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Abstract

Conditional statements in natural language of the form “if A then B” have
multiple interpretations that require different logical treatment. In this paper,
we focus on probabilistic “if A then B” rules that are given either a Bayesian
interpretation via conditional probabilities P(B |A), or couched as probabilistic
material implication. While some have argued that Bayesian conditionals are
the correct way to think about such rules, there are challenges with standard in-
ferences such as modus ponens and modus tollens that might make probabilistic
material implication a better candidate at times for rule-based systems employ-
ing forward-chaining; and arguably material implication is still suitable when
information about prior or conditional probabilities is not available at all. We
investigate a generalization of probabilistic material implication and Bayesian
conditionals that combines the advantages of both formalisms in a systematic
way and prove basic properties of the generalized implication, in particular,
various bounds as well as properties of inference chains in graphs. And most
importantly we provide a novel and natural interpretation of the generalized
implication’s main parameter.

Keywords:

1. Introduction

Formal rule-based inference is widely used in a variety of fields, from artificial
intelligence, to philosophy. Yet, “if-then” rules, or conditional statements, cover
a wide range of logically distinct concepts and relations such as analytical truths
(“if p is true, then p∨ q is true”), concept relationships (“if x is an apple, then
x is a fruit”), causal relations (“if the power is off, the light will not turn on”),
abductive inferences (“if the light does not turn on, then the power must be
off”), normative constraints (“if the sign says ‘no smoking’, smoking is not
allowed”), hypotheticals (“if the plane has a mechanical problem, the flight will
be cancelled”), and counterfactuals (“if the mechanical issue had been fixed, the
plane could have departed”) (see also [7, 37, 9, 29, 14]).

Given the conceptual diversity covered by natural language “if-then” ex-
pressions, it is not not suprising that there is still disagreement on how to best
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capture the probabilistic rules that extend them. These have traditionally been
modeled either with material implication (the “logical” approach), or with a
conditional probability (the “Bayesian” approach, in which case we refer to it
as a “Bayesian conditional”). Treating conditional statements as material im-
plications has been shown to be problematic [e.g., 1], hence the proposal to view
them as Bayesian conditionals P(B |A) [e.g., 32]. At the same time, Bayesian
conditionals are not appropriate for handling (indicative) conditionals [e.g., see
23, for a discussion], and cannot be used for inference (e.g., using modus tollens)
if the probability of the prior is zero (P (A) = 0). Furthermore, various “trivial-
ity results” such as those by Lewis exposed difficulties associated with assigning
conditional probabilities to conditional statements [24, 25] (see also [8]). And
yet another difficulty with assigning probabilities is the “shiftiness” of condi-
tionals, referring to the possibility that the same formal implication might have
different interpretations when embedded in different contexts (see [22] for a
detailed discussion).

Fortunately, there is a way to accommodate both probabilistic material im-
plication and Bayesian conditionals under a common generalization, thus re-
lieving some of the past tension between the two approaches and emphasizing
their commonalities. Specifically, it is possible to define a one-parameter fam-

ily of generalized implications, {A γ−→ B : γ ∈ [0, 1]}, for which the classical
probabilistic implications correspond to the endpoints: γ = 1 gives probabilis-
tic material implication P(A → B), and γ = 0 gives the Bayesian conditional
P(B |A), see [26].

The question then arises whether we need to reconceptualize (probabilistic)
material implication and Bayesian conditionals in light of this generalization.
The goal of this paper is to investigate some of the formal properties of the

“generalized implication”
γ−→, in particular, the probability bounds arising from

inferences involving
γ−→, as well as an interpretation of the γ-parameter. After a

brief motivation for the generalization and the introduction of its mathematical
form, we start with a review of its basic properties: functional relationships
among various probabilities comparing material implication, Bayesian condi-
tionals, and the generalized implication, as well as their bounds. We then
present a result on bounds for generalized implication chains as they would oc-
cur in rule-based inference systems. Finally, we discuss a novel interpretation
of the generalized implication and the formula that determines its probability,
and also briefly discuss possible applications of generalized implications in logic
and philosophy.

2. Motivation and Related Work

No consensus exists for the interpretation, modeling, and analysis of condi-
tionals in natural language, but some popular approaches include formal logic
and rules of inference, mental models which are prominent in the psychological
literature, and suppositional theories that focus on estimating the probability
of conditionals [5] (see [10], [36] for more discussion). In Artificial Intelligence
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research and applications the Bayesian conditional has become the de facto
interpretation, as advocated by [32].

Efforts to combine probability and logic go back at least to Leibniz, Jakob
Bernoulli, and Boole (e.g., see [18], and also [17] for a formal framework for
“probability models”). Mapping logical operators onto set-theoretic operators
in the usual way, we get set-theoretic, and hence, probabilistic interpretations
of propositional sentences, e.g., from A → B ≡ ¬A ∨B ≡ ¬A ∨ (A ∧B) we get
the standard

P(A → B) = P(A) +P(A ∩B). (1)

It was recognized at least as early as [2] (see also [17], [18]) that imprecise
probabilities (for which we only have a lower and an upper bound) are needed
when dealing with probabilities of events (i.e., sets representing propositional
sentences). For our purposes, the most salient motivation for working with
imprecise probabilities is that they are unavoidable if we want to use modus
ponens, even if the implication rules are not probabilistic: applying modus po-
nens to infer P(B) only yields the bounds P(B) ∈ [P(A ∩ B), P(A → B)].
Note that we can also use the “Bayesian implication” B |A for inference rather
than material implication to get bounds on B which were initially presented in
[39] (see [34], [6], [9], and [12] for a development of the symbol “B |A”, and see
Section 8 for more on the relevance of [12] to this paper).

Using linear programming, the existence of lower and upper bound functions
for the probability of any propositional logic formula was established in [16]. In
[17], these results were extended, and probability bounds on modus ponens and
hypothetical syllogism were given. A formal semantic method to compute the
bounds on the probability of a given sentence in the predicate calculus was devel-
oped in [28] and extended in [11]. Probability bounds on hypothetical syllogism
and other inference rules from propositional classical logic were computed in
[21].

More generally, a formal proof system is needed for performing inference. An
early proposal for probabilistic proof system was [28], and this was generalized
in [13] by incorporating conditional probabilities. A complete proof system
for probability logic was put forward by [31]. A Gentzen-style proof system
was introduced in [3], [4]. For a discussion on the extension of probabilistic
propositional logic to modal logics see [19]. An overview of probabilistic logics
can be found in [15] (see also [30]).

A parametrized family of abstract probabilistic logical implications A
γ−→ B

was introduced in [26], and the probability of such a generalized implication was
computed as a function of the parameter γ, for 0 ≤ γ ≤ 1:

P(A
γ−→ B) =

P(A ∩B) + γP(A)

P(A) + γP(A)
, (2)

This is slightly different from the formula presented in [26], but this version
more clearly shows the form to be some sort of interpolation from considering
none of the probability of A to all of A.
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It is immediately apparent that γ = 0 corresponds to the Bayesian con-
ditional, and γ = 1 corresponds to (the probability of) material implication,
hence γ is interpolating between the Bayesian conditional and material implica-
tion. Hence, these two interpretations of the phrase “if A then B” are actually
different manifestations of the same abstract concept—the two endpoints of a
one-parameter family of probabilistic logical implications.

In this paper, we extend the results of [21] to include bounds on the gener-
alized implication of [26], including modus ponens, hypothetical syllogism, and
modus tollens with generalized implications. In particular, this shows how to
treat bounds involving material implication and Bayesian conditionals in a uni-
form manner.

3. Computing probability bounds

We start by reviewing basic techniques for computing probability bounds
relating to probabilistic modus ponens and hypothetical syllogism (see [20] for
details).

3.1. Background and notation

As noted above, a generalized notion of a probabilistic logical implication,

A
γ−→ B, was introduced in [26], and its probability was computed to be (2)

as follows. Fix arbitrary events A,B and consider probability distributions P
that are constant on the four basic regions determined by A,B. Then define a
probabilistic logical operation to be a function F (P) taking values in [0, 1], define
probabilistic implication operators to be those probabilistic logical operators F
such that, for any probability distributions P,P′, we have (i) if P(A ∩ B) =
P′(A∩B) and P(A∩B) = P′(A∩B), then F (P) = F (P′), and (ii) P(A∩B) =
0 ⇒ F (P) = 1. Then the “natural” implication operators were defined as those
being linear in P(A ∩ B). And finally, P(A ∩ B) was computed as a function

of a = P(A) and g = P(A
γ−→ B). Then it was shown that if this function is

commutative (in a and g) then g must be of the form given by (2). For more
details, see [26].

We start by investigating the relationships among the generalized implication

A
γ−→ B, the material implication A → B, the Bayesian implication B |A, the

premise A, and the intersection A ∩ B. Henceforth, we will use the following
notational conventions:

Definition 1 (Notation for basic probability variables). Fix events A,B, and
γ ∈ [0, 1]. Let X = A ∩ B. Then let a = P(A), b = P(B), x = P(X),
m = P(A → B) formaterial implication, c = P(B |A) for Bayesian conditional,

and g = P(A
γ−→ B) for generalized implication.

We can use the notation from Definition 1 to express the four basic regions
in terms of a, b,m, c as P(A∩B) = ac = m+a−1, P(A∩B) = a(1−c) = 1−m,
P(A∩B) = b−ac = 1−m−a+b, P(A∩B) = 1−a−b+ac = m−b. Note that if
a = 0 then x = P(A∩B) = 0, even though c is undefined, and the expressions are
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still correct using this interpretation of ac (as the intersection). But typically, we
work under the assumption that a ̸= 0, so that c is defined. Furthermore, since
a, b, x,m, c, g are probabilities, we obviously must have 0 ≤ a, b, x,m, c, g ≤ 1.
Furthermore, we will also only consider 0 ≤ γ ≤ 1 in this paper.

As discussed above, probability bounds are unavoidable, so all probabilities
will henceforth be imprecise, i.e., we will typically not know the value p of a
probability, but rather, will only be given p0, p1 ∈ [0, 1] such that p ∈ [p0, p1].
The quantity p0 is the lower, and p1 is the upper probability for p. Of course,
there is always the need to restrict to the interval [0, 1] for the output of any
formula giving probability bounds. In order to simplify notation, we will build
this into our notation for probability bounds.

Definition 2 (The Lower- and Upper-bound operators). Suppose that p0, p1
are lower and upper bounds on some probability p ∈ [0, 1], i.e., p0 ≤ p ≤ p1, but
suppose further that p0, p1 are computed from functions that do not necessarily
give values in [0, 1]. Then

pL = max{p0, 0} , pU = min{p1, 1}.

In what follows, we refer to this process as clipping (to keep lower and upper
probability bounds in [0, 1]). For any probability p, we will write p ∈ [pL, pU ],
and will denote the width of any probability interval [pL, pU ] as ∆p = pU −pL.

3.2. Functional dependencies

We first observe that the quantities m, c, a, x, g, and γ can all be expressed
in terms of each other using (2). For example, the standard relationship,
given by (1), i.e., m = 1 − a + x, is easily recovered by letting γ = 1 in (2).

Then we get the following functional relationships: g(γ, a, x) =
x+ γ(1− a)

a+ γ(1− a)
,

g(γ, a, c) =
ac+ γ(1− a)

a+ γ(1− a)
, g(γ, a,m) =

(a+m− 1) + γ(1− a)

(1− γ)a+ γ ·1
, and in general,

for arbitrary γ̂ and its corresponding ĝ = P(A
γ̂−→ B), we have

g(γ, a, ĝ, γ̂) =
[(1− γ̂)aĝ + γ̂(a+ ĝ − 1)] + γ(1− a)

a+ γ(1− a)
. (3)

Other functional relationships are easily derived, e.g., expressions for x(γ, a, g),
m(γ, a, g), c(γ, a, g), a(γ, g, c), etc.

3.3. Using partial derivatives to compute bounds

Then these functional relationships were used to compute probability bounds.
A simple example will suffice to explain the idea. Fix γ > 0 (for the sake of
simplicity). To compute the bounds gL, gU for g given the bounds a ∈ [aL, aU ],

c ∈ [cL, cU ], we must consider the function g(γ, a, c) =
ac+ γ(1− a)

a+ γ(1− a)
, and

simply compute the partial derivatives
∂g

∂a
=

−γ(1− c)

(a+ γ(1− a))2
≤ 0 and

∂g

∂c
=
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a

a+ γ(1− a)
≥ 0. From these partial derivatives we see that the function

λag(γ, a, c) is monotonic decreasing on [0, 1] for every 0 ≤ c < 1, and similarly,
λcg(γ, a, c) is monotonic increasing. Hence, the max and min, i.e., the bounds,
occur at the corresponding corners, i.e., gL = g(γ, aU , cL), gU = g(γ, aL, cU ).

4. Modus Ponens for generalized implications (bounds on b)

In performing logical inference, modus ponens, of course, plays a key role.
In the probabilistic context, modus ponens corresponds to computing (bounds

on) b = P(B) given (bounds on) a = P(A) and (bounds on) g = P(A
γ−→ B).

The term modus ponens is usually reserved for the case when γ = 1 (so g = m).
If γ = 0, we have Bayesian modus ponens. Of course, now we want bounds on
b when γ is arbitrary.

The equations in Section 3.2 are true for any B, but b is itself not functionally
related to any of g, a, x. Consequently, we can only get bounds on b, even if we
know all of g, a, x precisely. In this case, we use A∩B ⊆ B ⊆ A∪B, to get the
well-known (tight) bounds x ≤ b ≤ m, i.e., bL = x, bU = m.

Simple algebraic manipulation of the equations in Section 3.2 allows us to
express these bounds in terms of a, γ, g:

bL = (1− γ)ag + γ(a+ g − 1), (4)

bU = (1− γ)ag + γ(a+ g − 1) + (1− a). (5)

So b does not depend on a, γ, g in a functional way, but its lower and upper
bounds do, i.e., for fixed γ we could have written (4), (5) as bL(a, g) = · · ·
and bU (a, g) = · · · . Of course, these formulas apply when we have precise
probabilities for a, g. As in Section 3.3, if we only have bounds for a and g, we

compute
∂

∂a
bL(a, g) > 0,

∂

∂g
bL(a, g) > 0, and

∂

∂a
bU (a, g) < 0,

∂

∂g
bU (a, g) > 0.

Recall that x = P(A∩B). So from (4) we can compute (bL)L = xL, (bL)U = xU ,
and from (5) we compute (bU )L = mL, (bU )U = mU .

We will abuse notation and write bL = (bL)L and bU = (bU )U , and discard
the other two, i.e., bL refers to both the value of the bound (computed from
other bounds), as well as the function that is used to compute this bound. This
leads to

bL = bL(aL, gL) = (1− γ)aLgL + γ(aL + gL − 1) (6)

bU = bU (aL, gU ) = (1− γ)aLgU + γ(aL + gU − 1) + (1− aL). (7)

Whether bL refers to the function in (4) or the value in (6) will be clear from
context. Furthermore, ∆b = (1− aL) + [(1− γ)aL + γ ·1]∆g, and if g is precise
we just have ∆b = 1− aL.
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5. Generalized hypothetical syllogism

Implications chains are of particular interest for rule-based reasoning. By an

implication chain we mean a sequence of generalized implications Bi γi

−→ Bi+1,
for i = 0, 1, . . . , N−1. Let A = B0, and suppose that we are the given bounds
a ∈ [aL, aU ] for the initial antecedent A.

There are two flavors of inference rule involving implication chains, both
referred to as hypothetical syllogism. The first is a generalization of modus
ponens: assume B0, B0 → B1, B1 → B2, conclude B2. The second is of the
form: assume B0 → B1, B1 → B2, conclude B0 → B2. These are, of course,
easily generalized to more than two hypothetical premises. We will, of course,
be dealing with the probabilized versions of these. The results of this section
are from [20].

5.1. Flavor I: one categorical premise, multiple hypothetical premises

We want to compute the bounds for the final consequent bN . We first do this
for arbitrary γ. Then we easily derive all the corresponding classical bounds by
setting γ = 0, 1.

Theorem 3. Fix arbitrary γ and suppose we are given a sequence of generalized

implications Bi γ−→ Bi+1, for i = 0, 1, . . . , N−1. Suppose A = B0 and that we
are given bounds a ∈ [aL, aU], g

i ∈ [giL, giU], for i < N . Let yi = γ(1− gi) + gi

and zi = γ(1 − gi). Then the bounds at the end of the generalized implication
chain are

bNL = aL

N−1∏
i=0

yiL −
N−1∑
i=0

ziU

N−1∏
j=i+1

yjL

 ,

bNU = 1− zN−1
L − (1− yN−1

U )

aL N−2∏
i=0

yiU −
N−2∑
i=0

ziL

N−2∏
j=i+1

yjU

 .

Note that since γ = 0 ⇒ y = c, z = 0, and γ = 1 ⇒ y = 1, z = 1 − m,
we can easily recover the classical cases below. However, we do not ascribe any
significance to y, z other than that they allow the expressions to be written more
compactly.

Corollary 4. If we are using material implications in our chain, we just set
γ = 1 in the formulas above. So mi ∈ [mi

L, mi
U ], for i < N , are given, and the

bounds at the end of the implication chain are

bNL = aL −
N−1∑
i=0

(
1−mi

L

)
, bNU = mN−1

U .

We note that for typical data (not all mi
L = 1) we have bNL → 0. Also, bNU just

depends on the last implication.
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Corollary 5. For Bayesian modus ponens, we have γ = 0, and ci ∈ [ciL, ciU ],
for i < N are given. Then the bounds at the end of the implication chain are

bNL = aL

N−1∏
i=0

ciL , bNU = 1−

(
aL

N−1∏
i=0

ciL

)(
1− cN−1

U

)
.

We note that for typical data (not all ciL = 1) we see bNL → 0 and bNU → 1.

Next we discuss the most general case, which generalizes Theorem 3 above.
This is intractable on its own, but can be approximated using Theorem 3.

Lemma 6. Let Bi γi

−→ Bi+1, for i = 0, 1, . . . , N−1, be a given chain of general-
ized implications. Let A = B0, and suppose we are given the bounds a ∈ [aL, aU],
and the bounds gi ∈ [giL, giU], for i < N . Then bounds for bN the end of the
generalized implication chain can be computed using Theorem 3.

5.2. Flavor II: only hypothetical premises

Lemma 7. A generalized implication chain, Bi γ−→ Bi+1, for i = 0, 1, . . . , N−1,
from Theorem 3, can be replaced with a single implication A

γ−→ B, where A =
B0, B = BN , and the bounds [bNL , bNU ] are the same, whether computed from
the implication chain or the single implication.

Lemma 8. Let Bi γi

−→ Bi+1, for i = 0, 1, . . . , N−1, be a generalized implication
chain from Lemma 6, and let γ be arbitrary. Then this implication chain can

be replaced with a single implication A
γ−→ B, where A = B0, B = BN , and the

bounds [bNL , bNU ] are the same, whether computed from the implication chain or
the single implication (when these both use γ).

Several consequences of this result are noteworthy:
(a) The upper bound aU of the initial antecedent A plays no role in the

determination of the bounding interval of the final consequent BN . This comes
as no surprise because the same is true for a single rule (see (7)).

(b) The lower bound bNL of the consequent BN is completely determined by
the lower bounds of the antecedent A and the rules being cascaded together;
their upper bounds play no role in its determination. In fact, if the lower bound
of the antecedent A or any of the rules is zero, the lower bound of the consequent
is zero.

(c) In the case γ = 1 (material implication) the upper bound bNU of the
consequent BN is completely determined by, in fact it is equal to, the upper
bound of the last rule BN−1 → BN ; neither its lower bound nor the antecedent
A nor the other rules play a role in the determination of bNU .

(d) In the case γ = 1 (material implication), we compute ∆bN = bNU − bNL =

∆bN = ∆mN−1 + (1 − aL) +
∑N−2

i=0 (1 − mi
L). Interestingly, this implies that

∆bN ≥ ∆mN−1, i.e., the uncertainty interval associated with the consequent
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BN can never be narrower than the uncertainty interval associated with the rule
at the end, viz., BN−1 → BN . In fact,

∆bN


= ∆mN−1, if mN−1

L = 0 or

aL = mi
L = 1, 0 ≤ i ≤ n− 2;

> ∆mN−1, otherwise.

6. Converses

In this section we will consider the logical converse B
γ−→ A of our original

sentence A
γ−→ B. As usual, fix γ and establish the notation k = P(B

γ−→ A).
Our interest lies in trying to express k in terms of [aL, aU ], [gL, gU ] from the
original sentence.

6.1. The classical case

For the case of material implication, i.e., γ = 1, we trivially have the converse
probability k = P(B → A) = 1 − b + x, As in Section 3.3 we get the bounds
kL = k(bU , xL) and kU = k(bL, xU ). For the sake of clarification, here is an easy
wrong calculation: kL = k(bU , xL) = 1− bU + xL = 1−mU + (aL +mL − 1) =
aL−∆m. First, this formula does not always simplify to kL = aL−∆m because
of Definition 2, eg., if aL = mL = 0, the quantity in the parentheses xL is 0,
leaving kL = 1 −mU ≥ 0. But if we only apply the restriction to [0, 1] at the
end of the computation, we would get kL = 0. A second, more serious, problem
is that k is not functionally related to a,m since b is not, so there is no function
k(a,m), to which we can apply the techniques of Section 3.3 to compute kL
(in terms of a,m). So in the equation above we have bU = m ≤ mU , but the
inequality will be strict unless m is known precisely.

The point is that bL, bU are functionally related to a and m, even though b is
not. So the solution is to introduce a new variable and functional relationship,
kl = k(bU (a,m), x(a,m)), for the lower bound of k, and then compute (kl)L as
in Section 3.3. Then we set kL = (kl)L (see the discussion around (6)). We get
kl = 1−m+ (a+m− 1) = 1−m+ x = a, so (kl)L = aL = (1−mU )/(1− cL).
A similar calculation with the new variable ku for the upper bound ultimately
gives [kL, kU ] = [aL, 1] = [(1 −mU )/(1 − cL), 1]. Hence, if cL = 0 and m is
known precisely, then we can only conclude [kL, kU ] = [1−m, 1].

For the case of the Bayesian conditional, γ = 0, the converse of P(B |A)
would be P(A |B). Of course, this just requires Bayes’ formula, and k =
P(A |B) = ac/b, so kL = aLcL/bU , kU = aU cU /bL. The analysis is similar
to the material case, and leads to [kL, kU ] = [aLcL/(1 − aL + aLcL), 1]. It is
worth noting that the denominator in kL is not mL = 1− aU + aU cL (unless a
is precise). Hence, if a ∈ (0, 1] and c > 0 is known precisely, then we can only
conclude [kL, kU ] = (0, 1]. (Of course, since we need a > 0 for c to be defined
we don’t write k ∈ [0, 1].)
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6.2. Converses for arbitrary γ

Applying the relevant equation of Section 3.2 to P(B
γ−→ A) (but substitut-

ing k for g and b for a) gives k =
x+ γ(1− b)

b+ γ(1− b)
=

ac+ γ(1− b)

b+ γ(1− b)
. Then, as in

Section 3.3, we have kL = k(aL, cL, bU ), kU = k(aU , cU , bL), since ∂k/∂a > 0,
∂k/∂c > 0, ∂k/∂b < 0. As above, we define new variables and functional rela-
tionships kl = k(a, c, bU (a, c)) and ku = k(a, c, bL(a, c)). Since bU = m we have

kl = k(a, c,mU (a, c)) =
ac+ γa(1− c)

1− a+ ac+ γa(1− c)
, and as in Section 3.3 we get

(kl)L(aL, cL). Similarly, bL = x gives ku = k(a, c, x(a, c)) =
ac+ γ(1− ac)

ac+ γ(1− ac)
= 1,

and hence,

kL =
aLcL + γaL(1− cL)

1− aL + aLcL + γaL(1− cL)
, kU = 1.

It is interesting to note that the alternate expression kl =
ac+ γ(1−m)

m+ γ(1−m)
, yield-

ing kL =
aLcL + γ(1−mU )

mU + γ(1−mU )
, gives an inferior bound unless c is precise.

7. Modus Tollens (contrapositives)

Suppose we have bounds on m = P(A → B). In classical logic, if we
happen also to know bounds on B, and would like to transfer that knowledge
into bounds on A, we need the contrapositive. In this section we will consider

the contrapositive B
γ−→ A of our original generalized implication A

γ−→ B.
Note that γ is the same in both of these implications, but the probabilities
of each sentence will typically be different. Fix γ and establish the notation

q = P(B
γ−→ A).

7.1. Finding bounds on a from bounds on b

If we have no information on a, i.e., a ∈ [0, 1], but we have bounds on g and
b (hence b), and we know γ precisely, we want to find (better) bounds on a.

Solving (4) for a gives a ≤ (b + γ(1 − g))/(g + γ(1 − g)), and to find the
worst case of this upper bound we compute the relevant derivatives to get

a ≤ bU + γ(1− gL)

gL + γ(1− gL)
. Then γ = 0 ⇒ a ≤ bU

cL
, and γ = 1 ⇒ a ≤ 1 −mL + bU .

Similarly, solving (5) for a gives a ≤ (1− b+ γ(1− g))/((1− γ)(1− g)). Then,

using the technique of Section 3.3, we get a ≤ 1− bL + γ(1− gU )

(1− γ)(1− gU )
. Hence,

γ = 0 ⇒ a ≤ (1 − bL)/(1 − cU ), and for γ = 1 the formula is not defined, but
yields the trivial bound a ≤ 1 since the formula is unbounded as γ → 1 (and we
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use Definition 2). More interestingly, (4) and (5), the lower and upper bounds
formulas for b, both gave upper bounds for a. So at this point we have

aU = min

{
bU + γ(1− gL)

gL + γ(1− gL)
,
1− bL + γ(1− gU )

(1− γ)(1− gU )

}
.

These bounds, for the special case of γ = 0 (g = c) and precise quantities, were
initially reported in [39].

If we apply (4) to B
γ−→ A by substituting b, a for a, b (resp.), then we must

also use q (which we typically don’t have) rather than g. The only time we have
q is when γ = 1, in which case q = g = m. Since the classical bounds (γ = 1,
g = m) are well-known, we won’t pursue this approach here. However, we can

express the inequality in (5) as applied to B
γ−→ A, but in terms of γ, a, b, x

from the start. These are the quantities that we have (as opposed to q). So

a ≤ P(A∩B)+P(B) ⇒ 1−a ≤ 1−a−b+x+b ⇒ 0 ≤ x = (1−γ)ag+γ(a+g−1),
and solving for a gives a ≥ (γ(1 − g))/(g + γ(1 − g)). Since this is the only
expression of an upper bound for a that does not involve q, and ∂/∂g < 0, the
technique from Section 3.3 gives

aL =
γ(1− gU )

gU + γ(1− gU )
.

Then γ = 0 ⇒ aL = 0, and γ = 1 ⇒ aL = 1−mU .

7.2. Bounds on q and the effect on modus tollens

As usual, we fix γ and consider A
γ−→ B. As above, let q = P(B

γ−→ A).
Then, as in Section 3.2 (after substituting q for g, 1− b for a, and P(A ∩B) =

1−a−b+x for x), we get q =
(1− a− b+ x) + γ(1− (1− b))

(1− b) + γ(1− (1− b))
=

m− (1− γ)b

1− (1− γ)b
.

If we have no further information on the bounds of b, we just use x ≤ b ≤ m,

and ∂q/∂b < 0, to get qL =
γm

1− (1− γ)m
, qU =

m− (1− γ)x

1− (1− γ)x
. Of course,

∆q measures how well modus tollens works for a particular γ. If γ = 1, then
∆q(m,x) = 0, and the general case is

∆q =
(1− γ)(1−m)(m− x)

(1− (1− γ)m)(1− (1− γ)x)
.

Since ∂∆q/∂γ ≤ 0 (for all m,x), this is a decreasing function on [0, 1], with max
at γ = 0, taking the value (m − x)/(1 − x). Figure 1 is a visual comparison of
∆q(m,x) for various γ. The value of γ does not have to be too large for the
degradation of ∆q to become relatively small. Of course, the specific maximum
value of ∆q(m,x) could be computed as a function of γ, as well as the average
degradation, which could be computed by an integral giving the volume under

the surface: ∆qavg = 1
2

∫ 1

0

∫m

0
∆q(γ;x,m) dx dm. Note: The inconsistent region

comes from m < x, i.e., a > 1.
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γ = .00 γ = .01 γ = .10

γ = .25 γ = .50 γ = .7517

Figure 1: ∆q measures the degradation of modus tollens.

8. Interpretation of γ

One question we have so far not addressed is how to interpret γ other than
stating that the limit cases of γ = 0 and γ = 1 correspond to the Bayesian
conditional and the material implication. In this section we will see how both

g = P(A
γ−→ B) and γ can be viewed as conditional probabilities. We begin by

considering the easy equivalence A → (A → B) ≡ A → B. The left-hand side
of this equivalence is of the form A → D, and hence corresponds to P(D |A) =
P(A → B |A) in a Bayesian interpretation. Of course, the right-hand-side
corresponds to P(B |A). Then the above logical equivalence suggests the easily
verified equation,

P(A → B |A) = P(B |A). (8)

We note that Figure 2 indicates how to view (2) in a Venn diagram, and that
it anticipates sections 8.1, 8.2 below.
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A ∩B

A

B

Z

A ∩B

A

B

Z

A ∩B

A

B
Z

(a) γ = 4
75 (b) γ = 12

75 (c) γ = 71
75

Figure 2: P(A) = 0.25, P(B) = 0.30, P(A ∩ B) = 0.08, so we have P(A
0−→ B) =

P(B |A) = 0.08
0.25

= 0.32 and P(A
1−→ B) = P(A → B) = 0.08 + 0.75 = 0.83. Then,

using P(Z) = γP(A) we get (a) P(Z) = 0.4 ⇒ γ = 0.04
0.75

= 0.053, and hence,

P(A
0.053−−−−→ B) = 0.08+0.04

0.25+0.04
= 0.414, (b) P(Z) = 0.12 ⇒ γ = 0.12

0.75
= 0.160, and

hence, P(A
0.160−−−−→ B) = 0.08+0.12

0.25+0.12
= 0.541, and (c) P(Z) = 0.71 ⇒ γ = 0.71

0.75
= 0.947,

and hence, P(A
0.947−−−−→ B) = 0.08+0.71

0.25+0.71
= 0.823.

8.1. Viewing g as a conditional probability

We now observe that a change to the conditioning set in the left-hand side

of (8) will lead to the generalized implication A
γ−→ B. Let Aγ = A ∪ Z, where

Z is any set such that Z ⊆ A and P(Z) = γP(A) = γ(1 − P(A)). Hence,
P(Aγ) = P(A) + γP(A). Then, using A ∩B ⊆ Aγ and A ∩Aγ = Z, we get

P(A → B |Aγ) =
P((A ∪B) ∩Aγ)

P(Aγ)

=
P(Z ∪ ((B ∩A) ∪ (B ∩ Z)))

P(Aγ)

=
P(A ∩B) +P(Z)

P(Aγ)

=
P(A ∩B) + γP(A)

P(A) + γP(A)
= P(A

γ−→ B), (9)

where the last equality is just (2). In other words, P(A
γ−→ B) really measures

the conditional probability of the material implication A → B given any set
Aγ ⊇ A with P(Aγ) = P(A) + γP(A).

8.2. Viewing γ as a conditional probability

We now give a concrete example that leads to an interpretation of γ as a
conditional probability as well. In the following we will assume that B is known
precisely, but that there are measurement errors associated with A. First, we
establish some notation.

Definition 9. Let Â be the measured approximation to A, let the set of false

positives be F+ = Â ∩ A, and the set of false negatives be F – = Â ∩ A. We
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also let F = F – ∪ F+. Define the false positive rate to be r+ = P(F+ |A) =

P(Â |A), and the false negative rate to be r– = P(F – |A) = P(Â |A). Finally,
let A+ = A ∪ F+ and A– = A∖ F –.

Now the special case in which γ is a conditional probability is as follows.
Assume r– = 0, and recall the sets Z ⊆ A and Aγ = A ∪ Z from Section 8.1.
Since F+ ⊆ A and P(F+) = r+P(A), we can set Z = F+ and γ = r+, so that

Aγ = Ar+ = A ∪ F+ = Â = A+. From Ar+ = Â and (9), we immediately get

P(A → B | Â) = P(A
r+

−−→ B). (10)

An alternative to the approach leading to (10) would be to replace the an-
tecedent of the material implication in (8) with an appropriately definedAγ ⊆ A,
rather than the conditioning set. This will lead to a different interpretation of
g, γ as a conditional probabilities (see Case 2b below). The main point of the fol-
lowing discussion is to explore what the semantics of the generalized implication

A
γ−→ B might be, and what might be expressed by such a sentence. We explore

this by computing the conditional probabilities arising from P(A → B |A) by

replacing one or both occurrences of A with Â, A+, A–, under the assumption
of r+, r– being zero or non-zero.

We begin with some notation. To extend any decoration σ ∈ {̂ , +, – } from
Definition 9 to other quantities, we just replace A with Aσ in their definition.
This leads to the following.

Definition 10. Let X̂ = Â ∩ B, X+ = A+ ∩ B, X – = A– ∩ B, and similarly,
ĉ = P(B | Â), c+ = P(B |A+), c– = P(B |A–).

In the computations below there are several more quantities that arise nat-
urally. We collect these in the next definition.

Definition 11. Let the Bayesian converse of r– be r̃– = P(A | Â). Also, define
u– = P(F – |A–), u+ = P(F+ |A–), and u = u– + u+.

Case 1. (False positives only)

Assume r– = 0, set γ = r+, so Aγ = Ar+ = A ∪ F+ = Â = A+.

a) P(A → B | Â) = P(A
r+

−−→ B) is just (10) above. It is only listed again
here for the sake of Table 1.

b) Next we use Â ∩ A = ∅ to compute P(Â → B |A) =
P((Â ∪B) ∩A)

P(A)
=

P(A ∩B)

P(A)
= P(B |A) = c.

c) Finally, P(Â → B | Â) = P(B | Â) = ĉ, by (8). Note that ĉ = c+, since
F – = 0.

14



Case 2. (False negatives only)

Assume r+ = 0. We proceed as in Case 1, except that now Â ⊆ A. Set
γ = r–, so that Aγ = Ar– = A ∖ F – = Â = A–. We compute the same

conditional probabilities as in Case 1. Note that
.
∪ indicates the union is disjoint.

a) P(A → B | Â) =
P((A ∪B) ∩ Â

P(Â)
=

P(Â ∩B)

P(Â)
= P(B | Â) = ĉ. Note that

ĉ = c–, since F+ = 0.

b) From Â = A– and X – ⊆ A we get P(Â → B |A) = P(A– → B |A) =

P((X –
.
∪A–) ∩A))

P(A)
=

P(X –) +P(F –)

P(A)
. To use (9) and express this in

terms of a generalized implication we need γ to satisfy P(F –) = γP(A–)

and P(A) = P(A–) + γP(A–). However, r– = P(Â |A) = P(A– |A)
gives P(F –) = r–P(A), so γ = r– does not work. The solution is to

use the “Bayesian converse” of r–, i.e., r̃– = P(A | Â ), as defined above.

Then P(F –) = r̃– P(Â) = r̃–P(A–). Since F – ⊆ Â, we can define Ar̃– =

Â ∪ F – = A. Then from (9) we get P(Â → B |A) = P(Â
r̃–

−→ B).

c) P(Â → B | Â) = ĉ, by (8).

Table 1 collects up the results of Case 1 and Case 2, and shows a “duality”
between the cases r– = 0 and r+ = 0.

Case 1 Case 2

r– = 0 r+ = 0

– P(A → B |A) = c c

a) P(A → B | Â) = P(A
r+

−−→ B) ĉ

b) P(Â → B |A) = c P(Â
r̃–

−→ B)

c) P(Â → B | Â) = ĉ ĉ

Table 1: Duality between F+, F –

Case 3. (Both false positives and false negatives)

If r–, r+ > 0, then Â will be distict from both A– and A+, so there are
16 cases of the form P(W → B |Y ), for W,Y ∈ {A, Â, A+, A−}. Nine of
these satisfy Y ⊆ W , in which case P(W → B |Y ) = P(B |Y ) = z, where z is
the corresponding element of {c, ĉ, c+, c−}. Of these nine, four are immediate
consequences of (8). The remaining five are analogous to P(A+ → B |A–) =

P((X+ ∪A+) ∩A–)

P(A–)
=

P(X –)

P(A–)
= c–. The remaining seven cases, where W ⊈ Y

and Y ⊈ W , are collected in Table 2. The relevant computations are shown

below. As before,
.
∪ indicates the union is disjoint.
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a) P(A– → B |A) =
P((X –

.
∪A–) ∩A)

P(A)
=

P(X –) +P(F –)

P(A–) +P(F –)
= A– γ−→ B, for

γ satisfying P(F –) = γ(1− a–). However, we currently only have P(F –)
= r–a = r̃–(1− â). The solution is to let γ = u– = P(F – |A–), as defined

above. Then u– =
r̃–(1− â)

1− a–
=

r–a

1− a–
. Then we get P(Â → B |A) =

P(A– u–

−−→ B).

b) P(Â → B |A) =
P((X̂

.
∪ Â) ∩A)

P(A)
=

P(X –) +P(F –)

P(A–) +P(F –)
= A– u–

−−→ B.

c) P(A → B | Â) =
P((X

.
∪A) ∩ Â)

P(Â)
=

P(X –) +P(F+)

P(A–) +P(F+)
. Similar to case (a)

above, we use P(F+) = r+(1 − a) = r̃+ â, to define u+ =
r+(1− a)

1− a–
=

r̃+ â

1− a–
. Then P(A → B | Â) = P(A– u+

−−→ B).

d) P(A– → B | Â) =
P((X –

.
∪A) ∩ Â)

P(Â)
=

P(X –) +P(F+)

P(A–) +P(F+)
= P(A– u+

−−→ B),

as in the previous case.

e) P(A → B |A+) =
P((X

.
∪A) ∩A+)

P(A+)
=

P(X) +P(F+)

P(A) +P(F+)
= P(A

r+

−−→ B),

since P(F+) = r+P(A).

f) P(Â → B |A+) =
P((X̂

.
∪ Â) ∩A+)

P(A+)
=

P(X̂) +P(F –)

P(Â) +P(F –)
= P(A

r̃–

−→ B),

since P(F –) = r̃–P(Â).

g) P(A– → B |A+) =
P((X –

.
∪A–) ∩A+)

P(A+)
=

P(X –) +P(F –) +P(F+)

P(A–) +P(F –) +P(F+)
.

We give three ways to express P(A– → B |A+) as a generalized implica-
tion, by grouping the terms in this last ratio differently.

First, recall that P(F –) +P(F+) = u–(1 − a–) + u+(1 − a–). So we use

u = u– + u+, as defined above, to get P(A– → B |A+) = P(A– u−→ B).

Second, note that P(A ∩ (B ∪ F−)) = P(X –) +P(F –). Then, using

P(F+) = r+P(A), we get P(A– → B |A+) =
P(X –) +P(F –) +P(F+)

P(A–) +P(F –) +P(F+)

=
P(A ∩ (B ∪ F−)) +P(F+)

P(A) +P(F+)
= P(A

r+

−−→ (B ∪ F−)).

Third, note thatP(Â ∩ (B ∪ F+)) =P(X –) +P(F+). Then, fromP(F –)

= r̃–(1− â), we get that P(A– → B |A+) =
P(X –) +P(F –) +P(F+)

P(A–) +P(F –) +P(F+)
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=
P(Â ∩ (B ∪ F+)) +P(F –)

P(Â) +P(F –)
= P(Â

r̃–

−→ (B ∪ F+)).

Finally, we note that all of the above can be expressed in terms of the classical
conditionals P(B ∪ Y |W ), where Y ∈ {F –, F+, F} and W ∈ {A,A–, Â, A+}.
Table 2 collects up all the non-trivial cases, i.e., those that do not lead to
P(W → B |Y ) ∈ {c, c–, ĉ, c+}, for W,Y ∈ {A,A–, Â, A+}.

Case 3

r+, r– ≥ 0

a) P(A– → B |A) =
P(A– u–

−−→ B)
= P(B ∪ F− |A)

b) P(Â → B |A) = = P(B ∪ F |A)

c) P(A → B | Â ) =
P(A– u+

−−→ B)
= P(B ∪ F+ | Â)

d) P(A– → B | Â ) = = P(B ∪ F | Â)

e) P(A → B |A+) = P(A
r+

−−→ B) = P(B ∪ F+ |A+)

f) P(Â → B |A+) = P(Â
r̃–

−→ B) = P(B ∪ F− |A+)

g) P(A– → B |A+) = P(A– u−→ B)

= P(A
r+

−−→ (B ∪ F−))

= P(Â
r̃–

−→ (B ∪ F+)) = P(B ∪ F |A+)

Table 2: Symmetries in generalized implications

8.3. Duality between false positives and false negatives

Note that Â might contain false positives and/or might be missing false

negatives, so in general, Â = (A ∪ F+) ∖ F –. Similarly, A = (Â ∪ F –) ∖ F+.
The relationship between the relevant sets can be shown diagrammatically:

A = A– ∪ F –

A– ⊆
⊆

⊆

⊆
A+ (11)

Â = A– ∪ F +

The “duality” between A, Â that is apparent in (11) leads to the symmetries
in the γ-values seen in Table 2. Figure 3 can be viewed as a decoration of
(11), and a graphical visualization of the symmetries present in Table 2 (as
well as the nine cases excluded from Table 2 with γ = 0, as mentioned at the
beginning of Case 3 above). In Figure 3, note that if W ⊇ Y , then we get a
classical conditional with γ = 0 (the cyan “arrows”), and if W ⊂ Y then we get
a non-trivial γ-value (the orange “arrows”, which correspond to some entry
in Table 2). Note that the specific γ-values we get are symmetric across the
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horizontal (as A and Â are “dual”). Furthermore, the symmetry amongst the
γ-values is exactly the same as the symmetry between B ∪ F−, B ∪ F+, and
B ∪ F , as can be seen in Table 2.

A

A– A+

Â

c−

r+

c

u–

u

u+

c−

ĉ

c−

c

c+

u–

u+

c−

r̃–

ĉ

Figure 3: Symmetry for γ-values. The orange symbol W
γ

⊣ Y represents the equality

P(W → B |Y ) = P(W
γ−→ B). The cyan symbol W

c

⊣ Y represents the equality

P(W → B |Y ) = P(W
0−→ B) = c.

9. Generalized implications and applications to logic

9.1. Paradoxes of material implication

We will look at a couple simple examples of “paradoxes of material implica-

tion” (e.g., see [38]), and show what light is shed on these by replacing −→ with
γ−→. The sentence ⊥ → B ≡ ⊤ is considered problematic since, intuitively, it
should be false. In terms of events, the relevant generalized implication would

be ∅ γ−→ B. Of course, the Bayesian conditional c is not defined for this case,
but x = 0 nonetheless. For every γ > 0, we see from (2) that g(0, 0, γ) = 1, so
no choice of γ will mitigate this “paradox”. The same behaviour occurs if we

approximate ⊥ γ−→ B with A
γ−→ B for 0 < a << 1. Then c is defined, and if

γ = 0, then g(a, x, 0) = c ∈ [0, 1], and if γ = 1, then g(a, x, 1) = m ∈ [1− a, 1],
so if a ≈ 0 then m ≈ 1. So again, no choice of γ will mitigate this “paradox”.

The sentence A → ¬A ̸≡ ⊥ is problematic since, intuitively, it should also
be false. Clearly, c = x = 0 for any choice of A ̸= ∅. Hence, γ = 0 gives
the intuitively correct probability of 0, for all A ̸= ∅. However, γ = 1 gives
the probability of this sentence to be P(A). Since the “paradox” occurs when
g(a, 0, γ) > 0, the average deviation of g from the intuitively correct value
of 0 (over all possible choices of A and γ) can be computed with an integral:∫ 1

0

∫ 1

0
g(a, 0, γ) da dγ = 2− π2

6 ≈ 0.3551, and 1
0.5

∫ 0.5

0

∫ 1

0
g(a, 0, γ) da dγ ≈ 0.2609.

9.2. Lewis triviality

The thesis that the probability of an indicative conditional ⇒, P(A ⇒ B),
equals the probability of the consequent conditional on its antecedent, P(B |A)
(as long as P(A) > 0), has been attributed to both Adams [1] and Stalnaker

18



[35], and [23] points out that it was first observed in [33]. There are many
arguments to support this thesis in both the philosophical and psychological
literature, but some of the most serious arguments against it are the Lewis triv-
iality results [24] (and their many refinements). Lewis gave simple conditions
under which we are led to an untenable result, e.g., P(A ⇒ B) = P(B). If
we try something analogous to Adams’ thesis, but with generalized implica-

tions, by setting P(A
γ−→ B) = P(A

β−→ B), we easily derive from (2) that
(γ − β)(1− a)(a− x) = 0, and hence, γ = β. However, if we don’t insist on
equality with 0, but rather only (γ − β)(1 − a)(a − x) ≤ ϵ, then setting β = 0

gives γ ≤ ϵ

(1− a)(a− x)
. This will give the set of γ for which this version

of Adams’ thesis is satisfied “within ϵ”. The Lewis arguments are avoided be-
cause we are not imposing the problematic equality P(A ⇒ B) = P(B |A),
but rather looking for deviations from the true equation (8), i.e., solutions to
P(A ⇒ B |Aγ)−P(B |A) ≤ ϵ.

10. Discussion

Our investigation of the properties of the generalized implication revealed
several ways for expressing and computing bounds. In particular, it showed
the close relationship between probabilistic material implication and Bayesian
conditional, especially when used for inference with rules like modus ponens.
Paired with the generalized rule, inference principles like modus ponens can
generate bounds on the consequent that depend both on the γ-value and the
rule bounds, and the theorem about implication chains shows that it is possible
to calculate inferences from any mixture of rule bounds and γ-values (recursively
in the worst case when clippings happen). This then enables mixed rule-based
systems with different γ-values for rules, e.g., high γ-values for rules that are
based on little data and are more conceptual in nature, and low γ-values for
rules for which sufficient data exists, or for which the Bayesian approach is more
appropriate. In general, one possible application of the γ-parameter would
be to make it a function of the amount of data from which rules have been
extracted: the more data is available, the closer the representation should go to
the normatively correct Bayesian end point.

Our investigation into possible meanings for the parameter γ led to an inter-
pretation for both γ, and the probability of the generalized implication it defines,
as conditional probabilities. This followed naturally from the observation that
the γ-parameter determines how much weight is given to the complement of the
rule’s antecedent: higher γ-values take more of the complement into account.
This can be useful, for example, in cases with false negative rates where we care
about the adjustments to be made to the probability of the rule P(A → B)

since we only have the “measured” Â (with false negatives). For to be able to
make any inferences like modus ponens we cannot use P(A → B) if A is not

given but only the measured Â version is available. Hence, we must use the
implication with the measured antecedent P(Â → B) given the true A, i.e.,
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P(Â → B |A), which we showed to be the same as P(Â
γ−→ B) for a specific γ,

namely r̃– (which considers (the size of) those parts of Â that contain the false
negatives).1 This just corresponds to the claim that Bayes’ is the normatively
correct way to capture statistical inference, and we should not actually do MP
with material implication.

Another interesting possible interpretation of γ would be to situate the se-
mantics of the generalized implication in the more abstract context afforded
by [12], in which a logico-algebraic theory of conditionals was developed, with
the symbol B |A is taken as primitive. They presented a Boolean algebra of
the conditionals B |A, and defined an order ≤ in this Boolean algebra in the
standard way. Then they showed the following: B |A ≤ (A → B) | ⊤ and
B |A = (A → B) |A ≤ (A → B) | (A ∨ A′). The expressions in these two in-
equalities correspond exactly to those in (8) and (9) above, and hence, we see
that in the context of [12], these generalized implications are all comparable (in
this Boolean algebra). However, [12] does not consider these intermediate cases
(0 < γ < 1) as implication operators.

Future work should proceed in the following ways. First, the connection be-
tween γ-values, quantity of data, and measurement errors should be developed
further to find practical applications where some γ strictly between 0 and 1
gives an optimal inference. Second, it would be interesting to investigate the
proof theory of the generalized implication. A complete proof system for proba-
bility logic is put forward in [31]. Inference in conditional probability logic was
studied in [27]. An interesting and potentially important next step would be
to extend the Gentzen-style proof system of [4] by adding all of the generalized

implications
γ−→, for 0 ≤ γ ≤ 1, to the logic. The goal would be to have a formal

proof system that includes both probabilistic classical propositional logic and
Bayesian reasoning as special cases. Finally, it would be interesting to explore
the usefulness of the generalized implication in analyzing the psychological data
from studies about how humans interpret implications in natural language.

11. Conclusion

The goal of this paper was to investigate the relationship of probabilistic ma-
terial implications and Bayesian conditionals in an effort to understand better
the modeling of “if-then” rules. For this purpose we utilized a generalization,

A
γ−→ B, which subsumes both formalisms as special cases, revealing them as

end points of a one-parameter family, for γ ∈ [0, 1], in the space of all possible
logical rules. We then provided methods for obtaining bounds for different ap-

1The method of proportionally considering evidence to the contrary may seems to bear
some resemblance to approaches for handling conflicting evidence in the Dempster-Shafer
(DS) theory evidence, specifically in the case of Dempster’s rule of combination. However,
note that possible conflicts with Dempster’s rule of combination are the result of conflicts
among evidence sources, whereas in the above case we are correcting for faulty, noisy, or
imprecise assessments of a single source.

20



plications of the generalized implication, focussing on modus ponens and modus

tollens, but also on rule converses B
γ−→ A, which showed the potential of using

implication and Bayesian conditionals in a uniform manner for various types
of inferences, in particular, generalized implication chains. Most importantly,
we introduced a novel interpretation of the generalized implication in terms of
conditional probabilities, and connected this interpretation to (the probabilities
of) false positives and false negatives.

12. Appendix

Proof of Theorem 3:

Proof. We first note that Y i
L = Y i(giL), Y

i
U = Y i(giU ), Zi

L = Zi(giU ), Zi
U =

Zi(giL). To prove the claim we give a straightforward induction on n.
For the base case n = 1, we just need simple substitution and algebra:

b1L = aLY
0
L − Z0

U = (1− γ)aLg
0
L + γ(aL + g0L − 1), which is just (6). Similarly,

b1U = 1− aL(1− Y 0
U )− Z0

L = 1− aL + (1− γ)aLg
0
U + γ(aL + g0U − 1), which is

just (7).
For the inductive step, we get

bn+1
L = bnLY

n
L − Zn

U =
[
aL
∏n−1

i=0 Y i
L −

∑n−1
i=0

(
Zi
U

∏n−1
j=i+1 Y

j
L

)]
Y n
L − Zn

U

= aL
∏n

i=0 Y
i
L −

∑n
i=0

(
Zi
U

∏n−1
j=i+1 Y

j
L

)
Y n
L − Zn

U

= aL
∏n

i=0 Y
i
L −

∑n
i=0

(
Zi
U

∏n
j=i+1 Y

j
L

)
Y n
L ,

as desired, and similarly for bN+1
U .

Recall that biL = · · · , biU = · · · are automatically clipped to remain in [0, 1],
as per Definition 2, but that this clipping is lost if we combine and rearrange the
RHS expressions for these quantities, rather than referring to the LHS quan-
tities themselves. So the above formulas assume no clipping was necessary at
intermediate stages of the recursion.

Proof of Lemma 6:

Proof. We just use equation (3) (with g, γ interchanged with ĝ, γ̂) to write all of
the γi, gi pairs in terms of a single fixed γ̂ (of our choice), and the corresponding
(newly computed) ĝi. Then apply Theorem 3.

Proof of Lemma 7:

Proof. Note that everything is specified except for the bounds on g. Since γ, aL,
bL = bNL , and bU = bNU are all fixed, equations (6), (7) give two linear equations
each with one unknown.

Proof of Lemma 8:

Proof. Just combine the ideas in the proofs of Lemmas 6 and 7.
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[4] Marija Boričić. Sequent calculus for classical logic probabilized. Archive
for Mathematical Logic, 58(1/2):119 – 136, 2019. ISSN 09335846.

[5] Ruth M.J. Byrne and P.N. Johnson-Laird. ‘if’ and the problems of condi-
tional reasoning. Trends in Cognitive Sciences, 13(7):282–287, 2009. ISSN
1364-6613. doi: https://doi.org/10.1016/j.tics.2009.04.003. URL https:

//www.sciencedirect.com/science/article/pii/S1364661309001144.

[6] Philip Calabrese. An algebraic synthesis of the foundations of logic and
probability. Information Sciences, 42(3):187–237, 1987. ISSN 0020-0255.
doi: https://doi.org/10.1016/0020-0255(87)90023-5. URL https://www.

sciencedirect.com/science/article/pii/0020025587900235.

[7] Ivano Ciardelli and Adrian Ommundsen. Probabilities of conditionals:
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[31] J. Paris and A. Vencovská. Proof systems for probabilistic uncertain reason-
ing. The Journal of Symbolic Logic, 63(3):1007–1039, 1998. ISSN 00224812.
URL http://www.jstor.org/stable/2586724.

[32] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann series in representation and reason-
ing. Elsevier Science, 1988. ISBN 9781558604797. URL https://books.

google.com/books?id=AvNID7LyMusC.

[33] Frank Plumpton Ramsey. The Foundations of Mathematics and Other
Logical Essays. Edited by R.B. Braithwaite, with a Pref. By G.E. Moore.
–. London, England: Routledge and Kegan Paul, 1931.

[34] Geza Schay. An algebra of conditional events. Journal of Mathemat-
ical Analysis and Applications, 24(2):334–344, 1968. ISSN 0022-247X.
doi: https://doi.org/10.1016/0022-247X(68)90035-8. URL https://www.

sciencedirect.com/science/article/pii/0022247X68900358.

24

http://www.jstor.org/stable/2184045
http://eudml.org/doc/33813
https://www.sciencedirect.com/science/article/pii/0004370286900317
https://www.sciencedirect.com/science/article/pii/0004370286900317
https://www.sciencedirect.com/science/article/pii/000437029390167A
https://www.sciencedirect.com/science/article/pii/000437029390167A
http://www.jstor.org/stable/2586724
https://books.google.com/books?id=AvNID7LyMusC
https://books.google.com/books?id=AvNID7LyMusC
https://www.sciencedirect.com/science/article/pii/0022247X68900358
https://www.sciencedirect.com/science/article/pii/0022247X68900358


[35] Robert Stalnaker. A theory of conditionals. In Nicholas Rescher, editor,
Studies in Logical Theory (American Philosophical Quarterly Monographs
2), pages 98–112. Oxford: Blackwell, 1968.

[36] K. Stenning and M. van Lambalgen. Human Reasoning and Cognitive
Science. A Bradford Book. MIT Press, 2012. ISBN 9780262293532. URL
https://books.google.com/books?id=c3s4WaOgBLkC.

[37] Crupi Vincenzo and Iacona Andrea. Three ways of being non-material.
Studia Logica, 110, 01 2019. doi: 10.1007/s11225-021-09949-y.

[38] Kai von Fintel. Conditionals. In Klaus von Heusinger, Claudia Maien-
born, and Paul Portner, editors, Semantics: An international handbook of
meaning, volume 2, pages 1515––1538. de Gruyter Mouton, Berlin/Boston,
2011.

[39] Carl G. Wagner. Modus tollens probabilized. The British Journal for
the Philosophy of Science, 55(4):747–753, 2004. ISSN 00070882, 14643537.
URL http://www.jstor.org/stable/3541627.

25

https://books.google.com/books?id=c3s4WaOgBLkC
http://www.jstor.org/stable/3541627

	Introduction
	Motivation and Related Work
	Computing probability bounds 
	Background and notation
	Functional dependencies
	Using partial derivatives to compute bounds

	Modus Ponens for generalized implications (bounds on b)
	Generalized hypothetical syllogism
	Flavor I: one categorical premise, multiple hypothetical premises
	Flavor II: only hypothetical premises

	Converses
	The classical case
	Converses for arbitrary 

	Modus Tollens (contrapositives)
	Finding bounds on a from bounds on b
	Bounds on q and the effect on modus tollens

	Interpretation of 
	Viewing g as a conditional probability
	Viewing  as a conditional probability
	Duality between false positives and false negatives

	Generalized implications and applications to logic
	Paradoxes of material implication
	Lewis triviality

	Discussion
	Conclusion
	Appendix

