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Abstract. An agent’s autonomy can be viewed as the set of physically
and computationally grounded algorithms that can be performed by the
agent. This view leads to two useful notions related to autonomy: behav-
ior potential and success potential, which can be used to measure of how
well an agent fulfills its potential, call fulfillment. Fulfillment and success
potential induce partial and total orderings of possible agent algorithms,
leading to algorithm-based, capability-centered definitions of levels of
autonomy that complement common uses of this phrase. Because the
success potential of a multi-agent system can exceed the success poten-
tials of individual agents through synergy effects, the fulfillment of an
individual can be augmented through interactions with others, though it
can possibly also interfere in the fulfillment of the other agents. Interac-
tion algorithms thus enable multiple agents to coordinate, communicate,
or exchange information; these algorithms enable and constrain tradeoffs
between augmenting and diminishing other agents. Short case studies are
presented to illustrate how the algorithm-based definitions can be used
to understand existing systems.
Keywords: levels of autonomy, interaction algorithms, swarms

1 Introduction

Rapid developments in perception, control, planning, manipulation and navi-
gation enable increasingly advanced robotic systems capable of accomplishing
complex tasks autonomously, such as urban driving, traversing rough terrain,
or assembling non-trivial products. What does it mean exactly for a system to
be autonomous and how may that help us to develop increasingly effective and
robust systems?

Over the last thirty years many definitions of “autonomy” have explicated
what autonomy may mean when applied to artificial systems. Some of these
definitions are more detailed and emphasize formally precise conditions, while
others provide psychologically and philosophically motivated schemas related to
self-governance. One frequently encountered dichotomy is between “automation”
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and “autonomy”, with “automation” roughly referring to fixed action patterns
machines execute without human intervention, regardless of whether the actions
achieve the desired effects: “Automation refers to the full or partial replacement
of a function previously carried out by a human operator” [38]. A toaster, for
example, may ignore the time-dependence of bread type; thus, applying the same
duration to all bread types, regardless of easily they may burn.

“Autonomy” is viewed as a system’s ability to consider environmental state
changes and act upon them (e.g., sensing the correct toasting level, rather than
using a fixed time period). For some, an autonomous robot can follow orders,
but those orders may leave open exactly what steps are necessary to achieve
the task (e.g., [15]). For others, autonomy represents “[an] agent’s active use
of its capabilities to pursue its goals, without intervention by any other agent
in the decision-making processes used to determine how those goals should be
pursued” [4]. Other approaches view autonomy on a scale (e.g., “sliding auton-
omy”, “levels of autonomy”, “adjustable autonomy”), not as a binary notion.
Systems can have degrees of autonomy based on the current context. For exam-
ple, a clothes dryer with a moisture sensor can adapt the heat levels by sensing
dryness, but can be forced by the human to apply a fixed heat level, thus reduc-
ing the machine’s ability to control the heat adaptively. Similarly, an airplane’s
auto-pilot attempts to maintain a designated glide path until it no longer can
guarantee the path due to, say, bad weather and disengages. Finally, other defi-
nitions stress an agent’s sensing and actions in an environment and the agent’s
ability to realize its goals. For example: “Autonomous agents are computational
systems that inhabit some complex dynamic environment, sense and act au-
tonomously in this environment, and by doing so realize a set of goals or tasks
for which they are designed” [24].

While these approach contain essential elements, particularly the notions of
sensing and acting in a dynamic environment in the interest of goals, they lack
the precision to capture the important interactions among goals, algorithms, and
an agent’s physical aspects. Most importantly, notions of task, goals, and success
require definition in order to evaluate an agent’s performance.

The paper’s primary contributions are (a) algorithm-based definitions of be-
havior potential, success potential, and fulfillment for an individual agent, (b) an
argument that interaction between multi-agent systems are potentially more
powerful than an autonomous agent, with precise definitions of how interac-
tion algorithms determine synergy, interference, and augmented capability, and
(c) short examples that illustrate the utility of the definitions.

2 Related Literature

Beer et al. provide an overview of the notion of autonomy from multiple fields,
including philosophy, psychology, and robotics [5]. A common theme is defining
a robot’s capability in the context of a team’s capability, namely a human-
robot team. For example, Harbers, Peeters, and Neerincx use an operational
definition that implies three specific qualities associated with autonomy: “the
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time interval of interaction, the obedience of the robot and the informativeness
of the robot” [23]. These qualities include the robot’s (1) capability and (2) the
degree of robot reliance on the relationship between the robot and a human
partner.

The capability-relationship pair for human-robot and human-agent teams is
a pattern in many autonomy definitions. Hexmoor emphasizes the pattern by
suggesting that autonomy is “a social notion”; therefore, a robot’s autonomy is
best defined by the interactions between the robot and some other entity [24].
He writes:

[A]utonomy concerns are predominantly for the agent to acquire and to adapt
to human preferences and guidance ... The word ‘autonomous’ connotes ... a
sense of the agent’s autonomy from the human. A device is autonomous when
[it] faithfully carries preferences and performs actions accordingly.

Naturally, others have written about independence from and interdependence
between agents. Newell writes [37, p. 20]:

One aspect of autonomy is greater capability to be free of dependencies on the
environment ... [but] much that we have learned ... speaks to the dependence
of individuals upon the communities in which they are raised and reside.

For example, Dorais says that an autonomous robot can follow orders, but those
orders may leave open exactly what steps are necessary to achieve the task [15].

Hexmoor’s social notion provides insight into Sheridan’s levels of auton-
omy [38, 47]. Specifically, Sheridan’s levels are not explicitly based on a robot’s
capabilities in the way that Harbers, Peeters, and Neerincx define autonomy.
Sheridan’s levels implicitly assume a level of capability and explicitly specify
properties of the relationship — who has the responsibility for initiating, termi-
nating, or intervening in the behavior induced by the algorithm(s).

Other approaches view autonomy on a scale (e.g., “sliding autonomy”, “lev-
els of autonomy”, or “adjustable autonomy”), not as a binary notion [47, 29].
There are many autonomy scale variations, and most imply that autonomy is
primarily a social notion [7, 14, 16, 18, 21, 28, 27, 31, 35]. Most variants require
“social contract” algorithms that enable a human, a robot, or both to (re)assign
responsibility/authority for initiating, executing, and terminating functions, in-
formation exchanges, and tasks [21, 33].

Dialogues, safeguarding, and shared control are means of designing algorith-
mic social contracts so that team capability is maximized [17, 18]. For example,
shared control seeks to design algorithms that directly support the human-robot
team [13, 44, 36]. Naturally, the scope of interaction algorithms can be very large,
especially for large multi-agent systems [11, 30, 9, 19]. Social contract algorithms
may augment some agents and interfere with others. Shell and Matarić [46] iden-
tify one interference type: “Traditional homogeneous foraging has each robot
searching for pucks and independently transporting them to the home region ...
[A]round the home region; many robots will attempt to enter the same space ...
[so] additional robots may hamper the collective effort.” Algorithms have been
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written to mitigate spatio-temporal interference [20]. Sensing interference can
also occur [9].

Johnson is critical of contemporary thinking on autonomy [26] and pro-
poses “coactive design,” which develops capabilities and algorithms enabling
humans and robots to interact well by supporting a form of mutual interdepen-
dence.Coactive design includes a specific approach for constructing the social
contract so that it explicitly maximizes team capacity. Beer, Fisk, and Rogers
propose an approach grounded in function allocation: identify tasks to be per-
formed, determine what task components a robot will perform and is capable
of performing, and create a means for a human to influence the robot [5]. Riley
proposes a function allocation method that specifies general categories for the
types of tasks, information exchanges, and required human-automation inter-
actions [43]. Johnson’s, Beer et al.’s, and Riley’s approaches directly support
systematic design of the social contract algorithm.

Others disavow the social notion of autonomy, emphasizing that autonomy
represents “[an] agent’s active use of its capabilities to pursue its goals, with-
out intervention by any other agent in the decision-making processes used to
determine how those goals should be pursued” [4]. Such definitions emphasize
an independence from human input, stressing a robot’s sensing and actions in
an environment subject to the robot’s ability to realize its goals. For example:
“Autonomous agents are computational systems that inhabit some complex dy-
namic environment, sense and act autonomously in this environment, and by
doing so realize a set of goals or tasks for which they are designed” [24].

Bradshaw et al. [6] emphasize capability, independent of a social context.
They posit two properties essential for an autonomous system: “self-sufficiency,
the capability of an entity to take care of itself” and “self-directedness, or
freedom from outside control”. Similar properties of autonomy appear in non-
robotics research (e.g., levels of autonomy for nurse practitioners [10]). Brad-
shaw’s two elements imply that a robot must be able to perform some set of
tasks, while also initiating, terminating, and modifying what tasks it performs
and how those tasks are performed. Huang et al. [25] similarly state that goals
(not a social contract) will govern how capabilities are used: “[A robot’s] auton-
omy [is defined] as its own capability to achieve its mission goals.” Beer, Fisk,
and Rogers also emphasize self-directedness.

Robot capability, self-sufficiency, and self-directedness must ultimately be
implemented as algorithms. Maes [34] presented autonomy as a computational
system. Hexmoor’s characterization of Maes’ work makes the computational sys-
tem explicit [24]:

Autonomous agents are computational systems that inhabit some complex
dynamic environment, sense and act autonomously ... realize a set of goals or
tasks for which they are designed.

3 Behavior, Success, and Autonomy

A general definition for task environment grounds the discussion. Let E =
〈S, I,G, F, τ〉 be a (task) environment specification where S, an environment,
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is a set of possible states (e.g., a manifold), I ⊂ S is a set of initial states,
G ⊂ S is a set of goal states, and F is the evolution function defined on S
over τ , where τ is a time bound. Environments are defined as sets of states, to
remain as general as possible, while not committing to a particular notion of
state or formalism in order to capture many possible environmental states (e.g.,
a set of differential equations or a Markov decision process) and their relations
(e.g., which state is accessible from a given state or whether state transitions
are deterministic or stochastic). When needed, the meaning of “state” can be
specified (e.g., a six-dimensional kinematic vector, or a set of true propositions
at a given point in time) and how exactly they evolve over time (e.g., differential
equations, maps, transition functions), including whether the set of time points
is discrete or continuous.

The Thermostat as an Example. Consider an example of maintaining
a room’s temperature at or near a desired temperature, denoted by θ. There are
two relevant states: S = {(T < θ), (T ≥ θ)}, where T is the room’s temperature.
Initial states I can be any room temperature, say I = [−30, 30] C, and goal
states are determined by, for example, the goal to “keep the room cool”, G =
{T ≤ θ}. An evolution function depends on temperatures outside of the building,
the presence of a heating unit, and the presence of an air conditioning (cooling)
unit,

F :

Tt+∆t = Tt + ε if heater on
Tt+∆t = Tt − ε if air conditioner on
Tt+∆t = Tt + δ(Toutside − Tt) otherwise.

,

where ∆t denotes a small time step, ε and δ are small positive constants, and
Toutside denotes the outside air temperature. Finally, τ is some deadline to reach
the desired temperature, say τ = 20 min.

Let R = 〈P,A〉 be a robot specification, where P , the hardware platform
includes all sensing, actuating, and computing equipment, and A is an algorithm
(plus data) on P that is possibly self-modifying. The sets of sensors Sen, effectors
Eff, and computational systems Comp for P are used to define an algorithm as
a mapping from sensors/computational states to effector/computational states:

A : SSen × SComp → SEff × SComp , (1)

where the sensor and effector states are the transduced and non-transduced com-
putational interface states, respectively. Computational states, SComp , include
memory, processing, databases, knowledge representations, world models, etc.
This formulation permits discussion of the same algorithm on platforms with
different sensors, actuators, and representation systems. Computational, sensor,
and effector states are part of the environment state,

S ⊇ SSen ∪ SComp ∪ SEff . (2)

We differentiate between the instance of the robot’s algorithm and the class
of algorithms from which the instance is drawn. For example, the class of RRT*
algorithms asymptotically approach the optimal solution, but an instance of the
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RRT* algorithm requires specific parameters (i.e., neighborhood range and cost
function) to generate the robot’s behaviors. Similarly, value iteration can find
optimal solutions for a Markov-Decision Problem (MDP), but a particular MDP-
solver must be instantiated on the robot. The robot’s algorithm is an instance
of the algorithm class.

There must be a relationship between the robot’s algorithm, A, and the
evolution function F . If no relationship exists, then the robot has no influence
on the environment and autonomy does not matter. The evolution function F
includes A as well as other things that influence how world states change: physics,
other robots, etc. When discussing autonomy, we are interested in the trajectories
in the states of environment S induced by the robot’s algorithm A.

Thermostat Example Continued. Consider a room that has only an
air conditioner and no heater. If the thermostat senses that the current tem-
perature exceeds the desired temperature, it turns on the air conditioner. The
thermostat has no memory, so SSen = {(T < θ), (T ≥ θ)}, SComp = ∅, and
SEff = {on, off}. The thermostat’s algorithm is simply

if T ≥ θ turn air conditioner on
else turn air conditioner off.

.

For temperatures above the desired value, T0 > θ, a trajectory is a trace of
temperatures falling to the threshold.

3.1 Absolute Autonomy: Behavior, Success, Fulfillment

A robot’s autonomy is determined by the algorithm4, A, implemented on plat-
form, P . It is conceptually possible to quantify the “amount” of autonomy a
robot, R possesses.

Behavior Potential The behavior potential BP (R) of R in E is the set of all
trajectories in S induced by algorithm A for some starting state s ∈ E within
time bound τ . A “trajectory” is any time-ordered set of states in S determined
by how the robot’s algorithm A affects the evolution function F , for a given
any initial state in S (e.g., flows in dynamical system, state sequences in an
MDP). The behavior potential captures all possible behaviors R can exhibit
before reaching the time bound τ in any environmental state.

Success Potential Behavior Potential, BP (R), includes two important sub-
sets, SP (R) and SP I(R). Let SP (R) denote the robot’s success potential, de-
fined as the the set of trajectories induced by algorithm A, starting from any
s ∈ E leading through a goal state in G within τ . The SP (R) captures all ways
for R to succeed at its task. The size of the success potential indicates the robot’s
capability, and is thus an indicator of potential robot autonomy.

4 For simplicity of exposition, the set of programs running on a single robot is treated,
collectively, as a single algorithm.
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Let SP I(R) denote the robot’s initialized success potential if the initial state
of the environment can be specified, defined as the set of trajectories induced by
algorithm A, starting from any i ∈ I leading through a goal state in G within
time bound τ . The difference between SP (R) and SP I(R) is important because
it is easy to create initial environmental states where the algorithm will always
fail. For example, start a ground robot in an environmental state where it is
dropped from an airplane and the robot will fail.

Thermostat Example continued. Recall the thermostat algorithm’s goal
is to cause room temperature to be at or below a desired value starting from any
initial value within a time bound τ of 20 minutes. Initial temperatures below
the threshold will yield temperatures that are at or below threshold for all time
τ (barring some unusual behavior of the evolution function, like a fire in the
room). Thus, for states Slow = {T ≤ θ} the trajectories are within SP (R).
Whether initial states Shigh = {T > θ} produce trajectories that are within
SP (R) depends on the initial temperature and the laws of thermodynamics. For
(a) a time bound τ of sufficient duration, (b) T within the set of feasible states
(recall that environment states S included temperatures in the range [−30, 30] C),
and (c) an air conditioner of high enough capacity, then (d) all trajectories
induced by the thermostat yield success, that is, they are within SP (R).

The notion of goal state G in E can be extended when (a) multiple goal states
need to be reached by composing multiple tasks or (b) where particular states
need to be maintained throughout the task by modeling a subset of S that R has
to maintain. The notion of goal achievement can also be extended for stochastic
environments to a probabilistic notion that requires R end in some goal state,
with probability p within τ .

Fulfillment Fulfillment is defined as

Fulfill =
|SP (R)|
|BP (R)|

,

where | · | indicates a set measure, such as cardinality. Fulfillment is a measure of
a robot’s need to rely on others. Fulfillment measures the proportion of possible
initial states for which R will succeed at its task for a given algorithm A in the
absence of help.

Suppose that fulfillment equals one. Then |SP (R)| = |BP (R)|, which means
that the robot always succeeds – no matter the robot’s initial state. A high ful-
fillment ratio means that the robot does not need to rely on human intervention.
The size of the set difference |BP (R)\SP (R)| is a measure of how often a robot
will fail if there is no control over initial conditions; the size of this set measures
how much help a robot needs to accomplish its goal.

Thermostat Example continued. When the goal is simply to keep temper-
ature at or below a threshold, the fulfillment ratio for the thermostat equals one,
since success potential equals behavior potential. The thermostat’s high fulfillment
ratio provides insight into the noted paradox of the thermostat: “A thermostat
exercises ... self-sufficiency and self-directedness with respect to the limited tasks
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it is designed to perform through the use of [a] very simple form of automa-
tion” [26]. Using this paper’s language, the thermostat is autonomous in that it
does not need human input (its fulfillment is one), but not in the sense that it is
capable of producing many interesting behaviors (its behavior potential is small).

Fig. 1. Low fulfillment.(ρ = 0.4, γ = 0.9, τ = 40)

A notion similar to fulfillment appears in the literature on reliability and
human error in systems5. “Operator error probability is defined as the number
of errors made ... divided by the number of opportunities for such errors” [40].
Fulfillment emphasizes successful goal-achievement instead of errors.

Fulfillment in a Markov Decision Process Behavior potential, success po-
tential, and fulfillment can be applied to a simple MDP. Consider the grid
world shown in Figures 1 and 2. The world states are locations on the grid,
S = {(x, y) : x, y ∈ {0, 1, . . . , 16}}, the initial state (lower left) is I = {(0, 0)},
and the goal state (upper right) is G = {(16, 16)}. The evolution function is a
transition probability p(s′|s, a) where s′ is the next state, s is the current state,
and a is the action specified by the algorithm.

The algorithm is a policy designed to optimize expected discounted reward
for some reward structure R(s, a) and some dicount factor γ. The policy maps
a sensed state to an action. Thus, the policy implements the definition of an
algorithm A : SSen ×SComp → SEff ×SComp as π : S → A. States are SSen = S,
that is, the robot can perfectly sense the world; effectors are SEff = A, that is, the
effector states are the sets of actions that the robot can take; and computation
resources,SComp , is the data structure in which the policy is stored.

5 Thanks to Karina Roundtree for pointing out the connection between operator error
and fulfillment.
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Fig. 2. High fulfillment.(ρ = 0.9, γ = 0.999, τ = 60)

For concreteness, the following hold: (a) The robot’s actions are the cardinal
directions, A = {N,S,E,W}. (b) The agent moves in the direction it intends
(it goes N when a = N) with probability parameter ρ and moves in one of the
other three directions with probability ρ

3 . (c) The agent remains in the same
position and receives a reward of r = −1 when it moves toward a wall. (d) The
agent receives a reward of R = 2 when it reaches the goal.

Instances of the optimal policy, π, were computed using value iteration. Given
a policy, 50 trajectories were computed from the initial condition, generating a
sample of the behavior potential. Figure 1 shows the behavior potential for a
challenging set of conditions, ρ = 0.4, meaning that the the robot goes in an un-
intended direction (1−ρ) = 60% of the time. Each dot in a cell represents a visit
from the robot in one of the trials. The discount factor was set to γ = 0.9. The
optimal policy for the cells around cell (2, 2) point back to that cell. Essentially,
the robot has learned that going through the narrow passageways to the left and
below the irregular wall risks a likely collision with a wall, so the “pull” of the
goal reward is insufficient to draw the robot through the passageways. For this
example, no trajectories reach the goal within τ = 40 time steps, so the success
potential is empty. Thus, Fulfill = 0

50 = 0.

Figure 2 shows the behavior potential for a policy instance generated from
value iteration using the parameters, ρ = 0.9, γ = 0.999, and τ = 60 time steps.
The robot moves in the intended direction often, more time is given to complete
the task, and the discount factor is high enough to draw the agent to the goal
through the narrow passageways. For this world, Fulfill = 50

50 = 1.

Figure 3 illustrates fulfillment for various policy instances created from vari-
ous parameters, yielding three observations. First, when more time is allowed for
finding a goal, fulfillment increases. Comparing the left and right figures reveals
that, for the same values of ρ and γ, fulfillment is higher when τ is greater.
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Fig. 3. Fulfillment for τ = 40 and τ = 60, respectively.

Second, even though each policy is optimal for the given discount factor
and reward structure, not all algorithm instances have the same fulfillment. In
particular, when both γ and ρ are low, the optimal policy tries to stay in the
relatively open area in the bottom left, rather than pass through the narrow
passageways.

Third, fulfillment depends on both the algorithm through γ and the environ-
ment through ρ.

Infinite Sets These examples count the size of finite sets. Infinite sets need
a set theoretic measure of set size. Probability measures can be used even if
the common perspective that probability represents the frequency of an event
precisely is not adopted, because probability measures are special cases of more
general set theoretic measures. Future work will demonstrate this claim.

Self-Directedness Some argue that self-directedness is essential for autonomy.
The Church-Turing thesis implies that a self-directed agent needs an algorithm
or algorithms to select goals, to process knowledge, and to select actions. If self-
directedness must be encoded as an algorithm, then success potentials, behavior
potentials, and fulfillment apply to that algorithm.

Rationality – An Aside Behavior potential, success potential, and fulfillment
are agnostic about whether the algorithm is optimal or rational with respect to
some standard. The process by which the algorithm was created is not specified.
Because the definitions are agnostic, they complement frameworks that identify
optimal algorithms for specific problems. Gerkey and Matarić’s taxonomy of in-
dependent tasks that can be solved by multi-robot teams [19] is grounded in
optimization. The known time and space complexities of algorithms that com-
pute optimal solutions can be used to bound minimum required time budgets τ
and what memory resources are required, respectively. Furthermore, knowing the
payoff of an optimal solution is useful in trading off the utility of approximate
solutions to their fulfillment.
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Similarly, the definitions allow for algorithms that are rational with respect
to Newell’s standard, where he argues that rationality requires an agent pursue
a course of action compatible with its goals using knowledge available to the
agent [37]. Newell’s notion is related to self-directedness, in that a self-directed
agent must select goals and pursue those goals using available knowledge.

Being agnostic about how the algorithm is computed may seem to allow ir-
rational agents, and indeed it does. But measuring the fulfillment of irrational
agents and comparing against the fulfillment of rational agents allows a compar-
ison of the relative autonomy.

3.2 Relative Autonomy: Levels, Asymmetries, Deficiencies

Given two robots, R1, and R2, there are multiple partial or complete orders that
can be identified by comparing SP (R1) to SP (R2) and SP I(R1) to SP I(R2).
Intuitively, systems with lower autonomy (in terms of the subset relation) will
be able to reach goal states in fewer cases (i.e., from useful initial states) and
vice versa.

Recall that capability and non-reliance on others are attributes of autonomy.
For the capability attribute, a reasonable definition for levels of autonomy (LOA)
is:

LOA(R1) > LOA(R2) iff SP (R1) ⊃ SP (R2).

The LOA is not defined by comparing the fulfillment ratios because fulfillment
indicates the potential need for external input or intervention when behaviors
cannot be guaranteed to reach the goal. LOAs indicate the relative capability of
reaching a goal. We discuss fulfillment in the next section.

MDP Example continued. Multiple optimal policies were computed for
the MDP example. Consider three policies:

– R1’s is computed for (γ = 0.999, ρ = 0.9),

– R2’s policy is computed for (γ = 0.9, ρ = 0.7), and

– R3’s policy is computed for (γ = 0.9, ρ = 0.4).

We ran 50 trials with those policies in a challenging world (ρ = 0.4). For
each trial, each optimal policy was run using the same seed for the random
number generator, with different seeds across trials, which approximates running
the algorithms under the same conditions.

Figure 4 illustrates the results for τ = 50 time steps. The red ×’s indicate
trials where all algorithms failed to reach the goal. The blue �’s indicate the two
trials where R3 reached the goal; one success occurred in a trial where both R1

and R2 succeed, and one occurred where both R1 and R2 failed. The green ◦’s
represent trials where both R1 and R2 reached the goal. The cyan *’s represent
trials where R1 reached the goal and R2 did not.

Consider the pair R1 and R2. Because SP (R2), enclosed in the green circle,
is a proper subset of SP (R1), R1 has a higher LOA than R2. Now, consider
the pair R1 and R3. What is the relationship between their LOAs? Fulfillment
for R1 is much greater than fulfillment for R3, but the success potential for R1
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Fig. 4. Success potentials for the MDP problem with different algorithms. The clus-
tering is notional, meaning that it does not represent any environment condition, but
is organized to make the sets easy to visualize.

is not a superset of the success potential for R3. This means that R1 does not
have a higher level of autonomy than R3, which may seem counter-intuitive.
Fortunately, differences in success potentials for different robots can be exploited
to maximize group potential.

4 Multi-Agent Systems

Without interference and in the presence of an effective interaction algorithm,
the success potential of a group of robots will be at least as high as the union of
the success potentials of the individuals,

SP ({R1,R2, . . .Rn}) ⊇ ∪ni=1SP (Ri). (3)

Similarly, the behavior potential of a group should be at least has high as the
union of individuals, again in the absence of interference,

BP ({R1,R2, . . .Rn}) ⊇ ∪ni=1BP (Ri). (4)

4.1 Group Potential: Synergy and Interference

Whether or not the relationships in Equations (3)–(4) hold is subtle for various
reasons. First, the number of potential platforms in a team is more than the
sum of the individuals. Combined team members can form new platforms (e.g.,
by connecting [39, 49]) or virtual platforms (e.g., formations [32, 41]). If n robots
form the team, then there are 2n robot combinations of new or virtual platforms.

Second, additional computing resources allow more algorithms. Increased re-
sources increase the number of problems that can be solved (constrained by
communications).

Third, entirely new trajectories can be created. For example, trajectories may
be enabled that no single robot can perform (e.g., two robots pushing a large
box that cannot be pushed by an individual).
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Fourth, multiple individual trajectories can be explored simultaneously by
a team. For example, ants [22] and honeybees [45] can perform tasks within a
time bound that no individual can do by itself within the time bound.

Fifth, the nature of the goal determines which trajectories are successful.
Steiner’s taxonomy of task types differentiates between unitary tasks and divis-
ible tasks [48]. Divisible tasks can be separated into component subtasks that
can each be performed by an individual group member. Unitary tasks must be
performed in their entirety, requiring either a coordinated group algorithm or
execution by a single team member (or subgroup) with no contributions from
others.

Synergy The synergy potential from adding more agents H = {Rk : k ∈ I} to
an existing group of agents G = {Rk : k ∈ J }, where G ∩H = ∅, is the set of
“extra” things that can be done given the new agents that cannot be done by
the original group:

Synergy(H +G) = BP (H ∪G) \
(
BP (G) ∪BP (H)

)
.

This potential can be extended to the extra things that can be done when
agents are added to a set of indexed subsets but only the definition for two sets
is given for simplicity. Of particular interest is what happens when evaluating
what can be accomplished by a group, G = {R1,R2, . . .Rn}, when the goal is
not divisible,

Synergydiv(G) = BP (G) \
(
∪i RiBP (Ri)

)
.

An analogous definition can be made in terms of success potential, and fulfillment
in the presence of synergy can be computed.

Interference Similarly, interference potential can be defined as the set of tra-
jectories removed from the subset of trajectories for group G when new agents
H are added (e.g., R1 blocking the path to R2’s goal location),

Interference(G+H) = BP (G ∪H) ∩BP (G).

An analogous definition can be made in terms of success potential, and fulfillment
in the presence of interference can be computed.

Synergy and Interference in Swarms Synergy and interference are illus-
trated using bio-inspired spatial robot swarms. In this example, spatial swarms
are composed of simple agents who only interact with their neighbors based
on three rules: repulsion, orientation, and attraction. These rules, based on
Reynolds’s rules for boids [42], are representative of biological swarms [2]. Indi-
vidual agents’ zones of repulsion, orientation, and attraction are centered at an
agent’s position and are parameterized via the radii of repulsion (rrep), orienta-
tion (rori), and attraction (ratt), where rrep < rori < ratt. The swarm uses the
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topological communication model [3, 1], which assumes an individual can com-
municate with the NT nearest agents. Zebrafish have 3 − 5 topological neigh-
bors [1], while starlings coordinate with the nearest 6−7 birds [3]. The examples
in this section present results for a topological number of 7 neighbors.

The swarm task is to search for a goal, in which the swarm is to locate and
move all agents to a single goal location. The goal area’s size is scaled to ensure
the swarm is able to fit within the goal area. The 600 x 600 pixel world is bounded
by a wall that exerts a repulsive force. An agent can sense the goal if it is within
the radius of attraction of the goal area’s location. Once an agent locates the
goal, it communicates the location to its seven neighbors. Agents aware of the
goal’s location update their headings by equally weighing the desire to travel to
the goal and the desire to follow the interaction rules, as was done by others [12,
8].

Synergy and interference are defined using trajectories in the state space.
Recall from Eq. 2 that trajectories include computational and effector states.
For these spatial swarms, the trajectories include (a) moving from an initial po-
sition new locations, (b) forming topological neighborhoods, (c) communicating
goal information, and (d) sensing distances and directions of neighbors. Adding
agents to a group can create new trajectories in the form of agent networks that
communicate information, shaping where agents move.

Fig. 5. Fulfillment with swarms for N and no obstacles (left) and 20% obstacles (right).

1,800 simulation trials were conducted, where each trial was 1000 iterations,
for 50, 100, and 200 agents. Figure 5 left presents results when there are no
environmental obstacles. The percent reached represents the number of agents
that reached the goal area, expressed as a percentage of the swarm’s size, at the
end of the task. This number approximates fulfillment since if 100 robots are in
the swarm and 80 reach the goal then 80% of the robots are successful.

In the absence of synergy, if roughly 45% of the 50-agent group reaches the
goal then we’d expect roughly the same percent to reach the goal for the 100-
and 200-agent groups. Synergy increases fulfillment as agents are added because
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more trajectories are possible and successful trajectories are more likely. Larger
groups contribute to success in two ways: (a) more agents explore the world,
making it more likely that the goal will be found, and (b) more agents tend to
form a large connected component through which goal information propagates
enabling more agents to reach the goal.

The world becomes more complex by adding obstacles. Obstacle densities of
10% and 20% of the number of agents were evaluated. Both obstacle density lev-
els (10% and 20%) result in a lower percentage of the swarm robots reaching the
goal as the number of robots increases. Figure 5 right illustrates decreased fulfill-
ment for 20% density. With 50 robots, an average of 20% of the agents reached
the goal, but with 200 robots the average drops to just a small percentage. The
precipitous drop in fulfillment is caused by interference. Obstacles “carve” up
the large connected component into disconnected connected components, elimi-
nating successful trajectories by preventing goal knowledge to propagate across
components.

4.2 Augmentation and Diminishment

When group potential exceeds individual potential, an agent may contribute to
the success potential and fulfillment of another agent.

Augmentation Augmented capability represents the increase in a agent’s suc-
cess potential when partnered with another agent. Augmented capacity repre-
sents whatR1 gains in terms of achieving its goal, whenR1 coordinates withR2.
Augmented capability for R1 is the increase in goal-achieving trajectories that
arises (a) when R2 induces changes in the evolution function that benefit R1

(e.g., pushing an obstacle out of the way), (b) when sensor information from R2

is used as input toR1’s algorithm (e.g.,R2 provides world state information that
R1 cannot sense), or (c) when R2’s computational resources are used to solve
a problem quickly (within time bound τ) or with a larger amount of memory
(e.g., imaging processing). An augmented robot has a higher level of autonomy,
because the augmented capacity is defined as an increase in the success potential,

SP aug(R) ⊃ SP (R)⇒ LOAaug(R) > LOA(R),

Relying on another can augment an agent’s capability.

Diminishment Augmenting a robot’s capacity can diminish another’s capa-
bility. If R1 requires R2’s computational resources, then R2 may be unable to
compute what is needed. Diminished capability can be defined analogously to
augmented capacity, and is a form of interference potential.

Verplank and Sheridan’s Levels of Automation Sheridan’s LOAs can be
revisited in the light of augmentation and diminishment. Figure 6 illustrates a
robot’s success potential, the green circle surrounding the green ◦’s. The robot
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can generate many behaviors, but only a fraction of them generate successes;
the cyan *’s are robot failures. If the robot receives human input, such as navi-
gation or perceptual support, then all behaviors will reach the goal, illustrated
by the larger cyan circle enclosing the green circle. The success potential grows
and fulfillment becomes one. With human input, robot R’s LOA increases be-
cause SP aug(R) ⊂ SP (R); the robot, augmented by the human, is strictly more
successful.

Fig. 6. Augmenting a robot with human input can diminish the human, assuming the
human cannot work on other tasks.

Augmenting the robot can cost the human, because human attention and
other computational (i.e., cognitive) resources are used to support the robot.
Thus, the human splits resources between two tasks, and the resulting set of
human behaviors may no longer lead to success. Figure 6 illustrates human
success potential without the robot, the red polygon surrounding the red ×’s.
When supporting the robot, the human’s success potential decreases, the blue
polygon. The human’s, H, LOA decreases because SP dim(H) ⊃ SP (H).

Whether or not dimishing the human is worth it depends on whether the
augmentation benefit is useful. Group potential of non-interacting human and
robot is the “size” of the red polygon plus the “size” of the green circle; group
potential with interaction is the “size” of the blue polygon plus the “size” of the
the cyan circle. Size measures can include the probability of encountering one of
the trajectories or the utility of the trajectories or some combination.

Consider four of Sheridan’s LOAs: autonomous (Auto, level 10), Do-Then-
Tell6 (Dtt, levels 6–9), Ask-Then-Do (Atd, levels 2–5), and teleoperation
(Tele, level 1).

First, assume that Auto means the robot can succeed at all behaviors with-
out human input. Figure 7 left cross-plots (SP dim(H), SP aug(R)) the combined
success potentials for various Sheridan-based LOAs. The plots assume it is pos-
sible for the autonomous robot to accomplish all its goals from any starting
condition – fulfillment is one and success potential is large. What the robot can
accomplish sans human help is plotted on the y–axis; the robot wastes time inter-
acting with the human and resorts to autonomous mode. Human-diminishment

6 Thanks to Lanny Lin for the names of Do-Then-Tell and Ask-Then-Do.
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Fig. 7. Success potentials when autonomy is just as capable as a human and robot
working together (left) and when autonomy can’t achieve what human and robot to-
gether can (right). •’s indicate robot success potentials, �’s indicate human success
potentials, and thick +’s indicate group success potentials.

from reduced computation-budget is plotted on the x-axis, with maximum com-
putational resources available if the human is not obligated to assist the robot.
The human-robot team elevates all robot LOAs to that of a fully autonomous
robot, but at the cost of what the human can do when not assisting the robot.
Group success is plotted as black +’s. For this example, Auto maximizes group
fulfillment.

Second, assume that the fully autonomous robot does not achieve maximum
fulfillment and lacks sufficient capability to achieve maximum success potential.
Figure 7 right cross-plots a diminished human and an augmented robot. Sans hu-
man input, Dtt and Atd perform the same as Auto, but they are equipped with
a human interaction algorithm that allows them to be augmented. Tele must
have human input to perform well. With human help, Atd can achieve maximum
fulfillment but with human diminishment. Dtt can be augmented with human
interaction to achieve high-but-not-maximum fulfillment, with lower human di-
minishment cost. The shaded rectangles indicate group success potential for Atd
and Dtt; larger areas indicate larger group fulfillment. For this example, Dtt
maximizes group fulfillment but Atd maximizes robot fulfillment.

The ideal robot LOA depends on the success potential and fulfillment for the
robot, the human, and the group.

5 Summary

This paper provides precise algorithm-based definitions for two attributes of
agent autonomy: capability (defined as the size of the success potential set)
and nonreliance on another agent (defined using fulfillment). The definitions are
extended for multiple agents, leading to notions of synergy and interference.
The potential for group capability and fulfillment to be higher than the sum of
individuals in the group make it possible to estimate tradeoffs in multi-agent
teams; specifically how a contribution from agent A can augment agent B, but
at a potential cost in capability and fulfillment for agent A. Case studies were
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used to illustrate the definitions, emphasizing how the definitions give insight
into existing problems.
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