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Abstract— Beliefs play an important role in human-robot
teaming scenarios, where the robots must reason about other
agents’ intentions and beliefs in order to inform their own
plan generation process, and to successfully coordinate plans
with the other agents. In this paper, we cast the evolving
and complex structure of beliefs, and inference over them,
as a planning and plan recognition problem. We use agent
beliefs and intentions modeled in terms of predicates in order
to create an automated planning problem instance, which is
then used along with a known and complete domain model in
order to predict the plan of the agent whose beliefs are being
modeled. Information extracted from this predicted plan is used
to inform the planning process of the modeling agent, to enable
coordination. We also look at an extension of this problem
to a plan recognition problem. We conclude by presenting an
evaluation of our technique through a case study implemented
on a real robot.

I. INTRODUCTION

As robotic systems of increasing robustness and autonomy
become a reality, the need for technologies to facilitate
successful coordination of behavior in human-robot teams
becomes more important. Specifically, robots that are de-
signed to interact with humans in a manner that is as
natural and human-like as possible will require a variety
of sophisticated cognitive capabilities akin to those that
human interaction partners possess [1]. Performing mental
modeling, or the ability to reason about the mental states
of another agent, is a key cognitive capability needed to
enable natural human-robot interaction [2]. Human team-
mates constantly use knowledge of their interaction partners’
belief states in order to achieve successful joint behavior [3],
and the process of ensuring that both interaction partners
have achieved common ground with regard to mutually
held beliefs and intentions is one that dominates much of
task-based dialogue [4]. However, while establishing and
maintaining common ground is essential for team coordi-
nation, the process by which such information is utilized
by each agent to coordinate behavior is also important. A
robot must be able to predict human behavior based on
mutually understood beliefs and intentions. In particular,
this capability will often require the ability to infer and
predict plans of human interaction partners based on their
understood goals. There has been a variety of prior work
in developing coordination and prediction capabilities for

human-robot interaction in joint tasks involving physical
interaction, such as assembly scenarios [5] and object hand-
overs [6]. However, these scenarios assume the robot is in
direct interaction with the human teammate and is able to
observe the behavior of the human interactant throughtout
the task execution. Some forms of coordination may need
the robot to be able to predict a teammate’s behavior from
only a high-level goal and mental model.

Automated planning is a natural way of generating plans
for an agent given that agent’s high-level model and goals.
The plans thus generated can be thought of either as direc-
tives to be executed in the world, or as the culmination of the
agent’s deliberative process. When an accurate representation
of the agent’s beliefs about the world (the model and the
state) as well as the agent’s goals are available, an automated
planner can be used to project that information into a
prediction of the agent’s future plan. This prediction process
can be thought of as a simple plan recognition process;
further in this paper, we will discuss the expansion of this
process to include incomplete knowledge of the goals of the
agent being modeled.

The main contribution of this work is to demonstrate
how preexisting components within a robotic architecture –
specifically the belief modeling and planning components
– can be integrated to provide needed competencies for
human-robot team coordination. First, will we present a
simple human-robot interaction (HRI) scenario that will
necessitate mental modeling and planning-based behavior
prediction for successful human-robot team coordination. We
will then present the formal representation of the beliefs in
our system, and the mapping of these beliefs into a planning
problem instance in order to predict the plan of the agent of
interest. We will also discuss the expansion of this problem
to accommodate state-of-the-art plan recognition approaches.
Finally, we will describe the component integration within
the DIARC [7] architecture that enables our theory on a real
robot, and present the results of a case study.

II. MOTIVATION

Consider a disaster response scenario inspired by an Urban
Search and Rescue (USAR) task that occurs in a facility with
a long hallway. Rooms 1 and 2 are at the extreme end of



Fig. 1. A map of the human-robot teaming scenario discussed in this paper.

one side, whereas rooms 3-5 are on the opposite side (see
Fig. 1). Consider the following dialogue exchange:

H: Comm. X is going to perform triage in room 5.
R: Okay.
H: I need you to bring a medical kit to room 1.
R: Okay.

The robot R has knowledge of two medical kits, one on
each side of the hallway (in rooms 2 and 4). Which medical
kit should the robot attempt to acquire? If commander X
(CommX) does not already have a medical kit, then he or she
will attempt to acquire one of those two kits. In order to
avoid inefficiency caused by resource conflicts (e.g., wasted
travel time), the robot ought to attempt to acquire the kit that
is not sought by the human teammate.

The medical kit that CommX will select depends on a
variety of factors, including – but not limited to – the
duration of each activity and the priority given by CommX to
each activity. If the commander had goals to perform triage
in multiple locations, the medical kit he or she would acquire
would be determined by what triage location he or she visits
first. Additionally, the beliefs about the environment may
differ between the robot and human teammates. Consider
a variation of the previous dialogue / scenario (where previ-
ously there existed only one medical kit in room 2):

H: I just put a new medical kit in room 4.
H: Comm. X is going to perform triage in room 5.
R: Okay.
H: I need you to bring a medical kit to room 1.
R: Okay.

While the robot now knows there are two medical kits,
CommX likely only knew of the original one, and will thus
set out to acquire that one, despite it being at the opposite end
of the hallway. Therefore, successful prediction of a human
teammate’s behavior will require modeling that teammate,
assuming he or she adopts a rational policy to achieve
multiple goals given one’s best estimate of their belief state.
One way of performing such modeling is by leveraging the
planning system found within the robotic architecture. In the
following, we will detail our process of modeling beliefs,
casting them into a planning problem instance, predicting
the plan of the agent of interest using this problem instance,
and finally achieving coordination via that predicted plan.

III. BELIEF MODELING

In our system, beliefs are represented in a special compo-
nent that handles belief inference and interacts with various

other architectural components. We clarify at the outset that
we use “belief” in the rest of this paper to denote the
robot’s knowledge, and not in the sense of “belief space”.
Beliefs about state are represented by predicates of the form
bel(α, φ), which denote that agent α has a belief that φ
is true. Goals are represented by predicates of the form
goal(α, φ, P ), which denote that agent α has a goal to attain
φ with priority P .

Belief updates are primarily generated via the results
of the semantic and pragmatic analyses performed by the
natural language processing subsystem, which are submitted
to the belief component (the details of this process are
described in [8]). While the interpretation of natural language
communication allows for the most direct inferences about
an interlocutor’s belief state, our system does allow for belief
updates to be generated from other input modalities as well
(e.g., the vision system).

In order for a robot to adopt the perspective of another
agent α, we must consider the set of all beliefs that the
robot ascribes to α. This can be obtained by consider-
ing a belief model Belα of another agent α, defined as
{ φ | bel(α, φ) ∈ Belself }, where Belself denotes the first-
order beliefs of the robot (e.g., bel(self, at(self, room1))).
Likewise, the set of goals ascribed to another agent can be
obtained {goal(α, φ, P )|goal(α, φ, P ) ∈ Belself}.

This belief model, in conjunction with beliefs about the
goals / intentions of another agent, will allow the robot to
instantiate a planning problem. Here, it is important to note
that all agents share the same basic beliefs about the initial
task goal and the initial environmental state (beliefs about
subsequent goals and states can differ among agents, see
Section IV-A for details).

A. Case Analysis

First, we walk through our architecture’s handling of the
motivating scenario. The simple case is where the robot
has knowledge of the location of both medical kits and
the location of CommX. The robot also believes that the
commander’s belief space is equivalent (at least in terms of
the relevant scenario details) to its own. This belief space is
described below:

Belself = {at(mk1, room2), at(mk2, room4),
at(commX, room3), bel(commX, at(commX, room3)),
bel(commX, at(mk1, room2)),
bel(commX, at(mk2, room4))}

For the sake of future brevity, we will express the predicates
describing the robot’s beliefs about the beliefs of CommX
using the notation BelcommX ⊆ Belself , and the predicates
describing the robot’s beliefs about the goals of CommX as
GCX

⊆ Belself :

BelcommX = {at(mk1, room2), at(mk2, room4),
at(commX, room3))}
GCX

= {}

A planning problem (as specified in Section IV-A) is
submitted to the Sapa Replan planner. Since GCX

is
initially an empty set, no plan is computed by the planner.



However, the robot then receives the first piece of natural
language input: ‘‘Comm. X is going to perform

triage in room 5’’. As a result of the processing
from the natural language subsystem, including applying
pragmatics rules of the form described in [8], the robot’s
belief model of CommX is updated:

BelcommX = {at(mk1, room2), at(mk2, room4),
at(commX, room3))}
GCX

=
{goal(commX, triaged(commX, room1), normal)}

The new problem (with an updated GCX
) is submitted to

the planner, which returns the following plan:

ΠcommX = 〈move(commX, room3, hall5),
move(commX,hall5, hall6),
move(commX,hall6, room4),
pick up(commX,mk2, room4),
move(commX, room4, hall6),
move(commX,hall6, room5),
conduct triage(commX, room5)〉

This plan is used by the robot to denote the plan that CommX
is likely utilizing. The robot is subsequently able to infer
that the medical kit in room 4 has likely been taken by
CommX, and can instead aim for the other available medkit,
thus successfully achieving the desired coordination.

IV. AUTOMATED PLANNING

Automated planning representations are a natural way of
encoding an agent’s beliefs such that a simulation of those
beliefs may be produced to generate information that is
useful to other agents in the scenario. These representations
come with a notion of logical predicates, which can be used
to denote the agent’s current belief: a collection of such
predicates is used to denote a state. Additionally, actions
can be used in order to model the various decisions that
are available to an agent whose beliefs are being modeled;
these actions will modify the agent’s beliefs, since they effect
changes in the world (state). Finally, planning representations
can also be used to specify goals, which can be used to
denote the agent’s intentions and/or desires.

Together, these three features – predicates, actions, and
goals – can be used to create an instance of a planning
problem, which features a domain model and a specific
problem instance. Formally, a planning problem Π = 〈D,π〉
consists of the domain model D and the problem instance π.
The domain model consists of D = 〈T, V, S,A〉, where T is
a list of the object types in the model; V is a set of variables
that denote objects that belong to the types t ∈ T ; S is a set
of named first-order logical predicates over the variables V
that together denote the state; and A is a set of actions or
operators that stand for the decisions available to the agent,
possibly with costs and/or durations.

Finally, a planning problem instance consists of
π = 〈O, I,G〉, where O denotes a set of constants (objects),
each with a type corresponding to one of the t ∈ T ; I
denotes the initial state of the world, which is a list of the
predicates from S initialized with objects from O; and G is

a set of goals, which are also predicates from S initialized
with objects from O.

This planning problem Π = 〈D,π〉 can be input to an
automated planning system, and the output is in the form of
a plan Υ = 〈â1 . . . ân〉 – which is just a sequence of actions
such that ∀i, ai ∈ A, and 〈â1 . . . ân〉 are each copies of the
respective ais initialized with objects from O.

A. Mapping Beliefs into a Planning Problem

In this section, we formally describe the process of map-
ping the robot’s beliefs about other agents into a planning
problem instance. First, the initial state I is populated by
all of the robot’s initial beliefs about the agent α. Formally,
I = {φ | bel(α, φ) ∈ Belrobot}, where α is the agent whose
beliefs the robot is modeling. Similarly, the goal set G is
populated by the robot’s beliefs of agent α’s goals; that is,
G = {φ | goal(α, φ, P ) ∈ Belrobot}, where P is the priority
assigned by agent α to a given goal. This priority can be
converted into a numeric quantity as the reward or penalty
that accompanies a goal. Finally, the set of objects O consists
of all the objects that are mentioned in either the initial state,
or the goal description: O = {o | o ∈ (φ | φ ∈ (I ∪G))}.

Next, we turn out attention to the domain model D that is
used in the planning process. For this work, we assume that
the actions available to an agent are known to all the other
agents in the scenario; that is, we rule out the possibility
of beliefs on the models of other agents (of course, rolling
back this assumption would result in a host of interesting
possibilities – we allude to this in Section IV-C). However,
even with full knowledge of an agent α’s domain model Dα,
the planning process must be carried out in order to extract
information that is relevant to the robot’s future plans.

B. Coordination Using Plans

In order to facilitate coordination between agents using
the robot’s knowledge of the other agent α’s beliefs, we
utilize two separate planning problems, ΠR (robot) and
Πα (agent α) respectively. The robot’s problem consists of
its domain model DR = 〈TR, VR, SR, AR〉 and the initial
planning instance πR, which houses the initial state that
the robot begins execution from as well as the initial goals
assigned to it. The robot also has some beliefs about agent
α; these beliefs are used to construct α’s problem Πα =
〈Dα, πα〉 following the procedure outlined previously (note
that currently, we use the same domain model for the robot
and agent α; i.e., DR and Dα are the same).

Both of these planning problems are given to separate
instances of the planning system, and respective plans ΥR

and Υα are generated. A key difference between the two
plans must be pointed out here: although ΥR is a prescriptive
plan – that is, the robot must follow the actions given to it
by that plan, Υα is merely a prediction of agent α’s plan
based on the robot’s knowledge of α’s beliefs.

In the case of coordination with agent α that needs to
happen in the future, the robot can turn to the simulated
plan Υα generated from that agent’s beliefs. The crux of
this approach involves the robot creating a new goal for itself



(which represents the coordination commitment made to the
other agent) by using information that is extracted from the
predicted (or simulated) plan Υα of that agent. Formally, the
robot adds a new goal gc to its set of goals GR ∈ πR, where
gc is a first-order predicate from SR instantiated with objects
extracted from the relevant actions of agent α in Υα.

C. Plan Recognition

So far, we have assumed that the goals of CommX are
known completely, and that the plan computed by the planner
is exactly the plan that the commander will follow. However,
this is unlikely to hold for many real world scenarios, given
that we are only equipped with a belief of the likely goal
of CommX based on updates from CommY; this may not
be a full description of the actual goal. Further, in the
case of an incompletely specified goal, there might be a
set of likely plans that the commander can execute, which
brings into consideration the issue of plan or goal recognition
given a stream of observations and a possible goal set. This
also raises the need for an online re-recognition of plans,
based on incremental inputs or observations. In this section,
we propose a plan recognition approach that takes these
eventualities into account.

1) Goal Extension and Multiple Plans: To begin with, it
is worth noting that there can be multiple plans even in the
presence of completely specified goals (even if CommX is
fully rational). For example, there may be multiple optimal
ways of achieving the same goal, and it is not obvious
beforehand which one CommX is going to follow. In the
case of incompletely specified goals, the presence of multiple
likely plans become more obvious. We thus consider the
more general case where CommX may be following one of
several possible plans, given a set of observations.

To accommodate this, we extend the robot’s current belief
of CommX’s goal, G, to a hypothesis goal set Ψ containing
the original goal G along with other possible goals obtained
by adding feasible combinations of other possible predicate
instances not included in G. To understand this procedure,
let’s first look at the set Ŝ, defined as the subset of the predi-
cates from S which cannot have different grounded instances
present in any single goal. The existence of Ŝ is indeed quite
common for most scenarios, including our running example
where the commander cannot be in two different rooms at
the same time; hence for example, we need not include
both at(commX,room3) and at(commX,room4) in the
same goal. Hence at (?comm, ?room) is one of the
(lifted) predicates included in Ŝ.

Now, let us define Q = {q | qO ∈ G} ∩ Ŝ as the
set of such lifted unrepeatable predicates that are already
present in G, where qO refers to a lifted domain predicate
q ∈ S grounded with an object from the set of constants
O, and similarly, q is the lifted counterpart of the grounded
domain predicate qO. Following this representation, the set
difference Ŝ \ Q gives the unrepeatable predicates in the
domain that are absent in the original goal, and its power set
gives all possible combinations of such predicates. Then, let
B1 = (P(Ŝ \Q))∗O denote all possible instantiations of these

predicates grounded with constants from O. Similarly, B2 =
P((S \ Ŝ)∗O) denotes all possible grounded combinations
of the repeatable predicates (note in the case of B1 we
were doing the power operation before grounding to avoid
repetitions). Then we can compute the hypothesis set of all
feasible goals as Ψ = {G | G ∈ B1 ∪B2}.

Identifying the set Ŝ is an important step in this procedure
and can reduce the number of possible hypotheses expo-
nentially. However, to make this computation, we assume
some domain knowledge that allows us to determine which
predicates cannot in fact co-occur. In the absence of any
such domain knowledge, the set Ŝ becomes empty, and we
can compute a more general Ψ = {G | G ∈ P

(
S∗
O
)
} that

includes all possible combinations of all possible grounded
instances of the domain predicates. Note that this way of
computing possible goals may result in many unachievable
goals, but there is no obvious domain-independent way to
resolve such conflicting predicates. However, it turns out
that since achieving such goals will incur infinite costs, their
probabilities of occurrence will reduce to zero, and such
goals will eventually be pruned out of the hypothesis goal
set under consideration.

2) Goal / Plan Recognition: In the present scenario, we
thus have a set Ψ of goals that CommX may be trying to
achieve, and observations of the actions CommX is currently
executing (as relayed to the robot by CommY). At this
point we refer to the work of Ramirez and Geffner [9]
who provided a technique to compile the problem of plan
recognition into a classical planning problem. Given a se-
quence of observations θ, we recompute the probability
distribution over G ∈ Ψ by using a Bayesian update
P (G|θ) ∝ P (θ|G), where the prior is approximated
by the function P (θ|G) = 1/(1 + e−β∆(G,θ)) where
∆(G, θ) = Cp(G− θ) − Cp(G+ θ).

Here ∆(G, θ) gives an estimate of the difference in cost
Cp of achieving the goal G without and with the observa-
tions, thus increasing P (θ|G) for goals that explain the given
observations. Note that this also accounts for agents which
are not perfectly rational, as long as they have an inclination
to follow cheaper (and not necessarily the cheapest) plans,
which is a more realistic model of humans. Thus, solving two
planning problems, with goals G−θ and G+θ, gives us the
required probability update for the distribution over possible
goals of CommX. Given this new distribution, the robot can
compute the future actions that CommX may execute based
on the most likely goal.

3) Incremental Plan Recognition: It is also possible that
the input will be in the form of a stream of observations,
and that the robot may need to update its belief as and
when new observations are reported. The method outlined
in the previous section would require the planner to solve
two planning problems from scratch for each possible goal,
after every new observation. Clearly, this is not feasible,
and some sort of incremental re-recognition is required.
Here we begin to realize the advantage of adopting the
plan recognition technique described above: by compiling
the plan recognition problem into a planning problem, the



task of updating a recognized plan becomes a replanning
problem with updates to the goal state [10]. Further, every
new observation does not produce an update, since in the
event that the agent being observed is actually following
the plan that has been recognized, the goal state remains
unchanged; while in the case of an observation that does not
agree with the current plan, the goal state gets extended by
an extra predicate. Determining the new cost measures thus
does not require planning from scratch, and can be computed
by using efficient replanning techniques.

V. IMPLEMENTATION

For our proof-of-concept validation, we used the Willow
Garage PR2 robot. The PR2 platform allows for the integra-
tion of ROS localization and navigation capabilities with the
DIARC architecture. Components in the system architecture
were developed in the Agent Development Environment
(ADE) (see http://ade.sourceforge.net) which is a
framework for implementing distributed cognitive robotic
architectures. Speech recognition was simulated using the
standard simulated speech recognition in ADE (which allows
input of text from a GUI), and speech output was provided
by the MaryTTS text-to-speech system.

A. Belief Component

The belief component in DIARC utilizes SWI-Prolog in
order to represent and reason about the beliefs of the robotic
agent (and beliefs about beliefs). In addition to acting as
a wrapper layer around SWI-Prolog, the belief component
contains methods that extract the relevant belief model sets
described in Section III and handling the interaction with
the planner component. Specifically, this involves sending
the set of beliefs and goals of a particular agent that needs
to be modeled to the planner. Conversion of these sets of
predicates into a planner problem is handled in the planner
component.

B. Planner

In order to generate plans that are predicated on the beliefs
of other agents, we employ the Sapa Replan [11] planner,
an extension of the metric temporal planner Sapa [12].
Sapa Replan is a state-of-the-art planner that can handle:
(i) actions with costs and durations; (ii) partial satisfac-
tion [13] of goals; and (iii) changes to the world and model
via replanning [14]. Sapa Replan additionally handles
temporal planning, building on the capabilities of the Sapa
planner. To facilitate replanning, the system contains an
execution monitor that oversees the execution of the current
plan in the world; the monitor interrupts the planning process
whenever there is an external change to the world that
the planner may need to consider. The monitor additionally
focuses the planner’s attention by performing objective (goal)
selection, while the planner, in turn, generates a plan using
heuristics that are extracted by supporting some subset of
those objectives. The full integration of Sapa Replan with
the DIARC architecture is described in our earlier work [15].

C. Plan Recognition

For the plan recognition component, we used the prob-
abilistic plan recognition algorithm developed by Ramirez
and Geffner [9]. The base planner used in the algorithm is
the version of greedy-LAMA [16] used in the sixth edition
of the International Planning Competition in 2008. To make
the domain under consideration suitable for the base planner,
the durations of the actions were ignored while solving
the planning problems during the recognition phase. We
report initial observations from using the plan recognition
component (implemented using LAMA) in Section VI-B.

VI. EVALUATION

In this section, we present a demonstration of the plan
prediction capabilities described in Section IV through a set
of proof-of-concept validation cases. These cases include an
implementation with the full robotic architecture on an actual
robotic platform (Willow Garage PR2), as well as a more
extensive set of cases that were run with a limited subset
of the cognitive architecture in simulation. These validation
cases are not intended to be a comprehensive account of
the functionality that our belief modeling and planning
integration affords us, but rather indicative of the success of
our architectural integration (which also seeks to highlight
some interesting and plausible scenarios in a human-robot
teaming task). First, we present a video of an instance similar
to the case described in Section III-A evaluated on a PR2
robot and annotated with the robot’s knowledge of CommX’s
beliefs, as well as its prediction of the commander’s plan:
http://tinyurl.com/beliefs-anno.

A. Simulation Runs

We also utilized that same scenario to perform a more ex-
tensive set of simulations. We varied the number of medical
kits the robot believes CommX knows about (1 vs. 2), the
believed location of each medical kit (rooms 1-5), and the
believed goals of CommX (triage in room 1, room 5, or both).
The commander is believed to always start in room 3. This
yields 90 distinct cases to analyze. The resulting prediction of
CommX’s plan is then compared with what we would expect
a rational individual to do. However, in some scenarios there
are multiple optimal plans that can be produced by different
strategies. The first strategy, Opt1, is where the individual
favors picking up medkits towards the beginning of their
plan (e.g. at their starting location), and the second, Opt2, is
where the individual favors picking up medkits toward the
end of the plan (e.g. in the same room as the triage location).

The results of these simulation runs show that the robot
successfully predicts which medical kit CommX will choose
in 90 out of 90 cases (100.0% accuracy) if Opt1 is assumed.
If Opt2 is assumed, the robot is successful in predicting 80
out of 90 cases correctly (88.9% accuracy). This demon-
strates (for unestablished reasons) a bias in the planner for
plans that comport with Opt1 behavior. Nonetheless, these
results confirm that the mental modeling architecture can be
successful in predicting the behavior of rational agents.



Robot Condition Cases with no con-
flict: Opt1

Cases with no con-
flict: Opt2

Robot at room2 55.83% 47.50%
Robot at room3 25.0% 33.33%
Robot at room3 w/
mental modeling

100.0% 91.67%

TABLE I
PERFORMANCE OF THE ROBOT WITH, AND WITHOUT, MENTAL

MODELING CAPABILITIES.

Next, we evaluated the following question: what does
this mental modeling ability give us performance-wise? We
compared the medical kit selection task between a robot
with and without mental modeling capabilities. The robot
without the mental modeling capabilities still looks for a
medkit but can no longer reason about the goals of CommX.
We considered 120 cases: 20 combinations of medical kit
locations where the two kits were in different locations (as
this would be a trivial case) × 3 possible goal sets of
CommX (as described above) × 2 sets of beliefs about medkit
existence (as described above). To demonstrate the efficacy
of the belief models, we also consider two different starting
locations of the robot - we now include room 3 in addition to
room 2 - as there would naturally be more selection conflicts
to resolve if both the robot and CommX started in the same
location. We calculated the number of cases in which the
robot would successfully attempt to pick the medical kit
not already taken by the human teammate first. The results
are tabulated in Table I. As shown, the mental modeling
capability leads to significant improvements over the baseline
for avoiding potential resource conflicts.

B. Plan Recognition

We considered two proof of concept scenarios to illustrate
the usefulness of plan recognition: reactive, and proactive.
In the reactive case, the robot only knows CommX’s goal
partially: it gets information about CommX having a new
triage goal, but does not know that there already existed a
triage goal on another location. In this case, by looking at
the relative probabilities of all triage related goals, the robot
is quickly able to identify which of the goals are likely based
on incoming observations; and it reacts by deconflicting the
medkit that it is going to pick up. In the proactive case,
the robot knows CommX’s initial state and goals exactly,
but CommX now assumes that the robot will bring him a
medkit without being explicitly asked to do so. In such cases,
the robot can adopt the goal to pick up and take a medkit
to CommX by recognizing that none of CommX’s observed
actions seem to be achieving that goal.

VII. CONCLUSION

In this paper, we described a means of achieving coor-
dination among different agents in a human-robot teaming
scenario by integrating the belief modeling and automated
planning components within a cognitive robotic architecture.
Specifically, we used the planning component to predict
teammate behavior by instantiating planning problems from
a teammate’s perspective. We described the formal repre-
sentation of the beliefs and the planning models, and the

mapping of the former into the latter. We further discussed
extensions to our current approach that utilize state-of-the-art
plan recognition approaches. An evaluation of our integrated
architecture’s predictive capabilities was conducted using
a PR2 robot, which showed that appropriate plans were
produced for different sets of beliefs held by the robot. We
also presented collated results from a simulation study that
ranged over a wide variety of possible scenarios – these
results confirmed that the mental modeling capabilities led
to significant improvements in coordination behavior.
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