
New Advances in Asynchronous Agent-based Scheduling

Jack Harris1 and Matthias Scheutz2

1School of Informatics and Computing, Indiana University, Bloomington, IN 47404, USA
2Department of Computer Science, Tufts University, Medford, MA 02155, USA

Abstract— Traditional discrete event simulations enumerate
the event-space in a sequential manner to guarantee the
consistency of the simulation. Rrecent asynchronous agent-
based scheduling work has demonstrated that it is also
possible to achieve consistent simulations under certain
constraints even when all agents are at different time steps.
This paper extends asynchronous event-based scheduling
for agent-based simulation by introducing a scheduling
policy based on the notion of Dynamic Goal-based Agent
Prioritization (D-GAP) which provides the opportunity for
evaluating a simulation signifcantly faster and with fewer
computational steps.

Keywords: parallel scheduling, discrete event simulation, asyn-
chronous scheduling policies, scheduler efficiency

1. Introduction
Scheduling in traditional discrete event simulation enu-

merates the event-space sequentially by updating all entities
at time t before evaluating any entity at the next time
step t+1. This serial temporal updating limits the utility
of large-scale computational resources by requiring paral-
lel processes to synchronize at every time step in order
to maintain a consistent state configuration. Scheutz and
Schemerhorn defined a methodology to identify entity sets
that are “update-independent” and could temporally advance
in the simulation without requiring synchronization updates,
thereby maximizing parallel processing for discrete event
simulations [1]. Scheutz and Harris, utilizing the notion
of asynchronous discrete event scheduling, published a set
of policies explicitly aimed at minimizing the runtime of
distributed agent-based simulations [2]. This paper builds
upon that prior work. First, we introduce an important
performance optimization to the previously published gen-
eral asynchronous scheduling algorithm. This improvement
identifies the minimum set of agent state updates required by
simulations to asynchronously advance a given agent to the
next time step. Secondly, we introduce a novel scheduling
policy, Dynamic Goal-based Agent Prioritization (D-GAP).
This method utilizes a directed search technique to explore
a simulation’s discrete event-space targeting the events that
will lead to simulation completion as defined by the modeler.
Together, these two advances further optimize discrete event
simulations for both serial and parallel execution environ-
ments by evaluating a simulation faster and with fewer
computational steps.

2. Background and Related Work
The study of discrete event simulation has been driven by

the need to efficiently model complex system interactions.
To facilitate the development and execution of these models,
formalisms such as the Discrete Event System Specification
(DEVS) have been created [3]. Parallel and distributed re-
sources are commonly leveraged to increase the performance
of model execution runtime environments for DEVS and
other discrete event simulators. (See [4] for an example of an
agent-based simulation modeled using DEVS methodology
and executed in parallel using the High Level Architecture
(HLA) distributed simulation protocol.)

Though these discrete event systems utilize parallel re-
sources, their efficiency is reduced by the need to continu-
ously synchronize the distributed resources and update each
agent in the simulation at each time step. It is sometimes
interesting (or required) to evaluate the state of every element
in a simulation at simulation termination, but it is often
common for a modeler to only be interested in a small set of
critical simulation elements (e.g., whether one agent reaches
a particular location in the environment)..

In 2006, Scheutz and Schermerhorn introduced the no-
tion of “update-independence” for segregating groups of
agents across distributed resource pools and for determining
how long they could operate in isolation without sharing
agent state information. Formally, an agent A1 is update-
independent from A2 if A1 will advance from configuration
state C at time t to C ′ at t+1 regardless of the existence
of A2 in the simulation. Fortunately, it is possible to iden-
tify some forms of update-independency without actually
advancing a simulation from t to t+1 provided that there
is some a priori constraints on agent interactions (e.g., for
spatial agent-based simulation: maximum velocities, sensory
ranges and effector ranges of agents). For example, if an
agent A1 is outside of agent A2’s maximum interaction range
and A2 is outside of A1’s maximum sensor range then A1 is
update-independent of A2. However, the reciprocal relation
must also exist for A2 to be independent of A1. Both A1

and A2 must be mutually update-independent for either to
update without causing a misconfiguration in the simulation.
Clearly, it is possible that A1 would not be affected by A2

even if it was not outside of these ranges, but this cannot
be known for certain without executing the simulation. A
conservative estimation of dependence in a simulation will
always ensure consistent configurations are produced.



The notion of an agent’s “event-horizon” was introduced
to facilitate update-independence determination. An “event-
horizon” defines the spatial region containing all possible
positions for that agent in a future time step. This region is
determined by assuming an agent traveled at its maximum
velocity from current simulation time to the projected fu-
ture time in all directions simultaneously. This assumption
allows “event-horizons” to be calculated using only simple
geometry. Using “event-horizons”, it is possible to identify
agents that must be update-independent from other agents
even when they exist at different simulation times.

When determining update-independence and projecting
“event-horizons” of an agent, a subset of interdependent
agents are identified for a given time step. This subset
of agents defines a local world that could function inde-
pendently from the rest of the agents in the simulation.
This local world is essentially a “transitive closure” of
dependency, where dependency is recursively identified for
a given agent and time. Scheutz and Schemerhorn exploited
this characteristic of local world independence and used it
to aid the parallelization of agent-based simulations. By dis-
tributing these sets of agents across different computational
resources, performance gains were achieved. These parallel
units could update asynchronously until the “event-horizons”
of agents inside and outside the closure intersect. When such
an intersection occurs the independence of the sets is re-
moved and the agents at the future time step become blocked
and unable to continue to advance asynchronously without
additional information. Therefore, to maintain a consistent
simulation, the asynchronous scheduler must never run an
agent asynchronously beyond the point of being blocked [1].

The formalism and correctness proofs of Scheutz and
Schermerhorn provided the foundation for future agent-
based asynchronous discrete event scheduler research. Sub-
sequent research by Scheutz and Harris explored new update
scheduling algorithms to optimize the discrete-event sched-
uler and minimize the runtime of simulations [2]. From that
work novel asynchronous agent-based scheduling policies
were presented; each optimizing different heuristics. For
example, the Remote − Event − First policy attempted
to minimize simulation runtimes by minimizing the oc-
currences of blocked agents in a distributed context. This
was accomplished by preemptively advancing agents whose
projected “event-horizons” would first interact with agents
on other parallel systems.

3. Improving Asynchronous Scheduling
This section outlines efficiency improvements made to

the general asynchronous scheduling algorithm originally
proposed by Scheutz and Harris [2]. These advancements
focus on minimizing the number of dependent agent updates
required to advance a given agent asynchronously in the sim-
ulation. Before the new algorithm is proposed, the original
methodology is discussed as a counterpoint. Following the

description of the new algorithm, a proof for correctness is
presented.

Algorithm 3.1: ORIGINAL METHOD(W )

procedure ISCOMPLETE(W )
return (has terminating criterion been met)

procedure PICK(W )
comment: select and return an agent to update

procedure GETTRANSITIVECLOSUREFOR(a, t, W, S)
comment: gets a’s recursively dependent set at time t

for each d ∈ senseOrAffectAt(a, t, W ) and d /∈ S
do S ← S ∪ {d} ∪ GETTRANSITIVECLOSUREFOR(d, t, W, S)

return (S)

procedure ISOLATEDEPENDENTSUBSET(a, W )
Ta← GETTRANSITIVECLOSUREFOR(a, time(a), W, ∅)
return (Ta)

procedure UPDATESET(S)
comment: advance agents youngest to oldest

St← sortByLocalT ime(S)
for i← 0 to size(St)− 1

do if i < size(St)− 1

then

8><>:
if time(St[i]) <= time(St[i + 1]

then


UPDATEAGENT(St[i], S)
i← 0

else UPDATEAGENT(St[i], S)

procedure UPDATEAGENT(a, transitiveClosureForA)
comment: transitions a’s state from time(a) to time(a)+1

main
repeat
a← Pick(W )
S ← IsolateDependentSubset(a, W )
UPDATESET(S)

until ISCOMPLETE(W )

3.1 Full Transitive Closure Update
The original algorithm, Full Transitive Closure Update,

ensured consistency in simulations by fully synchronizing a
set of agents when a dependency relationship was identified.
For example, suppose agent A1 is at time t and agent A2

is at time t0 | if agent A1’s sensory range intersects with
the projected “event-horizon” of agent A2 then agent A2

would have to advance to time t before agent A1 could
update. Furthermore, this update requirement for agent A2

is recursively required for any agents that agent A2 could
potentially have interacted with when projected to time t.
Essentially, the sum of all A1’s recursive dependencies when
projected to time t would have to be updated to time t
before A1 could advance. (See Algorithm 3.1 above for the
abstracted pseudocode description.)

To maintain a consistent simulation configuration, the
original method updates the entire transitive closure to
the same time step; however, this level of synchroniza-
tion is not necessary. When utilizing a Full Transitive



Closure Update, notice that an agent returned in the
IsolateDependentSubset calculation will be updated to
t+1 even if the agent’s actions removes the possibility of any
future interactions with other agents after a single time step.
For example, if the agent travels in the opposite direction
its projected “event-horizon” would look very different after
just a single update.

Algorithm 3.2: NEW METHOD(W )

procedure ISCOMPLETE(W )
return (has terminating criterion been met)

procedure PICK(W )
comment: select and return an agent to update

procedure INCREMENTALDEPENDENTSET(a, t, W, S)
comment: gets a’s incrementally dependent set

for each d ∈ senseOrAffectAt(a, t, W ) and d /∈ S

do

8<:i← time(d)
S ← S ∪ d
S ← S ∪ INCREMENTALDEPENDENTSET(d, i, W, S)

return (S)

procedure ISOLATEDEPENDENTSUBSET(a, W )
comment: isolate youngest dependent subset

D ← INCREMENTALDEPENDENTSET(a, time(a), W, ∅)
if for all b : b ∈ D and time(a) = time(b)

then return (D)
Y ← getY oungestElementsInSet(D)
return (Y )

procedure UPDATESET(S)
comment: advance agents in the temporally synchronized set

for i← 0 to size(S)− 1
do UPDATEAGENT(St[i], S)

procedure UPDATEAGENT(a, transitiveClosureForA)
comment: transitions a’s state from time(a) to time(a)+1

main
repeat
a← Pick(W )
S ← IsolateDependentSubset(a, W )
UPDATESET(S)

until ISCOMPLETE(W )

3.2 Incremental Dependency Removal
The new algorithm, Incremental Dependency Removal,

‘loosens’ the constraints on an agent’s update-independence
by updating only a subset of the agents identified by the
original Full Transitive Closure Update method a single time
step on each scheduler iteration. This allows for the possibil-
ity that dependencies between agents will be removed with
the additional state information provided by the incremental
update. Like the previous algorithm, an agent is identified to
update asynchronously at the beginning of each scheduling
loop; however, unlike the previous algorithm, that agent will
not update unless every agent in its transitive closure is at

the same time step as that agent; otherwise, only a subset of
that transitive closure will run (see Algorithm 3.2).

This means that after picking an agent to
advance (A), we first identify the youngest agents
within agent A’s IncrementalDependentSet. The
IncrementalDependentSet is generated by recursively
identifying partial agent dependencies starting with
agent A. This is different from at transitive closure
calculation only in that the transitive closure calculates
all dependencies projected to agent A’s time, while
IncrementalDependentSet calculates the recursive
dependency relative to the local time of each agent. From
this IncrementalDependentSet, we then obtain the
set of youngest dependent agents (Y ). Note that Y is
update-independent, since all agents in the transitive closure
for any agent in Y is also contained in Y . (A proof sketch
is provided below.) The agents in Y are then advanced
one time step in the simulation. For agent A to advance, it
would have to be selected by the scheduler’s Pick method
until it no longer has dependencies remaining in the past
and, therefore, would advance as a member of set Y .

To prove correctness of Incremental Dependency
Removal we must show that the agents returned from
IsolateDependentSubset are update-independent
of all other agents in the simulation. Note that
IsolateDependentSubset selects the youngest members
(Y ) returned from IncrementalDependentSet; therefore
these members must all be at the same time step
t = time(youngest). Since dependency calculations
were made for each of these agents in Y (because
IncrementalDependentSet calls senseOrAffectAt for
each of them and their dependents), it follows that these
dependents must all be at the same time step. Now observe
that IncrementalDependentSet is the same algorithm
as GetTransitiveClosureFor when the time of each
agent is the same, since each recursive call will pass
in the same value (t) for the time parameter. Therefore,
IncrementalDependentSet contains a transitive closure
for each of the youngest agents in that set and no member
of these transitive closures exist at a time step other than
t. Furthermore, selecting all the youngest agents at time
t results in a set with no external dependencies (i.e., an
update-independent set).

3.3 New Dynamic Goal-based Agent Prioriti-
zation (D-GAP) Policy

Past asynchronous scheduling policies were designed to
optimize system resources and minimize simulation run-
times in parallel environments. However, often times the
schedulers would pick suboptimal agents to advance asyn-
chronously through the simulation due to the fact that they
had no knowledge of the simulation goals or an agent’s
likelihood of achieving those goals. This issue motivated the
idea of biasing the scheduler’s agent selection process by



dynamically prioritizing agents based on their probability of
achieving a desired goal for the simulation. While still main-
taining all the constraints required for ensuring consistent
simulation configurations, the Dynamic Goal-based Agent
Prioritization Policy (D-GAP) allows agent priorities to be
adjusted during a simulation execution thereby influencing
which agent will advance sooner.

The D-GAP policy, like any other asynchronous schedul-
ing policy, will not speed up every simulation. For example,
if a modeler wants to know the cause of death for all agents
in a simulation, the D-GAP policy would have to make
the same number of updates as a traditional discrete event
scheduler. However, in a distributed context it may still be
beneficial to run different asynchronous policies for maxi-
mizing parallel resources and ultimately reaching simulation
completion faster. However, there are many scenarios when
simulations are carried out with a more refined termination
condition or goal for a simulation. For example, suppose a
modeler designed a simulation experiment with the intent to
understand what the cause of death will be for a particular
agent. The modeller would set the terminating condition for
the simulation to be when that partial agent is no longer
alive. For this event to occur it is quite likely that not all
agents need to be updated to the same simulation cycle, but
instead only the agents required for the particular event to
occur. The ideal scheduling policy for this example would
be to utilize the D-GAP policy.

In situations involving a subset of agents from the sim-
ulation, where a particular event or phenomenon is being
studied the D-GAP policy can greatly improve a scheduler’s
efficiency and lead to much faster runtimes. Setting the
agent of interest to a higher priority will let the scheduler
identify the agents to update that will push the agent of
interest through the simulation event-space fastest. This will
ultimately lead to any phenomena relating to those higher
priority agents to also take place sooner since less super-
fluous updating of other agents would occur. The agents of
interest do not exist separate of their environment and other
agents; therefore, other agents with lower priority would
still need to be updated. These lower priority agents would
update when the agents of interest progress far enough into
the simulation timeline that they required additional updated
state information from agents at lower priority levels.

4. Evaluation Method
The performances of the D-GAP policy and the new

asynchronous scheduler optimizations were measured using
a new standard metric for evaluating asynchronous agent-
based schedulers. Scheduling efficiency is determined by
comparing the number of agent updates conducted in the
new methods with what would have been required using a
traditional sequential discrete event scheduler. The number
of agent updates can be calculated by incrementing a counter
each time an agent’s update function is called or by summing

the local simulation times of each agent in the simulation.
This method of comparing the entity’s update count is
preferable to simply comparing runtimes because the former
efficiency metric is more general in that it is not dependent
on confounding factors such as simulation-unique agent
computational costs or communication delays of a particular
distributed context. Therefore the evaluation of the D-GAP
policy and new asynchronous scheduler updates focused
on comparing the three different configurations running a
simulation using: (1) a traditional sequential discrete event
scheduler, (2) the D-GAP policy with the original asyn-
chronous scheduler, and (3) the D-GAP policy with the
improved asynchronous scheduler.

To evaluate the scheduling policies, an a-life simulation
was constructed within the SimWorld agent-based simulation
framework [12]. The SimWorld system provides an extensi-
ble framework for authoring agent-based simulations com-
plete with an integrated reusable asynchronous scheduling
system. This scheduler was modified to include the new
agent-based prioritization policy as well as the ability to
use the incremental dependency removal method. The Alife
simulation consisted of a modified version of Scheutz, Harris
and Boyd’s computational agent-based model of biological
model organism Hyla versicolor (“gray treefrog”) that was
originally used to identify the dominant mating strategy of
these animals [13].

In the model, each male calls at a given rate and females
select the closest mate that exceeds some threshold of call
quality. The distribution of the agents can be observed in
Figure 1. In this modified configuration the simulations
were run until a particular agent of interest (i.e., male2)
mated. After each scheduler iteration, the SimWorld sched-
uler checks if the simulation should terminate (i.e., if male2
has mated). Also at this time the agent update priorities were
dynamically modified to bias the scheduler towards updating
agents that would bring about the terminating condition.

5. Case Study: Results
This section contains the results of the three different run

conditions discussed in the previous section. Results consist
of an image for the final state of each simulation configura-
tion as well as an efficiency metric, update count, presented
for each simulation. Finally, an efficiency comparison is
made between the three conditions.

a) Traditional Sequential Discrete Event Simulation.:
The base case for this comparison was to execute the simu-
lation using a traditional sequential discrete event system.
This provides a total picture of all agent updates in the
simulation, including those of interest and those that are
irrelevant to the phenomenon of study. After running the
initial base case of the simulation (see top image in Figure 1)
we see that the simulation terminates after 49 time steps with
female9 mating with the agent of interest, male2. To reach



Fig. 1: Top: Traditional Sequential Discrete Event Simulation; the final configuration of the Alife tree-frog mating simulation.
Female tree frogs (red) approach male tree frogs (blue) based on proximity and male call quality. Ultimately male2 mates
with female9 (light blue) at time step 49 after executing 735 agent updates. Middle: D-GAP policy + Original Full Transitive
Closure Update Asynchronous Scheduler. Bottom: D-GAP policy + New Incremental Dependency Removal Asynchronous
Scheduler

the simulation’s terminating condition (i.e. male2 finding a
mate), 735 agent updates had to be calculated. From this
image we see that a total of 3 females set out to attempt

to mate with male2 at the beginning. By the time that the
mating occured at time step 49, we can see that 2 other
females had also chosen and began to pursue male2 for a



mate, however we also can notice that most of the other
agents in the simulation have no bearing on male2.

b) D-GAP policy + Original ‘Full Transitive Closure
Update’ Asynchronous Scheduler.: The simulation was
then reinitialized using the exact same conditions and ter-
minating criteria using the D-GAP policy with the origi-
nally published asynchronous scheduling algorithm. Since
the simulation only updated agents in a way to ensure no
inconsistent simulation states could emerge, the predictions
of the simulation were identical to that of the base case;
that is, male2 mated at cycle 49 with female9. However,
in this case it only took 347 agent updates to generate
this mating prediction. This algorithm, therefore, produced
a scheduling efficiency gain of almost 53% for this scenario
[(735−347)/735∗100]. This a massive speed up given that
the same number of processors were used in both cases and
the predictive models of the simulation were not changed
in anyway. When studying the middle image of Figure 1,
we notice that most of the agents in the simulation did not
advance far into the simulation’s timeline. We will now walk
through the logic by which some agents were updated and
others were not. Upon simulation initialization all agents had
the same priority level (unset) and all agents therefore were
allowed to advance synchronously one time step. Following
this initial step the isComplete check ran, returned false,
and set the priority of the 3 leftmost females to have a
higher priority since they had chosen to pursue the agent
of interest Since females in this simulation do not interact
with each other, these agents were update-independent until
they could interact with a male. Therefore, the following
simulation iterations allowed these three females to update
asynchronously until female9 entered the interaction range
of male2. Since male2 was in the past, he would need to
be updated before female9 could advance and mating could
take place. However, male2 could not advance independently
to the female9’s local time step since the “event-horizons”
of two other females when extrapolated to female9’s time
could have potentially caused an earlier interaction with
male2. Furthermore, these additional females could also
have interacted with an another male when projected to
female9’s local time step, and, therefore, this male would
also have to be included into the group that defined female9’s
transitive closure which would need to be updated before
female9 could advance. From the simulation graphic we
see that these additional female agents chose to travel in
the opposite direction from male2 and essentially removed
themselves from blocking female9’s update-independence.
Unfortunately the original general asynchronous scheduling
algorithm still updated these agents to the female9’s time.
Following these updates female9 was free to proceed to mate
with male2 at time step 49.

c) D-GAP policy + New Incremental Dependency Re-
moval Asynchronous Scheduler.: Like the previous con-

dition, the final condition utilized the D-GAP policy for
selecting agents to run. However, in this case the new In-
cremental Dependency Removal optimization to the general
asynchronous scheduling algorithm was also implemented
resulting in the calculation of even fewer agent updates.
Notice from the bottom image of Figure 1 that the two
middle females only progressed a few time steps into the
simulation’s timeline as compared with the previous simula-
tion (middle image of Figure 1). In this condition only 221
agent updates had to be calculated to produce the same pre-
dictions as the previous 2 cases. This results in a scheduling
efficiency gain of almost 70% [(735− 221)/735 ∗ 100].

The logical event trace for this simulation starts out
similarly to the previous case. All agents update one cy-
cle since no agent priority is initially set. Following that,
the 3 females that chose to pursue the agent of interest
(male2) receive higher priority in the system. The 3 female
agents can all update independently until female9 becomes
dependent on male2’s state prior to attempting to mate.
Male2 was then required to update to the same time step
as female9. However, unlike the previous case, male2 was
allowed to update by only one time step per scheduler cycle.
At each scheduler cycle the high priority agents including
female9 were selected. This again resulted in a male2
update and this continued until male2 was no longer update-
independent with respect to the top middle females. The
additional females were incrementally run for one step. The
process continued with female9 requiring male2 to update,
but in some cases male2 was able to update independently
through the timeline since the top middle females actually
move away from the agent of interest. The result of this
incremental update strategy was that the two top middle
females did not have to progress through the simulation
timeline nearly as far and did not require the additional male
to update at all (see bottom image of Figure 1).

5.1 Efficiency Comparison
Ultimately this case study illustrates a large performance

gain from using the D-GAP algorithm and addition effi-
ciency gain as a result of the optimization added to the
general asynchronous scheduling algorithm (see Figure 2).

The D-GAP policy when coupled with the original asyn-
chronous algorithm drastically outperforms the traditional
synchronous discrete event simulator for this scenario. This
improvement comes from the ability of the policy to prune
unnecessary computations from the timeline based on prior-
itizing agents that are most likely to accomplish the research
goals of the simulation. Essentially the timeline is expanded
in a greedy manner such that the important events occur
sooner and with less updating of agent configurations.

The additional efficiency gain achieved from using the
Incremental Dependency Removal stems from the way this
algorithm handles updating dependent agents. Instead of
blindly updating agents to the point of projected possible



Traditional D−GAP + Orig. Async D−GAP + Impr. Async

Scheduler Performance Comparison (lower is better)

Scheduler Used

To
ta

l A
ge

nt
 U

pd
at

e 
Co

un
t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Fig. 2: Comparison of the efficiency of the 3 scheduling
methods in terms of the number of agent updates that had to
be accomplished before reaching simulation completion. The
D-GAP policy with the improved asynchronous scheduling
algorithm produced the most efficient runs.

interaction, dependent agents are updated only as far as
necessary. Instead of updating all the agents in female9’s
original transitive closure, only the most dependent agents
had to be updated incrementally. This allowed them the
possibility of removing themselves from future dependencies
and the need to update as much.

6. Discussion and Conclusion
The power of the D-GAP policy, like any greedy heuristic

search, is only as strong as the heuristic used. In the case
study, the priority assignment was clearly connected to
the agent that could bring about the terminating condition.
However, if priority was assigned to agents in an unrelated
way to the goals of the simulation or even in an opposite way,
the simulation could potentially take longer than traditional
sequential scheduling. In the extreme case, it is possible for
agent prioritization to be assigned such that the simulation
never terminates. For example, if agent was given the highest
priority in the simulation and that agent moved at maximum
velocity away from the rest of the agents, it is possible that
it would not interact with any other agent’s projected “event-
horizons” and maintain update independence indefinitely.
This would lead to an agent being updated each simulation
cycle that would never bring about simulation termination.

Therefore, the assignment of priority to agents must
be done in an admissible way that guarantees simulation
termination. There are many ways that this can be imple-
mented. For example, adding stochasticity to the priority
assignment will guarantee simulation termination even in the
worst-case scenario when agent prioritization is completely
assigned backwards. Another method would be to progres-
sively penalize agents too far in the future so that there
is a maximum time gap between the oldest and youngest

agents in the simulation. The latter provides a bounded
level of asynchrony and greedy search while maintaining
the assurance of simulation termination.

Asynchronous discrete event scheduling is an extremely
new concept. There have only been a handful of algorithms
and policies developed to exploit the advantages of asyn-
chronous scheduling. Policies developed so far have either
optimized the characteristics of the distributed environment
in which they were implemented (e.g. Remote − Event −
First or Y oungest − Unblocked − First [2]) or have
attempted to optimize the scheduling using some heuristic
to bias local scheduling of agents (e.g., the D-GAP policy
described in this paper). Interesting future work would
include policies that consider both the goals of the simulation
and the distributed environment in which they are executed
when making decisions on which agent to asynchronously
guide through the simulation space first.

References
[1] M. Scheutz and P. Schermerhorn, “Adaptive algorithms for the dy-

namic distribution and parallel execution of agent-based models,”
Journal of Parallel and Distributed Computing, vol. 66, no. 8, pp.
1037–1051, 2006.

[2] M. Scheutz and J. Harris, “Adaptive scheduling algorithms for the
dynamic distribution and parallel execution of spatial agent-based
models,” in Parallel and Distributed Computational Intelligence, ser.
Studies in Computational Intelligence, F. Fernández de Vega and
E. Cantú-Paz, Eds. Springer, 2010, vol. 269, pp. 207–233.

[3] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation, Second Edition, 2nd ed. Academic Press, Jan. 2000.

[4] M. Lees, B. Logan, and G. Theodoropoulos, “Distributed simulation
of agent-based systems with HLA,” ACM Transactions on Modeling
and Computer Simulation, vol. 17, no. 3, p. 11, 2007.

[5] M. B. Ptacek, “Calling sites used by male gray treefrogs, Hyla versi-
color and Hyla chrysoscelis, in sympatry and allopatry in Missouri,”
Herpetologica, vol. 48, no. 4, pp. 373–382, 1992.

[6] G. M. Fellers, “Aggression, territoriality, and mating-behavior in
North-American treefrogs,” Animal Behaviour, vol. 27, no. FEB, pp.
107–119, 1979.

[7] ——, “Mate selection in the gray treefrog, Hyla-versicolor,” Copeia,
no. 2, pp. 286–290, 1979.

[8] M. E. Ritke and R. D. Semlitsch, “Mating-behavior and determinants
of male mating success in the gray treefrog, Hyla-chrysoscelis,”
Canadian Journal of Zoology-Revue Canadienne De Zoologie, vol. 69,
no. 1, pp. 246–250, 1991.

[9] O. M. Beckers and J. Schul, “Phonotaxis in Hyla versicolor (Anura,
Hylidae): the effect of absolute call amplitude,” Journal of Compar-
ative Physiology a – Neuroethology Sensory Neural and Behavioral
Physiology, vol. 190, no. 11, pp. 869–876, 2004.

[10] S. L. Bush, H. C. Gerhardt, and J. Schul, “Pattern recognition and
call preferences in treefrogs (Anura : Hylidae): a quantitative analysis
using a no-choice paradigm,” Animal Behaviour, vol. 63, pp. 7–14,
2002.

[11] H. C. Gerhardt, S. D. Tanner, C. M. Corrigan, and H. C. Walton,
“Female preference functions based on call duration in the gray tree
frog (Hyla versicolor),” Behavioral Ecology, vol. 11, no. 6, pp. 663–
669, 2000.

[12] M. Scheutz, P. Schermerhorn, R. Connaughton, and A. Dingler,
“Swages–an extendable parallel grid experimentation system for large-
scale agent-based alife simulations,” in Proceedings of Artificial Life
X, June 2006, pp. 412–418.

[13] M. Scheutz, J. Harris, and S. Boyd, “How to pick the right one: Inves-
tigating tradeoffs among female mate choice strategies in treefrogs,”
in Proceedings of the Simulation of Adaptive Behavior 2010, 2010,
pp. 618–627.


