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Abstract—In the literature, two main views of Dempster-Shafer
(DS) theory are espoused: DS theory as evidence (as described
in Shafer’s seminal book) and DS theory as a generalization of
probability. These two views are not always consistent. In this
paper, we employ the generalized probability view of DS theory
to arrive at results that allow one to perform Bayesian inference
within the DS theoretic (DST) framework. The importance of this
generalization is its capability of handling a wider variety of data
imperfections, a feature inherited from the DST framework. In
the process of developing these results akin to Bayesian inference,
we also arrive at an evidence combination strategy which is
consistent with the generalized probability view of DS theory,
a feature lacking in the popular Dempster’s combination rule
(DCR). Finally, using the data from a political science survey,
we demonstrate the application of our results on an experiment
which attempts to gauge the hidden attitude of an individual
from his/her observed behavior.

I. INTRODUCTION

Updating a knowledge base conditional upon new evidence
is a primitive operation in evidence fusion [1]. In a probabilis-
tic setting, the Bayes’ rule performs this conditioning opera-
tion. On the other hand, Dempster-Shafer (DS) belief theory
offers a more convenient framework for working with real-
world data possessing a wider variety of data imperfections
and when decision-making systems are called upon to carry
out their reasoning tasks with a better understanding of these
underlying data imperfections [2], [3], [4], [5], [6].

Motivation. A DST generalization of the Bayes’ rule and
Bayesian inference would therefore be of immense value in
a wide variety of application scenarios. In [7] Dempster, and
in [8] Smets, have already suggested such a generalization.
The work being presented in this paper is however differ-
ent. In particular, our work is based on the Fagin-Halpern
(FH) conditional and it is consistent with upper and lower
probability bounds. In the generalized probability view of DS
theory, belief and plausibility are regarded as lower and upper
bounds respectively for an underlying probability which is
unknown. While this viewpoint has been refuted by Shafer in
[9], Fagin and Halpern have suggested that, by utilizing two
views of belief — belief as evidence and belief as generalized
probability — and addressing them separately could solve
most of the difficulties associated with the DST notion of
belief [10].

Challenges. When these two views of belief are studied, one
realizes that the point of separation between the two views is

the Dempster’s combination rule (DCR) which, in a sense, may
not be ‘compatible’ with probability theory. Shafer also points
out that, while the DST belief and plausibility functions can
be interpreted as lower and upper bounds for the underlying
probability, the same is not true for the belief and plausibility
functions resulting from the application of the DCR [9].

Dempster’s conditional is a direct derivative of the DCR
[2], and therefore, it inherits the DCR’s lack of compatibility
with probability. Fully aware of this, Fagin and Halpern have
introduced a conditional which is consistent with probability
bounds [11].

Contributions. In this paper, we develop a DST generaliza-
tion of the Bayes’ rule and Bayesian inference based on this
FH conditional so that compatibility with probability theory
is preserved. In particular, this generalization allows one to
compute the posterior belief/plausibility given the likelihood
beliefs/plausibilities and prior beliefs/plausibilities. We also
explore an equation that allows one to compute the poste-
rior belief/plausibility given the posterior beliefs/plausibilities
of ‘atomic’ propositions and prior beliefs/plausibilities. In a
sense, this latter equation can be thought of as a counterpart
to the DCR, but compatible with probability theory. We then
validate our results by applying them to an uncertain dataset
extracted from a political science survey [12], [13], where
we attempt to use the observed behavior to gauge the hidden
attitude of an individual.

II. PRELIMINARIES

Let Θ = {θ1, . . . , θM} represent a sample space of finite
mutually exclusive and exhaustive outcomes of an experiment;
θi are the elementary events. Let Pr(·) : 2Θ 7→ [0, 1] denote
a probability mass function (p.m.f.) defined on the σ-algebra
of the power set of events 2Θ.

In DS theory, Θ and θi are usually referred to as the
frame of Discernment (FoD) and the singletons. We say that
m(·) : 2Θ 7→ [0, 1] is a basic belief assignment (BBA) or mass
assignment when

∑
A⊆Θm(A) = 1 and m(∅) = 0. Proposi-

tions that receive non-zero mass are the focal elements; the set
of focal elements is the core F. The triple E = {Θ,F,m} is
the body of evidence (BoE). For arbitrary A ⊆ Θ, A denotes
those singletons that are not in A. For A,B ⊆ Θ, we will
interchangeably use (A ∩ B) and (A,B) to denote the set
theoretic intersection operation.



In DS theory, a focal element can be any singleton or a
composite (i.e., non-singleton) proposition. A mass function
is called Bayesian if each focal element is a singleton. DS
theory captures the notion of ignorance by allowing masses to
be allocated to composite propositions. For instance, the mass
m(θi, θj) allocated to the composite doubleton proposition
(θi, θj), θi, θj ∈ Θ, represents ignorance or lack of evidence to
differentiate between its two constituent singletons. The state
of complete ignorance can be captured via the DST vacuous
BoE 1Θ, which has Θ as its only focal element, i.e., in the
vacuous BoE, m(Θ) = 1 and m(A) = 0, ∀A ⊂ Θ.

Given a BoE, E = {Θ,F,m}, the belief function Bl : 2Θ 7→
[0, 1] is Bl(A) =

∑
B⊆Am(B). The plausibility function Pl :

2Θ 7→ [0, 1] is Pl(A) = 1 − Bl(A). The uncertainty interval
associated with A is [Bl(A), P l(A)]. The p.m.f. Pr(·) defined
on the σ-algebra 2Θ is said to be consistent with E if Bl(A) ≤
Pr(A) ≤ Pl(A), for all A ⊆ Θ [11]. The pignistic p.m.f.
defined as BetPr(θi) =

∑
θi∈A

m(A)/|A|, θi ∈ Θ, is such a

consistent p.m.f. [14].

III. CONDITIONING OPERATION IN DS THEORY

Among the various notions of DST conditional abound in
the literature, the Dempster’s conditional, which is derived
from the DCR [2], appears to be the more widely used.

Definition 1. Dempster’s Conditional. Given the BoE
E = {Θ,F,m} and B ⊆ Θ s.t. Pl(B) > 0, the Dempster’s
conditional belief and plausibility of A w.r.t. B are

Bl(A‖B) = [Bl(A ∪B)−Bl(B)]/P l(B);

Pl(A‖B) = Pl(A ∩B)/P l(B).

However, the FH conditional [11] possesses several attrac-
tive properties and offers a unique probabilistic interpretation
and hence a natural transition to the Bayesian conditional
notion [11], [15], [6]. More importantly, the FH conditional,
which we employ in our work, is consistent with probabilistic
lower and upper bounds.

Definition 2. FH Conditional. Given the BoE E =
{Θ,F,m} and B ⊆ Θ s.t. Bl(B) > 0, the FH conditional
belief and plausibility of A w.r.t. B are

Bl(A|B) = Bl(A ∩B)/[Bl(A ∩B) + Pl(A ∩B)];

Pl(A|B) = Pl(A ∩B)/[Pl(A ∩B) +Bl(A ∩B)].

A less rigorous way to demonstrate the relationship of the
FH conditional with the probabilistic lower and upper bounds
is the following: Consider a BoE E = {Θ,F,m} and a
consistent p.m.f. Pr(·) defined on Θ. For Pr(A ∩ B) 6= 0,
express Pr(A|B) as

Pr(A|B) = Pr(A ∩B)/[Pr(A ∩B) + Pr(A ∩B)]

=
1

1 + Pr(A ∩B)/Pr(A ∩B)
. (1)

Use the bounds Bl(A ∩ B) ≤ Pr(A ∩ B) ≤ Pl(A ∩ B) and
Bl(A ∩B) ≤ Pr(A ∩B) ≤ Pl(A ∩B) to get

Bl(A|B) ≤ Pr(A|B) ≤ Pl(A|B), (2)

where Bl(A|B) and Pl(A|B) are the FH conditional belief
and plausibility, respectively, as they appear in Definition 1.

We first show the following result regarding the relationship
between the Dempster’s conditional and the FH conditional.
Although it is stated in [11] (as Corollary 3.8), the authors
could not locate a proof of this result.

Lemma 1: The Dempster’s conditional and the FH condi-
tional are related as

Bl(A|B) ≤ Bl(A‖B) ≤ Pl(A‖B) ≤ Pl(A|B).

Proof. Since Pl(B) ≥ Pl(A ∩B) +Bl(A ∩B), we have

Pl(A ∩B)

Pl(B)
≤ Pl(A ∩B)

Pl(A ∩B) +Bl(A ∩B)
,

which implies that Pl(A‖B) ≤ Pl(A|B). In turn, this yields
Pl(A‖B) ≤ Pl(A|B). So,

1− Pl(A‖B) ≥ 1− Pl(A|B),

which implies that Bl(A‖B) ≥ Bl(A|B).

IV. BAYESIAN INFERENCE IN THE DS FRAMEWORK

Probabilistic inference makes use of the following relation-
ship:

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B|A)Pr(A) + Pr(B|A)Pr(A)
. (3)

The corresponding DST counterpart to (3) is the following:
Lemma 2: For Bl(A), Bl(B) 6= 0 and Pl(A) 6= 1,

Bl(A|B) ≥ Bl(B|A)Bl(A)

Bl(B|A)Bl(A) + Pl(B|A)Pl(A)
;

Pl(A|B) ≤ Pl(B|A)Pl(A)

Pl(B|A)Pl(A) +Bl(B|A)Bl(A)
.

Proof. To show the lower bound on Bl(A|B), note that

Bl(A|B) =
Bl(A ∩B)

Bl(A ∩B) + Pl(A ∩B)

=
1

1 + Pl(A ∩B)/Bl(A ∩B)
. (4)

Use Bl(A) ≤ Bl(A ∩B) + Pl(A ∩B) to get

Bl(B|A) ≤ Bl(A ∩B)

Bl(A)
=⇒ Bl(B|A)Bl(A) ≤ Bl(A∩B).

(5)
Substitute (5) in (4):

Bl(A|B) ≥ 1

1 + Pl(A ∩B)/Bl(B|A)Bl(A)

=
Bl(B|A)Bl(A)

Bl(B|A)Bl(A) + Pl(A ∩B)
. (6)

To proceed, use Pl(A) ≥ Pl(A ∩B) +Bl(A ∩B) to get

Pl(B|A) ≥ Pl(A ∩B)

Pl(A)
=⇒ Pl(A ∩B) ≤ Pl(B|A)Pl(A).

(7)
Substitute (7) in (6) to get the required lower bound on
Bl(A|B).



To show the upper bound on Pl(A|B), use the lower bound
on Bl(A|B):

Bl(A|B) ≥ Bl(B|A)Bl(A)

Bl(B|A)Bl(A) + Pl(B|A)Pl(A)
.

This yields

1−Bl(A|B) ≤ 1− Bl(B|A)Bl(A)

Bl(B|A)Bl(A) + Pl(B|A)Pl(A)
,

1 − Bl(A|B) = Pl(A|B), which gives the required upper
bound on Pl(A|B).

We generalize this result as follows:
Theorem 3: Consider the partition {Ai}ni=1 of Θ, i.e., Ai ∩

Aj = ∅, ∀i 6= j and i, j ∈ 1, n, and
⋃n
i=1Ai = Θ. Then, for

k ∈ {1, . . . , n},

Bl(Ak|B) ≥ Bl(B|Ak)Bl(Ak)

Bl(B|Ak)Bl(Ak) +
∑
i6=k Pl(B|Ai)Pl(Ai)

;

Pl(Ak|B) ≤ Pl(B|Ak)Pl(Ak)

Pl(B|Ak)Pl(Ak) +
∑
i 6=k Bl(B|Ai)Bl(Ai)

.

Proof. To show the upper bound on Bl(Ak|B), use (6):

Bl(Ak|B) ≥ Bl(B|Ak)Bl(Ak)

Bl(B|Ak)Bl(Ak) + Pl(Ak ∩B)
.

Since {Ai}ni=1 is a partition, we have

(Ak ∩B) =
⋃
i 6=k

(Ai ∩B).

But, for mutually exclusive sets Cj , j ∈ 1,m, for some m,

we know that Pl
(⋃

j

Cj

)
≤
∑
j

Pl(Cj). So,

Pl(Ak ∩B) ≤
∑
i 6=k

Pl(Ai ∩B).

From (7) we can write

Pl(Ak ∩B) ≤
∑
i 6=k

Pl(Ai ∩B) ≤
∑
i 6=k

Pl(B|Ai)Pl(Ai).

Therefore,

Bl(Ak|B) ≥ Bl(B|Ak)Bl(Ak)

Bl(B|Ak)Bl(Ak) + Pl(Ak ∩B)

≥ Bl(B|Ak)Bl(Ak)

Bl(B|Ak)Bl(Ak) +
∑
i6=k Pl(B|Ai)Pl(Ai)

.

To show the lower bound on Pl(Ak|B), note that

Pl(Ak|B) =
Pl(Ak ∩B)

Pl(Ak ∩B) +Bl(Ak ∩B)

=
1

1 +Bl(Ak ∩B)/P l(Ak ∩B)
.

From (7) we know that

Pl(Ak ∩B) ≤ Pl(B|Ak)Pl(Ak).

Since the sets {Ai ∩B}ni=1 are mutually exclusive,

Bl(Ak ∩B) = Bl

⋃
i 6=k

(Ai ∩B)

 ≥∑
i 6=k

Bl(Ai ∩B).

From (5), we have

Bl(Ak ∩B) ≥
∑
i6=k

Bl(Ai ∩B) ≥
∑
i 6=k

Bl(B|Ai)Bl(Ai).

Therefore,

Pl(Ak|B)

=
1

1 +Bl(Ak ∩B)/P l(Ak ∩B)

≤ 1

1 +
∑
i 6=k Bl(B|Ai)Bl(Ai)/P l(B|Ak)Pl(Ak)

=
Pl(B|Ak)Pl(Ak)

Pl(B|Ak)Pl(Ak) +
∑
i6=k Bl(B|Ai)Bl(Ai)

.

V. EVIDENCE COMBINATION: DCR VERSUS THE
GENERALIZED PROBABILITY VIEWPOINT

A. Shafer’s Example

Let us start by considering an example which Shafer has
used in [9] to demonstrate the application of the DCR to
combine two ‘independent’ pieces of evidence.

Suppose that Betty tells me a tree limb fell on my car. My
subjective probability that Betty is reliable is α; my subjective
probability that she is unreliable is (1 − α). Since they are
probabilities, these numbers add to 1. But Betty’s statement,
which must be true if she is reliable, is not necessarily false if
she is unreliable. So, her testimony alone justifies an α degree
of belief that a limb fell on my car, but only a zero degree
of belief (not (1 − α) degree of belief) that no limb fell on
my car. This zero value does not mean that one is sure that
no limb fell on my car, as a zero probability would; it merely
means that Betty’s testimony gives me no reason to believe
that no limb fell on my car.

Let T be the event that a tree limb fell on my car. Then,
from a DST point-of-view,

Bl(T ) = α; Bl(T ) = 0.

These degrees of belief were derived from my α and (1− α)
subjective probabilities for Betty being reliable or unreliable.
Suppose these subjective probabilities were based on my
knowledge of the frequency with which witnesses like Betty
are reliable. Then I might think that the (1−α) proportion of
witnesses like Betty who are not reliable make true statements
a definite (though unknown) proportion of the time and false
statements the rest of the time. Were this the case, I could think
in terms of a large population of statements made by witnesses
like Betty. In this population, α proportion of the statements
would be true statements by reliable witnesses, x would be true
statements by unreliable witnesses, and (1−α− x) would be
false statements by unreliable witnesses, where x ∈ [0, 1−α]
is an unknown number. The total chance of getting a true
statement from this population would be (α + x), and the
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Fig. 1. Graphical model: T = A tree limb fell on my car; B = Betty tells me
a tree limb fell on my car; and S = Sally tells me a tree limb fell on my car.

total chance of getting a false statement would be (1−α−x).
My degrees of belief of α and 0 are lower bounds on these
chances. Since x ∈ [0, 1 − α], α and and 0 are the lower
bounds for (α+ x) and (1− α− x), respectively.

From this example Shafer has shown that a single belief
function is always consistent with probability bounds [9].

Now consider another witness Sally. My subjective proba-
bility that she is reliable is β; my subjective probability that
she is unreliable is (1− β). We assume that these values are
independent of my subjective probability of reliability of Betty.
Suppose Sally also tells me that a tree limb fell on my car.

From the DCR, my combined degree of belief that a tree
limb fell on my car will be [9]

1− (1− α)(1− β).

B. Probabilistic Viewpoint of Shafer’s Example

Now, let us view this example of Shafer [9] from a proba-
bilistic viewpoint.

As described earlier let (α+ x) be the value we assign for
total chance of getting a true statement from Betty; (1−α−x)
corresponds to a false statement from Betty. Using the same
arguments, let (β+ y) be the value we assign for total chance
of getting true statement from Sally; (1− β − y) corresponds
to a false statement from Sally. Consider the following events:

T = A tree limb fell on my car;
B = Betty tells me a tree limb fell on my car;
S = Sally tells me a tree limb fell on my car.

Suppose we want to find the posterior probability
Pr(T |B,S), i.e., the combined probability that a tree limb
fell on my car: For Pr(T ) 6= 0 and Pr(T ) 6= 1, and for
Pr(B,S) 6= 0,

Pr(T |B,S) =
Pr(B,S|T )Pr(T )

Pr(B,S|T )Pr(T ) + Pr(B,S|T )Pr(T )
.

Clearly, B and S are conditionally independent given T .
See Fig. 1. Therefore,

Pr(T |B,S)

=
Pr(B|T )Pr(S|T )Pr(T )

Pr(B|T )Pr(S|T )Pr(T ) + Pr(B|T )Pr(S|T )Pr(T )
(8)

=
Pr(T |B)Pr(T |S)Pr(T )

Pr(T |B)Pr(T |S)Pr(T ) + Pr(T |B)Pr(T |S)Pr(T )
,

(9)

where Pr(T |B) = (α+x) and Pr(T |S) = (β+y). Note that,
(8) is applicable for Pr(B,S), P r(T ) 6= 0 and Pr(T ) 6= 1;
(9) is applicable for Pr(B,S), P r(T ) 6= 0 and Pr(T ) 6= 1.

To find Pr(T |B,S), we need the value of Pr(T ). However,
the minimum value that P (T |B,S) can achieve is not 1−(1−
α)(1−β). In other words, the probabilistic lower bound is not
consistent with what the DCR yields.

What is the reason for this incompatibleness of the DCR
with probabilistic reasoning? Let us explore how DCR behaves
when confronted with probabilistic evidence, i.e., only sin-
gleton propositions receive non-zero mass. When combining
two pieces of evidence, the DCR uses multiplication of mass
values, a tacit endorsement that the two pieces of evidence
are independent. But then, independent events (with non-zero
probability) cannot be disjoint. Therefore, the normalization
operation of the DCR which removes the product values of
propositions that are disjoint or incompatible, is not compat-
ible with the independence assumption on which the DCR is
based upon.

VI. EVIDENCE COMBINATION AND INFERENCE: A
GENERALIZED PROBABILITY VIEWPOINT

A. Notion of Independence

Let us consider Shafer’s example again. From Fig. 1, one
realizes that the two pieces of evidence B and S are not
independent, but are only conditionally independent given T .
Capturing the notion of independence (let alone conditional
independence) within the DST framework is fraught with its
own challenges. In probability, independence of A and B sim-
ply refers to Pr(A ∩B) = Pr(A)Pr(B) where Pr(·) is the
underlying p.m.f. Within the DST framework, should we use
Bl(A∩B) = Bl(A)Bl(B), or Pl(A∩B) = Pl(A)Pl(B), or
another similar relationship to refer to independence? Based
on such relationships, different DST notions of independence
have been proposed and abound in the literature e.g., see [2],
[16]. However, what we can show, and all we know, is

max{Bl(A ∩B), Bl(A)Bl(B)}
≤ Pr(A ∩B) = Pr(A)Pr(B)

≤ min{Pl(A ∩B), P l(A)Pl(B)}. (10)

This does not imply Bl(A ∩ B) = Bl(A)Bl(B), or Pl(A ∩
B) = Pl(A)Pl(B), or any other similar relationship. Our
approach, on the other hand, does not require picking any one
particular DST independence notion. Rather, we look at the
independence only in terms of the the underlying p.m.f.

B. Evidence Combination

Let us start with (9): for Pr(B,S), P r(T ) 6= 0 and and
Pr(T ) 6= 1,

Pr(T |B,S) =
1

1 +
Pr(T |B)Pr(T |S)Pr(T )

Pr(T |B)Pr(T |S)Pr(T )

. (11)
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Fig. 2. A generalization of the graphical model in Fig. 1.

This then yields

Pr(T |B,S)

≥ Bl(T |B)Bl(T |S)Bl(T )

Bl(T |B)Bl(T |S)Bl(T ) + Pl(T |B)Pl(T |S)Pl(T )
,

(12)

for Bl(B), Bl(S), Bl(T ) 6= 0 and Pl(T ) 6= 1. Similarly,

Pr(T |B,S)

≤ Pl(T |B)Pl(T |S)Pl(T )

Pl(T |B)Pl(T |S)Pl(T ) +Bl(T |B)Bl(T |S)Bl(T )
,

(13)

for Bl(B), Bl(S), Bl(T ) 6= 0 and Pl(T ) 6= 1.
For P (B1, . . . , Bn), Bl(Bi), Bl(A) 6= 0 and Pl(A) 6= 1,

we can generalize these bounds to correspond to the structure
in Fig. 2 and get

L(A|B1, . . . , Bn) ≤ Pr(A|B1, . . . , Bn)

≤ U(A|B1, . . . , Bn), (14)

where

L(A|B1, . . . , Bn)

=

n∏
i=1

Bl(A|Bi)Bl(A)

n∏
i=1

Bl(A|Bi)Bl(A) +

n∏
i=1

Pl(A|Bi)Pl(A)

; (15)

U(A|B1, . . . , Bn)

=

n∏
i=1

Pl(A|Bi)Pl(A)

n∏
i=1

Pl(A|Bi)Pl(A) +

n∏
i=1

Bl(A|Bi)Bl(A)

. (16)

One may interpret these lower and upper bounds
L(A|B1, . . . , Bn) and U(A|B1, . . . , Bn), respectively, as the
combined posterior (from the evidence of all the sources)
given the individual posteriors (from evidence of each source).
These quantities can be thought of as the results of an evidence
combination strategy which is consistent with the generalized
probability viewpoint of DS theory.

C. Inference

The bounds in (15) and (16) were obtained from (9). Now,
let us start with (8). In a manner similar to above, we now get

a generalization for Bayes’ rule which allows one to get at the
posterior from the likelihoods: for Bl(A) 6= 0 and Pl(A) 6= 1,

LI(A|B1, . . . , Bn) ≤ Pr(A|B1, . . . , Bn)

≤ UI(A|B1, . . . , Bn), (17)

where we express Pr(A|B1, . . . , Bn) in terms of likelihoods
as

Pr(A|B1, . . . , Bn)

=

n∏
i=1

Pr(Bi|A)Pr(A)

n∏
i=1

Pr(Bi|A)Pr(A) +

n∏
i=1

Pr(Bi|A)Pr(A)

, (18)

for Pr(B1, . . . , Bn), P r(A) 6= 0 and Pr(A) 6= 1; and

LI(A|B1, . . . , Bn)

=

n∏
i=1

Bl(Bi|A)Bl(A)

n∏
i=1

Bl(Bi|A)Bl(A) +

n∏
i=1

Pl(Bi|A)Pl(A)

; (19)

UI(A|B1, . . . , Bn)

=

n∏
i=1

Pl(Bi|A)Pl(A)

n∏
i=1

Pl(Bi|A)Pl(A) +

n∏
i=1

Bl(Bi|A)Bl(A)

. (20)

Note that, for Pr(B1, . . . , Bn), P r(A) 6= 0 and Pr(A) 6= 1,
(18) is a valid expression for the conditional probability
function given that B1, . . . , Bn are conditionally indepen-
dent given A. When this is the case, for Bl(A) 6= 0
and Pl(A) 6= 1, one can show that LI(A|B1, . . . , Bn) in
(19) is a valid conditional belief function. Furthermore, with
(20), LI(A|B1, . . . , Bn) + UI(A|B1, . . . , Bn) = 1 and so
UI(A|B1, . . . , Bn) is the corresponding conditional plausi-
bility function. Therefore, henceforth, we will employ the
notation

BlI(A|B1, . . . , Bn) ≡ LI(A|B1, . . . , Bn);

PlI(A|B1, . . . , Bn) ≡ UI(A|B1, . . . , Bn). (21)

These equations are very useful for decision-making with
uncertainty. For instance, consider the following decision
criterion:
• Decide on A over A if

BlI(A|B1, . . . , Bn) > PlI(A|B1, . . . , Bn). (22)

We in fact used this criterion in the experiment which
appears in Section VII.

• If {Ai}mi=1 is a partition of Θ, then we may employ an
analogous criterion: Decide on Ak if

BlI(Ak|B1, . . . , , Bn) > max
i
PlI(Ai|B1, . . . , Bn)},

(23)



where i, k ∈ {1, 2, . . . ,m} and i 6= k.
Note that no relationship above requires one to pick one

particular DST independence notion. Independence in our
work refers to the underlying probability Pr(·), and it is
irrelevant how Bl(A ∩B) is related to Bl(A)Bl(B), or how
Pl(A ∩B) is related to Pl(A)Pl(B), etc.

VII. EXPERIMENTAL RESULTS

TABLE I
DATA FROM THE SURVEY IN [12]: VARIABLES USED

Variable State Code
[Hidden Variable]
Ideology - Yourself

Very Liberal
Liberal
Somewhat Liberal
Middle of the Road
Somewhat Conservative
Conservative
Very Conservative
Not Sure
Skipped
Not Asked

1
1
1
0

-1
-1
-1
0
0
0

[Observed Behavior]
All things considered,
do you think it was a
mistake to invade
Afghanistan?

Yes
No
Not Sure
Skipped
Not Asked

1
-1
0
0
0

[Observed Behavior]
Institution Approval -
Obama

Strongly Approve
Somewhat Approve
Somewhat Disapprove
Strongly Disapprove
Not Sure
Skipped
Not Asked

1
1

-1
-1
0
0
0

[Observed Behavior]
All things considered,
do you think it was a
mistake to invade
Iraq?

Yes
No
Not Sure
Skipped
Not Asked

1
-1
0
0
0

[Observed Behavior]
What is your view of
the Tea Party
movement?

Very Positive
Somewhat Positive
Neutral
Somewhat Negative
Very Negative
Don’t Know Enough to Say
No Opinion
Skipped
Not Asked

1
1
0

-1
-1
0
0
0
0

Using the results developed above, we now explore if one
may infer a person’s implicit hidden attitude on a particular
subject from his/her observed behavior. We assume that the
relationship between this hidden attitude of a person and its
related observed behavior is as depicted in Fig. 2: Hidden
attitude is represented by A and multiple types of observed
behavior (e.g., oral and written sentiments, facial expressions,
responses to different questions, etc.) are represented by
B1, . . . , Bn.

To test this idea, we use a political science dataset generated
from a survey used in [13]. The survey, which was conducted
online by YouGov, uses the input from a total of 1230 people
(573 men and 657 women) who participated in the 2012
Cooperative Congressional Election Study (CCES) [12].

From this dataset, we selected five variables: one as the
hidden attitude and the other four as observed behavior.

Table I shows these five variables and the set of answers
that were allowed for each variable. The five variables were
chosen among many other variables in the survey because they
appeared to fit the ‘hidden-observed’ two-layer structure in
Fig. 2. In the survey, not all the participants had answered all
the questions and we employed the DST model of ignorance
to capture this absence of information.

The first variable in the table, Ideology - Yourself, is the
hidden variable chosen; the other four variables were chosen
to be observed behaviors. For simplicity in this preliminary
study, we converted all responses to two states, namely 1 and
−1; 0 was used to represent uncertainty which captures the
lack of information to discern between the two states. Note
that, although some variables had clear alternate states (e.g.,
Neutral), these states were also categorized as 0.

We selected all the individuals who had selected one par-
ticular state of the hidden variable and used five-fold cross
validation to train and test the system. The equations (19)
and (20) were employed to calculate the lower and upper
values of each of the two states A = 1 and A = −1 of the
hidden variable given the observed states of the four observed
variables B1, . . . , B4. For convenience, hereafter, we will use
A to denote A = 1 and A to denote A = −1.

The equations (19) and (20) need values for the likelihood
parameters that appear in the right side. These parameters are
calculated by the training dataset in cross validation with a
frequentist approach.

For instance, using the notation B1 to denote B1 = 1 and A
for A = 1, we used the following estimates from the records
belonging to the training set:

Bl(B1|A) =
# of people with A = 1 and B1 = 1

# of people with A = 1
;

Pl(B1|A) =
# of people with A = 1 and B1 = {0, 1}

# of people with A = 1
.

(24)

When making a decision regarding the hidden state of a
data record belonging to the testing set, we used two criteria.
For a given observed behavioral pattern (B1, B2, B3, B4), use
the following:
• Criterion 1: Select A if

BlI(A|B1, B2, B3, B4) > PlI(A|B1, B2, B3, B4);
(25)

select A if

BlI(A|B1, B2, B3, B4) > PlI(A|B1, B2, B3, B4).
(26)

• Criterion 2: Select A if

BlI(A|B1, B2, B3, B4) > BlI(A|B1, B2, B3, B4) (27)

and

PlI(A|B1, B2, B3, B4) > PlI(A|B1, B2, B3, B4);
(28)

select A if

PlI(A|B1, B2, B3, B4) > BlI(A|B1, B2, B3, B4) (29)



and

BlI(A|B1, B2, B3, B4) > PlI(A|B1, B2, B3, B4).
(30)

Note that Criterion 1 implies Criterion 2. Therefore, Cri-
terion 2 classifies more cases including all those classified
by Criterion 1. However, Criterion 1 provides decisions with
higher confidence. When taking a decision, say in favor of
A over A, Criterion 1 guarantees the underlying probabilities
P (A|B1, P2, P3, P4) > P (A|B1, P2, P3, P4) whereas Crite-
rion 2 does not provide such a guarantee.

We classified all the cases of the testing datasets and
compared with the response that the subjects had already
provided for the hidden variable. With Criterion 1, from among
those cases that could be classified, a classification accuracy
of 90.77% was obtained. There was 10.79% unclassified
cases out of 890 total cases for which people have provided
responses to the hidden variable with one of the states. With
Criterion 2, a classification accuracy of 87.42% was obtained
without any unclassified cases.

VIII. CONCLUSION

DST generalization of Bayesian inference can have many
applications. The one we used in our experiment can be
categorized as a classification problem of an uncertain dataset.
Most methods available for classification of uncertain data
are probability based and these methods have limitations
in representing certain types of uncertainty [4], [17]. These
limitations can be overcome by the generalized probability
viewpoint of DS theory. The advantage of our method is that
it can handle evidential data possessing a wider variety of data
imperfections (including, probabilistic and possibilistic data
[17]). While the proposed method reduces to a probabilistic
method when the data are purely probabilistic, the advantages
it offers become more pronounced in evidential data which
call for DST models possessing non-singleton focal elements
[5]. We must also mention that the absence of any DST
independence notion also constitutes a significant advantage
associated with our results which set them apart from previous
work [7], [8].

This DST generalization can be used in dynamic applica-
tions as well. There are also several challenges to overcome.
Some algorithms, e.g., the EM algorithm, are based on prob-
abilistic properties and their generalization may result in the
loss of some of the useful features. Another challenge is to
extend the generalization to handle sample spaces possessing
a continuum of values (which call for probability density
functions in the probabilistic approach). A general criticism of

DS theory is its computational complexity [6]. This computa-
tional problem was not encountered with our newly developed
results.
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