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Abstract

The game of monopoly is an adversarial multi-agent domain
where there is no fixed goal other than to be the last player
solvent There are useful subgoals like monopolizing sets of
properties, and developing them. There is also a lot of un-
certainty from dice rolls, card-draws, and adversaries’ strate-
gies. This unpredictability is made worse when unknown
novelties are added during gameplay. Given these challenges,
Monopoly was one of the test beds chosen for the DARPA-
SAILON program which aims to create agents that can detect
and accommodate novelties. To handle the game complexi-
ties, we developed an agent that eschews complete plans, and
adapts it’s policy online as the game evolves. In the most
recent independent evaluation in the SAILON program, our
agent was the best performing agent on most measures. We
herein present our approach and results.

Introduction

Al agents are often trained and evaluated in closed settings
where the dynamics are fixed. They have shown spectacular
performance in such settings; this is notably seen in game-
playing agents such as in Chess and Go (Silver et al. 2017).
However, we seldom consider how well these agents would
act when novelties or changes are injected into the envi-
ronment, i.e. an open-world setting. This would require ex-
ecution monitoring to know what parts of the model have
changed, and adapting to it as necessary. Developing agents
to handle an open-world setting is necessary if we want to
bring robust Al-agents into the real world.

With this in mind, DARPA (Defense Advanced Research
Projects Agency) started a research program on Science of
Artificial Intelligence and Learning for Open-world Novelty
(SAIL-ON). The agents developed as part of this program
are developed with the objective of handling novelties in the
environment. One of the test-beds chosen for the SAIL-ON
program is the game of Monopoly.

Monopoly is a board game about real-estate develop-
ment with upto 4 adversaries. The objective of the game is
to be the last solvent player. This is done through buying
and developing properties, so as to charge the other play-
ers rent and fees. The game dynamics are first affected by

*indicates equal contribution

dice rolls which determines how each player moves around
the board. The game dynamics are also affected by draw-
ing of “chance” and “community cards” ( elements of luck),
as well as by the combinations of the actions (strategies)
of adversaries. If one adds in novelties, such as changes to
the board layout, rent or bank rates, then the game becomes
more unpredictable and hard to pre-train for.

Due to the aforementioned challenges, a plan of action
can fall apart in a single round. In such an uncertain en-
vironment, we take the cautious and simple approach of
state-evaluation after a single-step, where the strength of the
approach comes from cautiously approximating the future
value of the state after an action. This relatively simple ap-
proach outperformed other approaches as evaluated by an
independent performer in the DARPA SAIL-ON program on
the Monopoly test-bed.

In this paper, we first present and frame Monopoly as a
challenging test-bed for interleaving online planning and ex-
ecution, especially when novelties are injected (open-world
setting). Then we discuss our agent for Monopoly, and also
present the results of the evaluation made by an independent
third-party evaluator; the evaluation compared our method
against other teams in the DARPA SAIL-ON program. We
propose our agent methodology as a strong baseline for
future research on open-world robustness, and agents in
Monopoly.

Monopoly Game And Simulator

Monopoly is a multi-player adversarial board game with
upto 4 players (traditionally), where the objective is to be the
last player solvent after having bankrupted the others. This
is done through buying and developing properties so as to
charge higher rent when the other players land on your prop-
erties. Players move across the board based on dice rolls,
and can buy properties owned by the bank. If one lands on a
property owned by another player, rent is charged. Rent on
a property can be increased by owning all properties of a set
(categorized by color); this is called having a monopoly over
that set. The rent can be further increased by building houses
and hotels on a monopolized set. Any policy or plan of ac-
tion needs to be adapt to the changes of fortune with dice
rolls, and the decisions of other players, which makes it chal-
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lenging as a domain for integrated planning and execution.
The full set of rules for the game simulator (test bed) and all
the nuances can be found in (Haliem et al. 2021)) which also
contains a link to the game simulator code. This simulator
was developed by an independent evaluator for the SAILON
program. In the game simulator, one can also inject novelties
on top of the standard game to study how the agent adapts to
these modifications. Novelties were part of the evaluations
of the agents developed for the SAIL-ON program, and will
be discussed more in subsequent sections

Game Novelty

For the SAIL-ON program evaluation, agents were tested
with one novelty injected per trial, where each trial is 100
games of Monopoly. The novelty could be added in any one
of the 100 games and persists for the remaining games. The
novelty could be changing the number of properties in a set
required for Monopoly, the rent of a property after building
a hotel on it, the order of properties on the board and such.
The set of possible novelties is not shared with us by the
evaluation/test team, and so it is left to us to make the agent
as robust and adaptable to novelties as possible.

Agent Design

We developed our agent such that it’s policy is controlled by
a state-value function. The value of a state is primarily deter-
mined by the expected short and long term reward obtained
from that state. Before we discuss the details of how these
rewards are calculated, we first present the motivation for
our design. Typically, approaches that use a value function
for game-playing agents — like MCTS (Browne et al. 2012)—
either simulate trajectories to the end and backpropagate the
terminal state value to compute the starting state’s value, or
they use a limited lookahead with an evaluation function that
captures the value of the rest of the trajectory. We use the
simplest form of the limited-lookahead approach where we
just lookahead by 1-step and then evaluate the next state by
approximating the expected short and long term returns that
would result by taking the action.

Our reason for planning with a 1-step lookahead was that
in the game of Monopoly, a single roll of the die, or a chance
card, or an adversary’s decision could change the entire
value of a state. So to compute the value of a state accurately
with simulated actions, requires considering a very large set
of branches from an extremely wide and deep tree that in-
cludes many possible combinations of dice rolls, combina-
tion of player decisions, auction bids, and more. It should be
noted that each turn of a player also includes what are called
out-of-turn moves by other players, which further increases
the branching factor of the search tree; please refer to the
monopoly rules in (Haliem et al. 2021)) for more detailed in-
formation.

If one had a very accurate mental model of adversaries,
the possible branches of the search tree might become
more manageable. Additionally, pre-training a large neu-
ral network for state evaluation—as was done with alpha-go
(Silver et al. 2017)—is not viable since our agent would have
to handle novelties or modifications to the game (the space

of which we did not know). Lastly, the evaluators impose
a max time limit of 3 hours per full-game, so simulating
enough MCTS rollouts for each action did not seem feasi-
ble.

Thus, in this work, our focus on intelligently evaluating a
state after a single action by considering short and long term
consequences; rather than requiring an accurate and com-
plete model to rollout and evaluate each state, we consider
long term consequences with simplifying assumptions (will
be discussed). The state value includes the current monetary
value of possessions, potential short and long term gains, as
well as the future benefit of monopolized properties. Impor-
tantly, the evaluation function is largely parameterized with
game attributes (that can change) and has few tuned con-
stants; this helps make it robust to game variations. We will
first go over the evaluation function. We will then provide
some examples of the state attributes that are tracked and
updated in V(s) to accommodate for novelty.

State Evaluation Function

The value of a state should consider the current (monetary)
value of owned properties as well as the potential for fu-
ture earning as possible future rewards. Thus, the evaluation
function we propose is a linear combination of four terms
ie. V(s) = Massers + Rs + Ri + Mmonopoly- Each of these
terms is described below:

Massets: Property value of all the agent’s assets that are
not currently mortgaged. Each property can be mortgaged
with the bank for cash. We can buy back the property from
the bank for the mortgaged amount plus interest on the mort-
gage.

Rs: short term expected gain in funds computed as the
difference between expected rent the agent will get for the
properties that it owns in state s and the expected rent it
would owe to other players based on current ownership of
properties over the next k turns. The expectations are com-
puted over the probabilities of each player landing in a par-
ticular position in the next & turns. This is akin to a rollout
with the strong relaxation (assumption) that no more prop-
erties will be bought or developed. To be specific, let G be
the set of all agents, g1 be our agent, P(g) denote the prop-
erties owned by agent g, 7(p) denote the rent of property p,
and Pr(g,p, k) denote the probability that an agent g will
land on a property p in the k™ turn from state s, then R is

computed as Ry = >4 > oy [Zpep(gl) Pr(g,p, k) *

r(p) = Lpep,,, Prignp, k) + r(p)} :

Ry: the expected long term change in funds. The computa-
tion for this term is similar to R, except that the probability
of an agent landing on a property is assumed to be uniform
over all properties. Note that the long term gain is calcu-
lated for £ full loops/passes around the board (not turns).
The value of k for both R and R; was taken as 5.

M monopoly: A monopoly gain term is computed to incor-
porate the monetary benefit our agent would get for mo-
nopolizing and improving all properties of the same color.
The purpose of this term is to drive our agent towards tak-
ing actions that would let it gain a monopoly on a color and



subsequently perform maximal improvements on its proper-
ties. To compute M pmonopoly, We start by calculating the ex-
pected funds, F, our agent would have after going around
the board (full loop) £ times ( k = 5 in our implementa-
tion) from its current position as F = cash possessed + &
go_increment + R; where the last term R; is also computed
for k loops around the board. Now let C(g;) be the set of
all colors such that our agent owns at least one property of
that color. Then for each ¢ € C(g1), we compute the com-
bined potential rent for that color (R.) that our agent will
get from all the properties of that color if it spends all of
F in buying all the properties of color ¢ followed by im-
proving each of the properties as much as possible with the
remaining amount from F. This potential rent value is then
scaled down based on how many properties the agent ac-
tually possess (currently) for that color. For example, if we
own 1 out of 3 blue properties, then the potential value from
that color should be much less than if we own 2 out of 3
red properties. The scaled potential value R is computed
as RS = R./27@~P1) where Pc) is the total number of
properties of color c. We use an exponential function in the
denominator to value color sets that are closer to comple-
tion significantly more than others. Since the set size can
change as part of game novelties, we think this is prudent.
Finally, the monopoly component of the state evaluation,
M nonopoly, 18 simply computed as the maximum R over all
the ¢ € C(g1). What this monopoly term does for the agent
is to allow it to eschew buying new or bidding for proper-
ties if that amount can be used to complete and develop a
monopoly.

Avoiding Bankruptcy

Another complication for the agent, is that it must try to
avoid bankruptcy in the face of a lot of stochasticity from
the game. So even if the expected value of a policy is high,
if it risks bankruptcy then a lesser-value policy that mini-
mizes the risk of bankruptcy might be preferred. Concretely,
at any state s, the agent considers if each possible move from
the set of possible moves m € M with cost C(m) satisfies
the following conditions:

Condition 1: cashcurent + Ruext — C(m) > cashmi, where
casheyment 18 the current amount of money our agent pos-
sess, Ruext 1 the expected change in cash due to rent after
one round, cashp;, denotes the absolute minimum amount
needed to protect against bankruptcy. This covers misfor-
tunes from the Chance and Community chest cards that the
agent might draw.

Condition 2: cashcuent + Rowed + Worthseea — C(m) —
Ruworst > 0 where Rowed 18 the expected income from charg-
ing rent that our agent will get in the next round, worthgcaed
is some mortgage value of all properties our agent owns,
and Ryorst 1s the maximum possible rent our agent could be
charged in the next round. This protects against bankruptcy
from landing on an adversary’s property. Both the above
conditions were used to prevent the agent from aggressively
spending its cash and going bankrupt. Once we have pruned
the moves in M, our agent simply chooses the move such
that m = argmax,, V (s/,,) where s/, is the next state after
simulating the move m.

Novelty Detection and adaptation

To perform well in the SAIL-ON evaluation, our agent needs
to detect the novelties introduced and adapt state evaluation
accordingly. The novelties that the agent was tested on were
hidden. To adapt, we maintain knowledge of the expected
values for game-board attributes like property rent, dice out-
come likelihood, etc. The evaluation function is parameter-
ized with such attributes and is updated once a change is
detected. Some of these values are provided directly as the
state information and thus we keep track of the current val-
ues of these attributes by observing the state. For other at-
tributes, the agent needs to observe the outcome of certain
actions (like selling a property) to infer how the relevant at-
tributes changed. In attribute value changes, we also detect
novelties related to dice. This includes addition/deletion of
a die, additional sides added to the dice, and the distribution
of rolling any number on each die. The first two are inferred
by observing the dice rolls in the game. For the last one,
we model the distribution of rolling any number as Dirichlet
distribution and use MAP estimates to update this distribu-
tion. This updated dice distribution is then used to compute
the probability function Pr , as used to compute R ;.

Evaluation and Results

Best Best .
Novelty type NDA(%) | competitor | Win-rate (%) co'mpemor

NDA(%) Wi

rate (%)

None(PNWP) - - 76.48 63.61
CN-easy 40 20 71.1295 58.448
CN-medium 46.67 20 64.8895 61.867
CN-hard 48.00 24 28.899 43.173
AN-easy 90.32 80 70.473 62.335
AN-medium 90 90 94.432 68.5425
AN-hard 75 20 61.503 46.1825
RN-easy 52 3.33 74.9905 58.448
RN-medium 32 13.33 78.0975 50.8625
RN-hard 32 20 81.5815 67.6585

Table 1: Novelty detection and reaction performance in the
DARPA SAILON program

Our agent was evaluated against other teams in the SAIL-
ON program by an independent evaluator separately funded
by DARPA. Evaluation consists of multiple trails, where
each trial consists of 100 games of monopoly against 3
baseline agents. The baseline adversarial agents were pro-
grammed by the evaluation team to serve as the competition
baseline. The behavior of the baseline agent is described in
(Haliem et al. 2021)) as the “simple baseline agent” in that
work. During each trial, a novelty is injected during one of
the 100 games, and kept for the remaining games.

Measures of performance

The following metrics help compare agent performance: (1)
Pre-Novelty Win-Percentage (PNWP): The ratio of games
won before any added novelty. (2) Novelty Detection Accu-
racy (NDA): This is the percentage of trials in which the



novelty was correctly detected, and without a false posi-
tive before the novelty was added. (3) Novelty Reaction
Performance (NRP): To compute this, the win ratio of our
agent after the novelty was added is divided by the win
ratio of the baseline agent before the novelty was added.
These measures were not defined by us, but by the evalua-
tion group, and directed by discussions in the SAIL-ON pro-
gram. For every measure, our agent was evaluated with dif-
ferent classes of novelties, these are: Class Novelties (CN)
such as new classes of objects like property classes, or new
classes of actions; Attribute Novelties (AN) such as changes
in the mortgage rate, rent costs; and Representation Nov-
elties (RN) such as changes to the position of properties,
and the color sets to which they belonged. Within each type
of novelty, the evaluators further classified them into easy,
medium and hard. As mentioned, we do not have more de-
tails about the specific type and distribution of novelties that
our agent was evaluated on, as this information is currently
hidden from us to evaluate agent adaptation better.

Results

We report our performance in Table [Il where we provide
our performance and the performance of the best competi-
tor for NDA and Win percentages for the different novelty
settings. With respect to the win ratio of our agent, our pre-
novelty win ratio (PNWR) was 76.48%, i.e the 3 other base-
line agents combined only won less than a quarter of the
games when there was no novelty injected. This win rate rep-
resents the efficacy of our agent design/playing algorithm for
the standard Monopoly game. In comparison the win rate for
the next best team was 63.61%. Our agent performs better
before novelty was added to the game, and also in most set-
tings after novelty was added to the game. The only setting
in which our agent did not get the best result was for "NRP-
CN-hard” (Novelty Reaction performance for hard class-
novelties). This reflects our agent’s ability to accurately cap-
ture both the short and long terms effects of actions, as well
as, how well it can adjust for novelties in the game while
making decisions by modifying the evaluation function dur-
ing the gameplay. The evaluators also ran a special test to see
how well our agent performs against another instance of our
agent, and a baseline agent. The two instances of our agent
won 40.75 and 39.43% of the games on average (over many
trials).

Related Work

There are connections between replanning systems
and handling open-world novelty. Replanning sys-
tems are aimed at dealing with unanticipated changes
in the dynamics, but traditionally, replanning systems
don’t automatically characterize the novelty or change
their domain model (Yoon, Fern, and Givan 2007). In
(Cushing and Kambhampati 2005)), the authors discuss
how to update the planning problem to handle unexpected
changes with a language for failure representation, but not
how to automatically characterize a novelty and update the
model. In our methodology we do online model-update
and replanning by incorporating the novelties into our
state-evaluation function.

With respect to agents for Monopoly, there have only
been a few notable attempts; (Haliem et al. 2021) recently
proposed a Reinforcement Learning (RL) approach where
they train a Deep Q-Network agent (Mnih et al. 2015)
to play Monopoly. To accelerate learning, they em-
ploy a e-greedy approach during training where in-
stead of executing a random action for exploration,
the agent imitates the policy of a rule-based agent
which was manually designed to follow known success-
ful strategies to winning Monopoly. Other RL-based ap-
proaches include (Bailis, Fachantidis, and Vlahavas 2014)
and (Arun et al. 2019) where the Q-function is again ap-
proximated by a neural network. To train the agent,
the former approach uses the (A)-learning technique
(Peng and Williams 1994)), whereas the latter uses experi-
ence replay (Mnih et al. 2015)). To restrict the action space
of the agent, all the mentioned techniques only select the
action type, and the parameters are chosen by fixed rules;
for example the sell_property action in (Haliem et al. 2021))
would sell possesions in a fixed order, a hotel, a house or
a property depending on availability.) In our approach, we
only constrain the trade-related actions to rule based behav-
ior. Further, we argue that our approach is more suited to
developing an agent that is robust to open-world pertuba-
tions; the aforementioned RL-based approaches would re-
quire retraining the agent once any novelty is encountered,
even some simple parameter changes such as rent values.

Another approach for playing Monopoly was presented
in (Sammul 2018) which uses MCTS (Browne et al. 2012)
for its decisions. To make this feasible, the author makes
significiant game simplifications to reduce the action space
and game-tree size. For example no out-of-turn actions are
allowed, which is a significant deviation from the game. This
pruning, coupled with the agent having access to the best
(by win rate) adversary model it will play against, is what
helped the MCTS method achieve a win rate of 63%. We,
on the other hand, handle the chaotic nature of the game
by evaluating the state features intelligently, and not rolling-
out and relying on the availability of an accurate adversary
model.

Conclusions and Future Work

We present the game of Monopoly as a challenging test bed
for evaluating open-world robustness, and integrating online
planning and execution. We propose our agent methodology
of using a flexible state evaluation function as a strong ap-
proach to handling novelties in the environment as demon-
strated through an independent evaluation in the game of
Monopoly. There are plenty of interesting avenues for fur-
ther research: these include including learning and updat-
ing adversary mental models, and analyzing the cost/benefit
tradeoff in varying the lookahead depth in the game tree es-
pecially if the game and adversary models change over time.
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