation efforts. This work involves a combination of increased computational power and 
increased sophistication in running models using available resources. Examples of the promise of this work are 
presented, along with current areas of emphasis and future directions. 
 
1. Combinatorics in Cognitive Architecture 
and Model Development 
 
Cognitive architectures (e.g., ACT-R, Soar) are 
intended to serve an integrating and unifying purpose 
within the cognitive science community. The goal is to 
bring together what are typically isolated mathematical 
and computational theories of the many components of 
the human perceptual, cognitive, and motor systems 
into a unified account of the entire complex, integrated 
system.  
 
This is a fantastically ambitious scientific objective 
because implementing the computational mechanisms, 
representations, and processes that replicate and 
explain human performance across the full range of 
human experience requires simultaneous theorizing at 
three levels: overarching architectural design and 
control mechanisms, internal implementation of 
architectural sub-components/modules, and 
knowledge. Gray (in press) refers to these levels as 

Type 1, Type 2, and Type 3 theories of the human 
cognitive architecture. 
 
Each of these three levels of theorizing has its own 
associated quantitative and qualitative parameters, and 
each of those internal parameter spaces is very large. 
The implementation of any particular cognitive model 
involves committing to a location at the intersection of 
these three very large (perhaps infinite) theoretical 
state spaces and subsequently evaluating the extent to 
which that location in the joint state space is an 
appropriate account of human performance in that 
situation. If the account is deemed inadequate, then the 
search is on for a different combination of qualitative 
and quantitative parameters that will provide a better 
account. 
 
A thorough search and evaluation of even a modest 
portion of the total possible theoretical state space will 
require an unprecedented amount of computing power 
because of the combinatorics associated with searching 
a multi-dimensional space consisting of (1) additional 
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architectural components or modifications to existing 
components, (2) changes to numerical parameters, (3) 
changes to the initial knowledge state (including new 
task strategies) of the architecture/model at the 
beginning of a run, (4) changes to the simulated task 
environment, or (5) all possible combinations of those 
things. Seemingly innocuous assumptions and 
implementation decisions can have dramatic 
downstream consequences in a complex system like a 
cognitive architecture that interacts with a simulation 
environment (Gluck, Ball, & Krusmark, in press).  
 
To make this combinatorics issue more concrete, we 
will provide an example from an ongoing line of 
research in the development of a computational 
account of the effects of sleep-related fatigue on 
cognitive functioning. 
 
1.1 An Example from Recent Research in Fatigue 
Modeling 
 
Fundamentally, our research in this area involves 
identifying parameters that can be associated with 
fatigue within the ACT-R cognitive architecture 
(Anderson et al., 2004), and then identifying how those 
parameters change as fatigue levels increase. We 
(Gross, Gunzelmann, Gluck, Van Dongen, & Dinges, 
2006; Gunzelmann, Gluck, Van Dongen, O’Connor, & 
Dinges, 2005) have developed an initial account of this 
relationship for a sustained attention task (the 
Psychomotor Vigilance Task, or PVT). The PVT 
involves monitoring a known location for the 
appearance of a stimulus. Participants respond as 
quickly as possible to the stimulus by pressing a 
response button. The stimulus appears at random but 
relatively frequent intervals (ranging from 2-10 s). 
 
One challenge that is faced in this research is 
accurately replicating the changes in human 
performance that occur across a range of psycho-
physiological conditions, from fully rested and awake 
to severely sleep deprived and fatigued. Human 
performance changes dramatically across this 
continuum, and so parameter values for the model must 
be determined and evaluated across a continuum of 
values as well. In addition, we want to use the model’s 
performance across a range of values to infer a 
relationship between the parameters in ACT-R and 
predictions about overall ‘alertness’ that come from 
existing biomathematical models in the literature (e.g., 
Hursh et al., 2004; Jewett & Kronauer, 1999). 
 
For our fatigue modeling efforts using the PVT, we 
manipulated 3 parameters across a relatively modest 
range of values to identify best fitting parameter 
values. One of these was related to a new architectural 
mechanism that we added to ACT-R, while the other 

two were existing parameters in the architecture. The 
full combinatorial parameter space had a total of 
12,096 nodes (3 parameters, with 16, 21, and 36 
different values respectively). Performing this 
evaluation on local, independent machines was 
manageable, but not efficient. It took nearly a month of 
real time to complete the parameter space exploration 
using 5 local computers. We manually divided the 
parameter space into many smaller pieces, to avoid 
system crashes from memory stack overflows. Thus, 
the month-long process included significant down-time 
resulting from situations in which the evaluation of a 
particular subspace would finish in the middle of the 
night or over a weekend, when no one was around to 
manually start the next component. It also required 
substantial hands-on involvement to run models, 
monitor progress, and merge and analyze the resulting 
data. 
 
The results of this modeling effort have been 
successful, leading to a tentative link between fatigue 
and two procedural parameters in ACT-R (see Gross et 
al., 2006). However, the story is more complicated. 
There are actually substantial individual differences, 
both in the effects of fatigue on human cognitive 
performance and in human performance on particular 
tasks (including the PVT). This, of course, suggests 
that different individuals may be represented better by 
models containing different parameters and by 
different functions mapping alertness to ACT-R 
parameters. More surprisingly, even in this simple 
reaction time task, we have identified five ACT-R 
model variations which differ in the micro-structure of 
their psychomotor strategies for doing the PVT. These 
variations produce qualitatively different reaction time 
profiles, all of which can be observed in different 
human participants. 
 
Because of the complications associated with modeling 
the effects of fatigue at this level of detail, exploration 
of the full parameter space becomes untenable using 
our local resources. For the PVT, we have access to 
data from 13 participants, each of whom performed 44 
sessions of the task across 88 hours of total sleep 
deprivation. With five versions of the model, the 
parameter space expands to 60480 nodes. Not only 
does this increase the overhead associated with 
managing the parameter space, but on local machines it 
also results in an unacceptable lag between 
conceptualization of the evaluation to be performed 
and when the results are available for analysis. To 
overcome these obstacles, we have turned to high 
performance computing (HPC), which we describe 
next. 
 
2. High Performance Computing 
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There are two broad ways in which HPC can be used 
in the context of cognitive architectures and in human 
behavior representation more generally: (1) to explore 
parameters and system configurations to improve the 
performance of a particular model in a specific context 
(improving goodness-of-fit or demonstrating sufficient 
capability), and (2) to evaluate the performance of a 
particular model in a broad range of conditions (testing 
robustness, generalizability, and validity). Although (1) 
is mainly aimed at the formative, design stage of a 
model, and (2) is mainly aimed at the summative, 
evaluation stage, it is possible to combine (1) and (2) in 
either stage. For example, parameters can be 
determined for a variety of initial conditions, or a 
model can dynamically change parameters during 
performance to adapt to changing circumstances. Our 
use of HPC to date has focused primarily on use type 1 
(improving goodness-of-fit and demonstrating 
sufficiency), but as our computational theory of the 
effects of fatigue on the cognitive system matures our 
thoughts and actions are increasingly on use type 2 
(robustness, generalizability, and validity). 
 
Moreover, our use of HPC to date has nearly entirely 
involved full combinatorial search of target parameter 
spaces. There are three reasons for this. One is that it 
can be informative to explore combinations of 
parameter values over wide ranges. Sometimes it 
confirms your knowledge and intuitions regarding the 
functioning of the architecture and the influence of the 
parameters, and other times there are interesting 
surprises in the interactions. A second reason is that we 
explicitly wanted to scale up our demands on the HPC 
resources in order to learn how they held up and what 
sort of return time we got from our batch run requests. 
A third reason for our use of full combinatorial search 
is that we wanted to get some baseline data on search 
completion time, so that we can use those data as a 
standard against which to compare the completion 
times and conclusions regarding optimal parameter 
combinations that come from more sophisticated and 
efficient search techniques. These include sampling of 
a given parameter space according to some 
distribution, genetic algorithms that determine good 
values in the space, different gradient-based methods 
(e.g., gradient descent based on a cost-function), and 
constraint satisfaction search methods. Moreover, it is 
possible to use domain-specific heuristics that can 
guide the search process, possibly including meta-
reasoning to evaluate the current state of a parameter 
search and to determine which heuristics to employ in 
addition to seeding genetic algorithms. For modelers, 
the advantage of such methods is that they run 
relatively autonomously, thereby dramatically reducing 
the time required to explore the model implementation 
space. Modelers can then use their expertise to define 
heuristics and meta-rules and to interpret the results 

streaming back from the HPC. Moreover, by 
automating the process of parameter fitting, models can 
be produced more quickly, alternative models can be 
generated as part of the process, and different high-
quality models for one condition can be automatically 
compared across a variety of other conditions to 
determine their strengths and weaknesses. 
 
2.1 Initial Demonstrations 
 
Over the last year we have used internal research funds 
from AFRL’s Human Effectiveness Directorate to 
establish an account and begin performing ACT-R 
model parameter searches using AFRL’s Major Shared 
Resource Center for High Performance Computing, 
which is located at Wright-Patterson Air Force Base, 
Ohio. That facility has two clusters of 2,048 processors 
running Linux RedHat 2.4. The less capable of these, 
the SGI Altix 3700 (Eagle) cluster, has 1.6 GHz 
processors, with 1 GB of memory per processor and 
100 TB of data storage capacity. The more capable 
cluster, the HP XC (Falcon) cluster, has 2.8 GHz 
processors, with 2 GB of memory per processor, and a 
97 TB workspace. Naturally, we chose to use the more 
capable cluster for our four demonstration batch runs.  
 
These demonstrations involved full combinatorial 
searches of increasingly large parameter spaces using 
an ACT-R cognitive model for the Walter Reed Serial 
Addition-Subtraction Task. This task involves solving 
simple, single-digit addition and subtraction problems. 
For non-negative results, the correct response is the 
ones digit of the result. For negative results, the correct 
response is the result, plus 10. Thus, the task requires 
participants to respond with the result of the operation, 
mod 10. We also have performance data for this task 
from human participants in a sleep deprivation study. 
We use these data to evaluate the validity of the model 
as a replication of human performance under varying 
degrees of sleep deprivation. 
 
For those who may be interested in such details, Table 
1 provides the breakdown of ACT-R parameters used 
in each of these four HPC batch runs. The table shows 
the minimum and maximum values used for each 
parameter, which defines the range across which we 
searched. “Step” defines the grain size of the search 
within that range. “Levels” is determined by the range 
and the step size. For instance, in our first HPC batch 
run we searched across values of G (interpreted as 
“arousal” in this particular model) from 1.5 to 2.2, at a 
step size of .1, which results in 8 levels of G. Since this 
was full combinatorial search, multiplying the levels 
for all of the parameters within a batch run reveals the 
total number of parameter value combinations, or 
number of nodes, across which we searched. These 
values are presented in Table 2 and in Figure 1. The 
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first two searches were both 9,600 nodes, while the 
third was 118,482 nodes. The last batch run was 
1,777,236 nodes.  
 
Table 1 
ACT-R Parameters Used in Four HPC Batch Runs 
 HPC Batch Runs 
Parameter 1 2 3 4 

G     
Min 1.5 3.0 2.0 3.0 
Max 2.2 4.5 5.0 5.0 
Step 0.1 0.1 0.1 0.1 
Levels 8 16 31 21 

Tu     
Min 1.6 1.6 1.5 1.5 
Max 2.0 1.8 4.0 4.0 
Step 0.1 0.1 0.1 0.1 
Levels 5 3 26 26 

BLM     
Min 5,000 5,000 5,000 4,000 
Max 25,000 25,000 25,000 30,000 
Step 5,000 5,000 1,000 250 
Levels 5 5 21 105 

Tr     
Min -3.0 -3.0 -2.0 -2.0 
Max 0.5 0.5 1.0 1.0 
Step 0.5 0.5 0.5 0.1 
Levels 8 8 7 31 

ANS     
Min 0.20 0.20 0.25 0.25 
Max 0.30 0.28   
Step 0.02 0.02   
Levels 6 5 1 1 

Note. G traditionally refers to the value of the goal in 
ACT-R models, but for our fatigue theory we have 
reinterpreted it as arousal; Tu is the utility threshold; 
BLM is a Base-Level Multiplier for chunk activations; 
Tr is the chunk retrieval threshold; ANS is activation 
noise. 
 
In addition to the number of parameter combination 
nodes in each batch run, Table 2 provides data on the 
number of model iterations at each node, the precise 
form of our requests to the HPC cluster (a request to 
the cluster is called a “job” and each job specifies a 
number of processors, each for a specific period of 
time), how many CPU hours each batch run required, 
and how long it took to get results back after we 
submitted the request. 
 
Figure 1 plots CPU Time (in 1000’s of hours) and 
Total Time to complete (in hours) for each of our four 
demonstration batch runs. These data are available in 
Table 2, but they are worth plotting visually as line 

graphs as well in order to emphasize three important 
points: improvements in research efficiency, enabling 
new research options, and the eventual exhaustion of 
the HPC resources as parameter searches become more 
aggressive. We discuss each of these points in more 
detail below.  
 
Table 2 
Data on Batch Requests and Results Turnaround Time 

 HPC Batch Runs 
 1 2 3 4 
Nodes 9,600 9,600 118,482 1,777,230
Iterations 25 25 50 50
Jobs 1 1 31 273
Processors 64 75 26 62
CPU Tm (hrs) 400 515 8,624 96,096
Wait Tm (hrs) 0.01 0.17 12 71.87
Run Tm (hrs) 6.25 6.87 10.7 5.48
Tot Tm (hrs) 7.32 7.37 44.25 205.18

Note. “Wait Tm” is the average time each job waited in 
the queue before it started running; “Run Tm” is 
average run time per processor once the job started; 
“Tot Tm” is the amount of real time that passed 
between submitting the first job request and 
completion of the runs on the HPC cluster. 
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Figure 1. Use Data for Serial Addition-Subtraction 
Task (SAST) Cognitive Model Batch Runs on the 
AFRL HPC (Falcon Cluster) 
 
In Section 1.1 we described the month-long process 
associated with searching a fairly modest parameter 
space (12,096 nodes) using five or so otherwise-idle 
research computers in our local laboratory. Now 
consider demonstration batch run 3, which was 
118,482 nodes. Our best guess estimate of the 
completion time for a run of this size using locally 
available processors in our laboratory in Mesa, AZ is 
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1.5 years. The results came back from the HPC cluster 
at Wright-Patterson AFB in less than 45 hours, for an 
improvement in research efficiency of more than two 
orders of magnitude. Two orders of magnitude 
improvements in efficiency have a big impact on a 
research program when the baseline completion times 
are measured in months and years. 
 
When we increase the size of the parameter space 
another order of magnitude (and then some) to the 
nearly 1.8 million nodes in batch run 4, any 
comparison to completing that parameter search with 
local resources becomes ridiculous. We simply would 
not undertake a search of that depth and breadth with 
local resources, because it would take 10 or more years 
to complete. Thus, access to the HPC resources is 
enabling us to ask research questions and do things 
with our models that previously have not even been 
possible. 
 
Still considering the very large Batch Run 4, when we 
divide total CPU time required to search that space 
(96,096 hours) by the real completion time required for 
the run (205 hours), we find that over the course of that 
week we averaged 468 computer processing hours per 
hour. The maximum allowable use of the Falcon 
cluster per account is 1024 processors simultaneously, 
so we were averaging slightly over 45% of our 
maximum allowable usage during those 205 hours. 
 
This level of usage appears to have been acceptable to 
the automated HPC scheduler and to the human HPC 
management and maintenance employees for a period 
of a week, but clearly they are not going to allow a 
single user to occupy 25-50% of their resource 
indefinitely. This is relevant because it speaks to the 
fact that it won’t be long before we exhaust the AFRL 
HPC as a resource if we continue the brute force, full 
combinatorial search approach we have been using to 
date.  
 
3. More Intelligent Use of HPC 
 
Since we already envision a time in the not-too-distant 
future in which our computational requirements will 
exceed even the impressive resources available through 
AFRL’s HPC, we have begun investing in ways to 
decrease our total computational load per research 
question through more intelligent use of the HPC 
resources. 
 
A key component of our emerging strategy is the use 
of middleware that provides intelligent interoperability 
between our cognitive models and whatever processing 
resources are being used at the time, HPC or otherwise. 
This system, called the SoftWare Architecture for Grid 

Experimentation System (SWAGES), is described in 
this section. 
 
3.1 An Introduction to SWAGES 
 
SWAGES1 is a grid-based experimentation 
environment that is targeted at scheduling and 
supervising possibly distributed runs of cognitive 
models or agent-based simulations. It consists of 
several heterogeneous, distributed components that 
cooperate closely to achieve a high level of resource 
utilization in a dynamic, possibly uncontrolled 
computing environment (such as publicly accessible 
computing clusters at Universities where the uptime of 
machines cannot be guaranteed). SWAGES is 
implemented in the distributed ADE system (Scheutz 
2006), which provides a location-independent multi-
agent system infrastructure, with automatic error 
detection and recovery, and works in homogeneous 
fixed clusters (e.g., Beowulf clusters) and 
heterogeneous ad-hoc clusters (e.g., individual 
workstations that can only be used if nobody is logged 
in) alike. It requires no set-up procedures on the host 
participating in simulation experiments (as is required 
by other distributed computation environments like 
CONDOR or SETI@HOME) other than the commonly 
installed secure shell tools for secure, remote login and 
file transfer) and will run on all operating systems that 
support the JAVA virtual machine. 
 
Over the last several years, SWAGES has been used in 
combination with the agent-based SimWorld 
simulation environment for investigations of large 
parameter spaces of agent architectures for various 
kinds of agents, from simple reactive agents (Scheutz 
& Schermerhorn, 2005, Schermerhorn, 2006) to more 
complex, deliberative agents (Scheutz & 
Schermerhorn, 2002). For example, a parameter search 
involving over 2 million simulations (of 3 min. each) is 
reported in Schermerhorn (2006). This parameter 
search required three months of compute time on our 
AIROLAB cluster, which consists of 22 nodes with 
two 2.4 GHz Pentium IV CPUs each running Linux 2.6 
kernels (on a single 2.4 GHz Pentium CPU the 
computations would have taken over 11 years). 
SWAGES has also been used in conjunction with a 
neural network simulator to conduct parameter 
searches for neural network-based cognitive models 
(Scheutz & Gibson, 2006).  
 
Recently, new components have been integrated in the 
SWAGES system, which will significantly increase its 

                                                           
1 SWAGES can be  obtained from the following site:  

http://www.nd.edu/~airolab/software/. Please 
contact Matthias Scheutz with SWAGES-related 
questions. 
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utility for cognitive modeling by partly automating 
several critical steps in the modeling process: (1) 
automatic model discovery, (2) automatic parameter 
fitting, and (3) automatic model verification. 
Prerequisite for all three steps is the system's ability to 
run simulations, analyze the results, determine whether 
they fit a given criterion, and possibly scheduling more 
simulations if the criterion is not met. In the following, 
we will first briefly describe the overall SWAGES 
architecture, and then show how the various parts work 
together to allow for the automation of various aspects 
of the modeling process. 
 
The SWAGES architecture (see Figure 2) can be 
divided into server-side and client-side components, 
where the server-side components provide the 
distributed computation infrastructure, and the client-
side components provide the communication 
components and the simulation platform SimWorld. 
Currently, all server-side components are run on a 
single host – the grid server – while client-side 
components run on multiple simulation hosts. 
 
3.1.1 Server-side Components 
 
The grid server is the central locus of control of a 
SWAGES system, running various server-side 

components to schedule, distribute, start, and monitor 
the execution of distributed simulations and recover 
from failures. 
 
The experiment server is responsible for setting up 
experiment sets (possibly consisting of large numbers 
of individual experiments (see Fig. 1). Important 
factors here are generation of initial conditions (unique 
or identical) across different experiments in a set, 
priorities of experiments and scheduling parameters, 
levels of supervision and recovery parameters, format 
of data collection and location for data storage, 
statistical analysis of results and output formats, and 
user notification of progress. 
 
The scheduler is responsible for taking experiments 
from several priority-based queues (in which new 
experiments are submitted by the experiment server) 
and starting them on remote hosts. The experiment 
scheduler will dynamically create experiment data 
structures for large-scale experiment sets (to avoid 
memory shortages), and only schedule a new 
experiment when new hosts are available that are not 
needed for other experiments to finish. 
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Figure 2. Diagrammatic representation of the SoftWare Architecture for Grid Experimentation System 
 
 
The client server is the server-side representation of a 
remote simulation. It maintains an open 
communication channel with the simulation instance, 
keeping track of the simulation's progress, state, 
update, and degree of parallelization. The client-side 
simclient (described below) passes this information to 
the client server periodically, which stores the 
information for use by the watchdog and web server 
components (below). In addition, the simclient can 
request to be migrated to another host when user-
specifiable conditions on the current simulation host 
are not met. When a new simhost becomes available, 
the simclient is started there. It is critical for error 
detection and recovery: when a simulation crashes 
(e.g., due to OS problems on its host), is not 
responding (e.g., due to network problems), or cannot 
be continued (e.g., because its current host no longer 
meets user-defined criteria for running simulations, 
CPU load average or number of users), the client 
server can resume the simulation elsewhere based on 
saved state. 
 
The watchdog implements a second level of 
supervision which is particularly important for 
dynamic computing environments where hosts can 
“disappear” from a pool of usable machines. It 
regularly checks each client's status (as recorded by the 
client server) for progress. If the simclient has not 
checked in with the client server within the specified 
time frame, the watchdog assumes there has been a 
failure (e.g., due to OS problems on its host, or to 
network problems). The client is terminated on the 
server side (i.e., the data structures associated with that 
client are cleaned up), and the simulation is 
rescheduled on a new host. The new simulation is 
either restarted from the beginning, or, if there is saved 
state available, continued from the most recently saved 
state. 
 
The web server provides a simple web-based interface 
to SWAGES that can be used to submit experiments, 
check their status, perform simple statistics and view 
the results. 
 
The simhost is the server-side representation of a 
remote simulation host. It keeps track of which 
simulations are running on each host. The simhost also 
is responsible for monitoring the availability of the 
host for simulations. The simhost detects when the 
user-specified criteria for host availability are met 
(either initially when SWAGES is started, or after a 
simclient has requested to be migrated), as well as the 
physical availability of the host (e.g., whether the host 

is back up after a reboot caused the watchdog to 
reschedule a simulation previously running there). 
 
3.1.2 Client-side Components 
 
The client-side components are responsible for running 
the actual simulation and communicating its state to the 
server-side components. 
 
The simclient represents the simulation to the (server-
side) client server, periodically communicating updates 
about the simulation (e.g., cycles executed). It is also 
responsible for periodically saving the state of the 
simulation and checking the host it is running on for 
availability according to user-defined criteria. For 
example, the user may specify that simulations may 
only execute on hosts with no console user, or with a 
particular maximum load average. When the simclient 
detects a violation of these constraints, it can notify the 
simulation to save its state (if this is supported) and 
send it to the grid server, notifying the client server that 
the simulation needs to be migrated and restarted. 
Simclients also interact with simulations to gather 
statistics and data that can be stored in a common place 
and used for further analysis. The SimWorld simclient 
is a specific extension of the default simclient which 
can be used to automatically and adaptively parallelize 
SimWorld simulation in SWAGES based on host 
availability using a novel algorithm for automatic 
parallelization of agent-based simulations (Scheutz & 
Schermerhorn, 2006). Finally, simclients cannot only 
be used to control simulations, but also for performing 
statistical analyses, and for determining whether 
additional simulations need to be run in order to meet a 
modeling criterion (e.g., parameter fits).  
 
3.2 SWAGES for Automatic Cognitive Modeling 
 
Here we briefly describe our ongoing project on 
automating parameter exploration, parameter fitting, 
and ultimately model building itself using the 
SWAGES environment. The first step in making 
SWAGES work with any cognitive modeling 
environment like ACT-R, SOAR, EPIC, and others is 
to define a simclient in the programming language of 
the modeling environment (e.g., LISP or C/C++) to 
allow the client server to exchange message with the 
simulation. By implementing the simclient in the target 
language of the environment, the simclient works as a 
mediator that can directly call functions or methods of 
the modeling environment (e.g., to start, stop, and 
resume simulations), while relaying information about 
the simulation state in a generic way to the client 
server. Communication between the simclient and the 
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client server is accomplished via sockets, where data 
structures of the simulation's programming 
environment are serialized and deserialized on the 
SWAGES side (currently, serializers for JAVA, C, 
LISP, and POP11 are available). That way it is possible 
to let modelers define experiments in the environment's 
native programming language (e.g., LISP for ACT-R), 
while allowing SWAGES to extract generic parameters 
from the experiment description (see below).  
 
We have developed an ACT-R simclient for SWAGES 
that provides access to the ACT-R modeling 
environment and has specific support for automatic 
parameter space exploration. This is best demonstrated 
with the following simple example of an experiment 
definition written in LISP syntax for the ACT-R 
modeling environment (keywords for the ACT-R 
simclient and for the client server are printed in bold): 
 
;;; Model simulation parameters 
(((initfile "actr6/load-act-r-6.lisp")  ;;; load the ACT-R 6 virtual 
machine 
   (initfile "my-favorite-cognitive-model.cl")  ;;; load the cognitive 
model 
   (quitafter 5000) ;;; quit the model simulation after 5000 model 
cycles 
   (eval (setf modelparameter (variate V from V_low to V_high step 
V_step))) ;;; see text 
   (record end modeloutcome)) ;;; record this value at the end of the 
simulation 
;;; SWAGES experiment set parameters 
  ((name "myexperiment" "mydirectory")  ;;; name of experiment and 
storage location 
   (quitif (< (compute average modeloutcome) threshold)) ;;; 
condition for ending experiment  
   (user "myself") ;;; the user name used for running the simulations 
   (parallel 100))) ;;; how many random initial conditions 
 
First note that the experiment description consists of 
two parts: a specification of parameters necessary to 
run the cognitive model (used by the simclient) and a 
specification of information about what kinds of 
experiments to conduct, where to store the results, and 
how to analyze them (used by the client server). In the 
particular example, the ACT-R 6 cognitive architecture 
together with a particular cognitive model will be 
loaded by the simclient, run for 5000 update cycles, 
and the value of the “modeloutcome” variable in LISP 
will be saved upon the completion of the simulation. 
Before the model is run, the variable “modelparameter” 
is set to a specific value as given by the “variate V”. 
Variates are special variables in experiment definitions 
that are parsed by SWAGES and set to particular 
values in the set of values given by the lower (V_low) 
and upper boundaries (V_upper) and the spacing in 
between (V_step). For example, the expression 
“(variate V from 1 to 10 step 1)” will result in 10 
different experiment definitions. Thus, variates in 
SWAGES effectively allow for the easy definition of 
parameter spaces and subsequent samplings thereof. In 
the above case, the variate specification is used to 

schedule and run experiments until the outcome meets 
a termination criterion. Specifically, for each value of 
the variate starting from V_low to V_high in steps of 
V_steps, the model will be run with the 
“modelparameter” set to that value in 100 different 
random initial conditions (as specified by the “parallel” 
keyword), the average value of “modeloutcome” (over 
the 100 conditions) will be computed as soon as all 100 
simulations have finished, and the result will be 
compared to the specified “threshold” according to the 
criterion expressed in the “quitif” condition. If the 
condition is met, the experiment is considered 
complete and no more conditions for different variate 
values will be generated. Conversely, if the condition 
is not met, the next 100 simulations for the next variate 
value will be generated and run, possibly exhausting 
all variate values without finding a value that meets the 
criterion. 
 
While this is one of the simplest experiment definitions 
possible, we believe that it already shows the potential 
of SWAGES for automating the modeling process. 
Clearly, parameter spaces can be explored using the 
proposed mechanism in a systematic way, with or 
without termination criteria, possibly leading to new 
insights about the relation among different parameters 
(e.g., automatic correlations could be performed among 
variates to determine dependencies and searches 
finished if dependencies are found). Moreover, by 
systematically searching a parameter space until a 
specific termination criterion is met, SWAGES allows 
for model fitting – the parameter space to be searched 
would be the space of free model parameters and the 
termination criterion some error measure determining 
the quality of the fit. Finally, if model rules were 
allowed to be varied – a functionality not currently 
possible, but planned for future development – then the 
space of possible models itself could be searched in the 
above outlined way, thus allowing for automatic model 
discovery (within the confines of the automatic rule 
variation and generation). 
 
Recently, we finished the first proof-of-concept 
demonstration of the above kind of automated 
parameter space search for a simple ACT-R test model 
on the AIROLAB cluster at Notre Dame. In a next 
step, we will demonstrate this process on the AFRL 
HPC cluster to perform more extensive evaluations of 
our theory of how fatigue affects the cognitive system, 
implemented as a computational theory in ACT-R. 
This demonstration will have a twofold outcome: (1) it 
will yield data that will help us to extend our account 
of fatigue to include individual differences in the 
impact of sleep loss on performance, and (2) it will 
yield performance data for the SWAGES system that 
can be used to quantify the utility of using SWAGES 
to automate the modeling process (e.g., in terms of 
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time savings for obtaining good fits compared to 
manual explorations of model parameters). 
 
4. Volunteer Computing 
 
In addition to investing in more intelligent use of HPC, 
we have begun exploring the idea of volunteer 
computing as a means of acquiring greater processing 
power. In recent years, scientific communities facing 
large, computationally complex problems have found 
ways to leverage volunteer home computing nodes to 
vastly increase their access to computing resources. 
According to the University of California, Berkeley 
website, volunteer computing grids “supply more 
computing power to science than does any other type 
of computing.” (See the volunteer computing website 
at Berkeley for more information: 
http://boinc.berkeley.edu/volunteer.php) A few of the 
communities already using this vast resource include 
astronomy, physics, chemistry, earth sciences, biology, 
medicine, mathematics and strategy games. One of the 
best known projects is Berkeley’s SETI@home 
(Search for Extra Terrestrial Intelligence) which has 
475,000 active computers worldwide processing on 
average 615 Tera-floating point operations per second. 
With funding from the National Science Foundation, 
Berkeley has developed a software platform for 
distributed computing using volunteered computer 
resources called the Berkeley Open Infrastructure for 
Network Computing (BOINC). A single BOINC 
project with a single server can provide computing 
power equivalent to a cluster with tens of thousands of 
CPUs. To the best of our knowledge the HBR 
community has not yet begun using this resource, and 
we would like to change that.  
 
Work on our BOINC-based cognitive modeling 
infrastructure has recently begun, following the arrival 
of seed funding from the AFRL Human Effectiveness 
Directorate. The hardware and software used to 
support a BOINC project have been configured, and 
designs for the actually distributed cognitive model 
application will begin soon. Once completed, the 
project will become operational and cognitive models 
can be distributed to volunteer clients. We plan to 
report the results of this initial demonstration in a 
future paper. 
 
5. Summary and Concluding Comments 
 
In this paper we described our initial forays into the 
use of HPC resources for computational cognitive 
modeling. Our interest in HPC arose, at least partially, 
out of the realization that scaling up the computational 
rigor and thoroughness of our search for a valid theory 
of fatigue in the cognitive system was being impeded 
by the limitations of our modest local computational 

resources. This situation is far from unique to us. In 
fact, this is the status quo among researchers in 
cognitive modeling and human behavior 
representation. 
 
In the short time we have been investigating the use of 
HPC for our research purposes, it has become apparent 
that if we continue the path we are on (exponential 
growth of computational load) then soon we will 
exceed even the capacity of the very large HPC 
resources available through AFRL. One strategy for 
dealing with this is to search more intelligently and 
therefore more efficiently. We think at this time that 
the SWAGES system will serve a helpful role in 
accomplishing that. Another strategy is to acquire 
access to even more computational resources than 
those available through the AFRL HPC. This is what is 
motivating our interest in volunteer computing, which 
has the advantage not only that it potentially creates 
access to tens or hundreds of thousands of computer 
processors, but it also is available to anyone (unlike the 
AFRL HPC, which requires a security clearance in 
order to set up a user account). 
 
We hope this description of our progress motivates 
other cognitive modelers and human behavior 
representers to begin using HPC and/or volunteer 
computing resources in their own research. We will 
make faster progress as a field if we work together to 
overcome the combinatorial nightmare inherent in the 
development of formal models of human beings. 
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