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Abstract

Probabilistic “if A then B” rules are typically for-
malized as Bayesian conditionals P(B |A), as
many (e.g., Pearl) have argued that Bayesian con-
ditionals are the correct way to think about such
rules. However, there are challenges with standard
inferences such as modus ponens and modus tol-
lens that might make probabilistic material implica-
tion a better candidate at times for rule-based sys-
tems employing forward-chaining; and arguably
material implication is still suitable when infor-
mation about prior or conditional probabilities is
not available at all. We investigate a generalization
of probabilistic material implication and Bayesian
conditionals that combines the advantages of both
formalisms in a systematic way and prove basic
properties of the generalized rule, in particular, for
inference chains in graphs.

1 INTRODUCTION

Natural language “if-then” rules cover a wide range of logi-
cally distinct conditions such as analytical truths (“if x is
an even number, x is divisible by two”), conceptual rela-
tionships (“if x is a human, then x is mortal”), inductive
inferences (“if the sprinkler is on, the grass will become
wet”), abductive inferences (“if the light switch is on but
the light is off, the light bulb is broken”), normative con-
straints (“if the traffic light is red, you are not allowed to
drive”), hypotheticals (“if I were to run fast, I would be out
of breath”), and counterfactuals (“if the driver had been able
to brake in time, they would not have killed the deer”) (see
also Ciardelli and Ommundsen [2022], Crupi and Iacona
[2021], Dubois and Prade [1990], Nilsson [1993], Greene
[2008]).

Treating conditionals as material implications, however, has
long been seen to be problematic (e.g., Adams [1965]) and

the widely accepted solution is to view such rules as prob-
abilistic and best modeled by the Bayesian conditional
P(B |A) [e.g., Pearl, 1988]. At the same time, Bayesian
conditionals are not appropriate for handling (indicative)
conditionals [e.g., see Khoo and Mandelkern, 2018, for
a discussion], and cannot be used for inference (e.g., us-
ing modus tollens) if the probability of the prior is zero:
P (A) = 0.

Fortunately, there are ways to combine probabilistic logical
and Bayesian inference in a way that views probabilistic
material implication and Bayesian conditionals as two limit
points of a “rule-continuum”, A

γ−→ B, expressed by a
real-valued parameter γ ∈ [0, 1] (with γ = 1 for material
implicationA→ B, and γ = 0 for the Bayesian conditional
A|B).

The goal of this paper is to investigate the formal properties
of the “generalized rule”

γ−→ and to develop a framework
that can be used for reasoning with it. We start with a brief
motivation for the generalization and introduce its mathe-
matical form. Then we start to investigate its various prop-
erties: functional relationships among various probabilities
comparing material implication, Bayesian conditional, and
the generalized rule, as well as their bounds. Then we con-
sider implication chains and prove a result on the bounds for
generalized implication chains. We conclude with a brief
discussion and summary of our findings.

2 MOTIVATION AND RELATED WORK

Efforts to combine probability and logic go back at least
to Leibniz, Jakob Bernoulli, and Boole (e.g., see Hailperin
[1996], and also Hailperin [1984] for a formal framework
for “probability models”). Mapping logical operators onto
set-theoretic operators in the usual way, we get set-theoretic,
and hence, probabilistic interpretations of propositional sen-
tences, e.g., from A → B ≡ ¬A ∨ B we get the standard

P(A→ B) = P(A) + P(A ∩B). (1)
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It was recognized at least as early as Boole [1916] (see
also Hailperin [1984]) that bounds are needed when dealing
with probabilities of events (i.e., sets representing proposi-
tional sentences). Using linear programming, the existence
of lower and upper bound functions for the probability of
any propositional logic formula was established in Hailperin
[1965]. In Hailperin [1984], these results were extended,
and probability bounds on modus ponens and hypothetical
syllogism were given.

For our purposes, the most salient motivation for working
with imprecise, i.e., bounded, probabilities is that they are
unavoidable if we want to use modus ponens with probabilis-
tic implication rules: given a = P(A) andm = P(A→ B),
applying modus ponens to infer b = P(B) only yields
bounds on b ∈ [x,m] where x = P(A ∩ B). A formal
semantic method to compute the bounds on the probability
of a given sentence in the predicate calculus was devel-
oped in Nilsson [1986] and extended in Fagin and Halpern
[1989]. Note that we can also use the Bayesian conditional
B |A for inference (e.g., instead of material implication) to
get bounds on B which were initially presented in Wagner
[2004] (see below for details).

An abstract notion of probabilistic logical implication A
γ−→

B was introduced in Nguyen et al. [2002], and the proba-
bility of such a generalized implication was computed as a
function of a parameter γ, 0 ≤ γ ≤ 1:

P(A
γ−→ B) = 1− P(A)(1− P(B |A))

γ + (1− γ)P(A)
(2)

= 1− a(1− c)
γ + (1− γ)a

Alternatively, we can write this generalized rule as

P(A
γ−→ B) =

P(A ∩B) + γ ·P(A)

P(A) + γ ·P(A)

which more clearly shows the form to be some sort of inter-
polation from none of A to all of A.

It is immediately apparent that γ = 0 corresponds to the
Bayesian conditional, and γ = 1 corresponds to material
implication, hence γ is interpolating between the Bayesian
conditional and material implication. Hence, these two inter-
pretations of the phrase “if A then B” are actually different
manifestations of the same abstract concept—the two end-
points of a one-parameter family of probabilistic logical
implications. Figure 1 indicates how to view (2) in a Venn
diagram.

For the rest of the paper, we will use the notational conven-
tions in Definition 1.

Definition 1 (Notation for basic probability variables). Fix
A,B,γ and let X = A ∩ B. Then a = P(A), b = P(B),

A ∩B

A

B

Y

Figure 1: P(A) = 0.20, P(B) = 0.25, P(A ∩ B) = 0.08,
γ = 0.15, so P(Y ) = γP(A) = (0.15)(0.80) = 0.12.
Then P(A

.15−−→ B) = 0.08+0.12
0.20+0.12 = 0.625, P(A

0−→ B) =

P(B |A) = 0.40, and P(A
1−→ B) = P(A→ B) = 0.88.

x = P(X), m = P(A → B) for material implication,
c = P(B |A) for Bayesian conditional, g = P(A

γ−→ B)
for generalized implication.

We can use the notation from Definition 1 to express the four
basic regions in terms of a, b,m, c as P(A ∩ B) = ac =
m+ a− 1, P(A ∩B) = a(1− c) = 1−m, P(A ∩B) =
b−ac = 1−m−a+b, P(A∩B) = 1−a−b+ac = m−b.
Note that if a = 0 then x = P(A ∩ B) = 0, even though
c is undefined, and the expressions are still correct using
this interpretation of ac (as the intersection). But typically,
we work under the assumption that a 6= 0, so that c is
defined. Furthermore, since a, b, x,m, c are probabilities,
we obviously must have 0 ≤ a, b, x,m, c, g ≤ 1.

3 THE GENERALIZED IMPLICATION

We start by investigating the relationships among the (proba-
bilities of the) generalized implicationA

γ−→ B, the material
implication A → B, the Bayesian conditional B |A, the
premise A and the intersection A ∩B.

3.1 FUNCTIONAL RELATIONSHIPS AMONG
m, c, a, x, g

We first express all of our basic probabilities in terms of the
classical probabilities m, c, a, x:

Lemma 2. For m, c, a as in Definition 1, we have the fol-
lowing functional relationships:

i) m = 1− a+ ac = 1− a(1− c),

ii) c =
m+ a− 1

a
= 1− 1−m

a
, for a 6= 0,

iii) a =
1−m
1− c

, for c 6= 1.

Furthermore, using these we can express x = P(A ∩B) in
the following ways:



m(a, c) c(a,m) a(m, c)

Figure 2: Surfaces coming from m, c, a

iv) x = ac = a+m− 1 =

(
1−m
1− c

)
c.

Proof. These are all just restatements of (1), or the defini-
tion of c.

The following relationship between m = P(A → B) and
c = P(B |A) is an easy consequence of Lemma 2 and the
definition of conditional probability.

Lemma 3. P(A→ B) = m ≥ c = P(B |A), in fact,

m


= 1 if a = 0,

= c = b if a = 1,

= c = 1 if 0 < a < 1 and a = x,

> c if 0 < a < 1 and a 6= x.

Proof. For the inequality m > c, first note that a 6= x ⇒
c < 1. Then compute m− c = (1− a)(1− c) > 0.

Figure 2 shows the graphs of the functions in Lemma 2.
These are, of course, the same piece of the quadratic surface
of 1−m− a+ ac = 0 with the axes rotated (but compare
to the higher-dimensional case in Figures 3, 4). However,
these different functional expressions are needed when do-
ing iterated updates (see Figure 6) and when computing
bounds.

The next lemma extends (and subsumes) Lemma 2 by ex-
pressing everything in terms of arbitrary γ, g rather than
γ = 0, g = c and γ = 1, g = m, as before.

Lemma 4. Let m, c, a, x, γ, g be as in Definition 1 and
Lemma 2. Then

i) g =
x+ γ(1− a)

a+ γ(1− a)
=

(1− γ)x+ γm

(1− γ)a+ γ ·1

=
ac+ γ(1− a)

a+ γ(1− a)
=

(a+m− 1) + γ(1− a)

(1− γ)a+ γ ·1
ii) x = (1− γ)ag + γ(a+ g − 1),

iii) m = (1− γ)ag + γ(a+ g − 1) + (1− a),

iv) c =
(1− γ)ag + γ(a+ g − 1)

a
,

v) a =
γ(1− g)

γ(1− g) + g − c
,

γ = 0.01 γ = 0.5 γ = 1.0

Figure 3: g(γ, a, c) for various γ

vi) γ =
a(g − c)

(1− a)(1− g)
,

and for arbitrary γ̂ (not necessarily equal to γ), and letting
ĝ = g(γ̂, x, a) from part (i) above, we have

vii) ĝ =
[(1− γ)ag + γ(a+ g − 1)] + γ̂(1− a)

a+ γ̂(1− a)
,

assuming the variables are in the domains of the relevant
formulas.

Proof. The first six come from (2) and straightforward arith-
metic. To get Lemma 4.vii just substitute x(γ, g, a) from
Lemma 4.ii into ĝ = ĝ(γ̂, a, x) from Lemma 4.i.

Note that all four of the expressions in Lemma 4.i have
the form: an interpolation (some expression for) x 7→
(some expression for) m divided by an interpolation a 7→ 1.
It is in this sense that g interpolates from c to m as γ
goes from 0 to 1. It is interesting to note that Lemma 4.ii,
the expression for x(γ, g, a) is an interpolation from one
expression of x (= ac) to another (= a + m − 1), i.e.,
x(a, c) 7→ x(a,m), as γ goes from 0 to 1. The analo-
gous claim is also true for Lemma 4.iii, 4.iv. The point
of Lemma 4.vii is that the g defined in terms of one γ can
also be defined in terms of another γ̂ and its corresponding
ĝ. This is just the general version of Lemma 4.i, 4.iii and
4.iv, and will be important later when we look at implication
chains.

As above, all of these functions give a surface when graphed.
An important point, however, is that all these expressions
in Lemma 4.i give different functions when considered as
functions of the same two variables x1, x2, say. For example,
Figure 3 shows the graphs g(γ, a, c), for various γ, and
Figure 4 show the same series for g(γ, a,m).

3.2 BOUNDS ON PROBABILITIES

Henceforth, all probabilities will be imprecise, i.e., we will
typically not know the value p of a probability, but rather,
will only be given p0, p1 ∈ [0, 1] such that p0 ≤ p ≤ p1.
The quantity p0 is the lower, and p1 is the upper probability
for p. Of course, there is always the need to restrict to the



γ = 0.01 γ = 0.5 γ = 1.0

Figure 4: g(γ, a,m) for various γ

interval [0, 1] for the output of any formula giving probabil-
ity bounds. In order to simplify notation, we will build this
into our notation for probability bounds.

Definition 5 (The Lower- and Upper-bound operators). Let
p0, p1 be values for the lower and upper bounds on probabil-
ity p, i.e., p0 ≤ p ≤ p1, but that p0, p1 are computed from
functions that do not necessarily give values in [0, 1]. Then

pL = max{p0, 0} , pU = min{p1, 1}.

For any probability p, we will write p ∈ [pL, pU], and we
will denote the width of any probability interval [pL, pU] as
∆p = pU − pL.

We next compute bounds on one of a, c,m, b given bounds
on the other variables by observing that the relevant function
is monotone increasing or decreasing (obvious from the
graphs above), and then computing the relevant endpoints
to get the extreme values:

Lemma 6. Every function in Lemmas 2 and 4 is
of the form u(v1, . . . , vk), for some u, v1, . . . , vk ∈
{a,m, c, x, γ, γ̂, g, ĝ}. Fix such u(v1, . . . , vk) and v ∈
{v1, . . . , vk} such that if u(v1, . . . , vk) = ĝ(γ̂, ĝ, γ, a),

then v 6= a. Then
∂u

∂v
(v1, . . . , vk) is either always positive,

for all v1, . . . , vk ∈ (0, 1), or it is always negative, for all
v1, . . . , vk ∈ (0, 1), assuming of course, that the partial is
defined for these v1, . . . , vk.

We note that the one case not covered by Lemma 6, i.e.,
u = ĝ(γ̂, ĝ, γ, a), v = a (see Lemma 4.vii), satisfies
∂ĝ

∂a
(γ̂, ĝ, γ, a) =

(1− g)(γ − γ̂)

a+ γ̂(1− a)
< 0 if γ < γ̂, = 0

if γ̂ = γ, and > 0 if γ > γ̂, and hence, the function
λa ĝ(γ̂, ĝ, γ, a) is decreasing if γ < γ̂ and increasing if
γ > γ̂.

Some specific examples of the computations in Lemma 6
are: ∂m/∂c = a > 0, ∂c/∂a = (1 − m)/a2 > 0, and
∂a/∂m = −1/(1 − c) < 0. We remark that the negative
derivatives are to be expected, since they are a consequence

of the cyclic chain rule. For example,
∂m

∂c

∂c

∂a

∂a

∂m
= −1.

An easy application of Lemma 6 is the observation that the
probabilities of generalized rules are monotonic in γ:

Lemma 7. If a, c < 1, then γ1 < γ2 implies
P(A

γ1−→ B) < P(A
γ2−→ B).

Proof. From
∂g(γ, a, c)

∂γ
=
a(1− a)(1− c)
(a+ γ(1− a))2

> 0.

3.3 BOUNDS ON m, c, a, g FROM PARTIAL
DERIVATIVES

An immediate consequence of Lemma 6 is that all these
functions are monotonic on (0, 1) in each of their variables,
with the exception of the one in Lemma 4.vii that has a min
when γ̂ = γ. So to compute the bounds of any of our basic
probabilities, in terms of the bounds of other variables, we
just need to evaluate at the appropriate endpoints, i.e., the
bounds of the independent variables.

Lemma 8. Fix any function from Lemma 6, u(v1, . . . , vk),
with u, v1, . . . , vk ∈ {a,m, c, x, γ, g}, and vi ∈

[viL, v
i
U]. Let viE =

{
viL if ∂u/∂vi > 0

viU if ∂u/∂vi < 0
and viF ={

viL if ∂u/∂vi < 0

viU if ∂u/∂vi > 0,
and note that {viE, viF} = {viL, viU}.

Then we have the bounds uL = u(v1E, . . . , v
k
E) and uU =

u(v1F, . . . , v
k
F).

An easy example of Lemma 8 in action would be to use
∂m(a, c)/∂a < 0 and ∂m(a, c)/∂c > 0 to get mL =
m(aU, cL) = 1− aU(1− cL). Similarly, from ∂a/∂m > 0,
∂a/∂c < 0, we get aU = a(mL, cU) = (1−mL)/(1− cU),
and from ∂g/∂γ > 0, ∂g/∂a < 0, and ∂g/∂c > 0, we get

gL(γ, a, c) = g(γL, aU, cL) =
aUcL + γL(1− aU)

aU + γL(1− aU)
.

Note that when we are computing mL we are treating m
as a dependent variable, and a, c as independent, and when
we compute the relevant partials we are holding either a
or c constant. This is not the same as solving for mL in
the formula for aU in order to compute mL. Also, if these
formulas are being used to update a node in a network as
new information comes in, we would consider aU, cL to
be fixed known quantities for which we want to compute
the corresponding smallest consistent m-value, mL. This
is clearly not the same as updating aU given the newly
measured (and fixed) quantities mL, cU.

We must also keep in mind that any updated probability
is clipped to stay within its old bounds, as per Defini-
tion 5. Also, note that if there are multiple ways to com-
pute a bound, e.g., m′U(aL, cU), m′U(a′L, cU), m′U(aL, c

′
U),

m′U(a′L, c
′
U), they will not always yield the same result. We

must always compute with the most recent data, since the
order that the updates come to us matters to the final answer.
The issues above are most salient in a network of nodes that
each hold a probability and are being updated in real time



Figure 5: Geometric interpretation of bounds for m(a, c)
(a, c-bounds left, m-bounds right).

as new information becomes available. See Figure 6 for a
example computation.

The bounds listed in Lemma 8 can be interpreted geomet-
rically. The graph of m(a, c) is given in Figure 5, and
each point on this surface gives a consistent assignment
of values to m, c, a. Bounds on a, c correspond to verti-
cal planes, and bounds on m to horizontal planes. It is
apparent that for even a single m-bound, mL say, the set
{a, c : mL ≤ m(a, c) ≤ 1} will be non-convex.

3.4 BOUNDS ON m, c, g FOR FIXED a, b

For fixed [aL, aU], [bL, bU], we want to find [cL, cU],
[mL, mU], and [gL, gU]. As a first special case, assume
a = aL = aU, b = bL = bU. Then note that P(A ∩ B) =
x = ac, but we do not have c. Note also that x is not a
function of a, b, but has the following bounds:

xL = a+ b− 1 , xU = min{a, b}. (3)

In general, if there are nontrivial probability intervals for
a, b, then

xL = aL + bL − 1 , xU = min{aU, bU}. (4)

From this we want to compute bounds on c,m.

Of course, we do not have a function c(a, b) to mini-
mize/maximize, but ∂

∂a

(
a+b−1

a

)
≥ 0, ∂

∂b

(
a+b−1

a

)
> 0,

and cL, cU will occur at the bounds of x, so [cL, cU] =
[max{(aL + bL − 1)/aL, 0}, min{bU/aL, 1}]. From this
c we can get bounds on m(a, c(a, b)) as before, but there
might be clipping when recomputed using bounds gotten
from m(a, b) as below. Then [mL, mU] = [1 − aU(1 −
cL), 1− aL(1− cU)].

Using m = 1 − a + x, x depends on a, b (not a, c),
so [mL, mU] = [(1 − a + x)L, (1 − a + x)U] 6=
[1− aU + (ac)L︸ ︷︷ ︸

a, ac not indep

, 1 − aL + (ac)U]. We need to minimize

m = 1− a+ x, but expressed using the lower bound of x
from (3). So we need to minimize m = 1− a+ max{a+
b− 1, 0}. From the graph

we see
∂m

∂a
≤ 0 and

∂m

∂b
≥ 0, so we compute at the

point (aU, bL), mL = 1 − aU + max{aU + bL − 1, 0} ={
1− aU if bL ≤ 1− aU

bL if bL > 1− aU
. And to maximize m we need

to use the upper bound for x from (3). So we maximize
m = 1− a+ x = 1− a+ min{a, b}. From the graph

we see that
∂m

∂a
≤ 0 and

∂m

∂b
≥ 0, so we compute

at the point (aL, bU), mU = 1 − aL + min{aL, bU} ={
1− aL + bU if bU ≤ aL

1 if bU > aL
.

3.5 BOUNDS ON b

We next investigate different ways to obtain bounds on b. Let
a ∈ [aL, aU]. If we know both m, c (exactly), then we know
a (= 1−m

1−c ) exactly, so using either material implication
(γ = 1) or conditional (γ = 0) gives the same bounds
b ∈ [ac, m].

Now suppose we knowm, but are not given any information
about c. Hence we must compute c ∈ [cL, cU] = [(m+aL−
1)/aL, (m+ aU − 1)/aU]. Then b ∈ [aL +m− 1, m], i.e.,
b = [aLcL, m], and ∆b = m−aLcL = m−(aL +m−1) =

1 − aL. Also note: ∆c =
aU +m− 1

aU
− aL +m− 1

aL
=

∆a

aLaU
(1−m). But since a+m ≥ 1, for all consistent a (in

particular aL), we have
∆a

aLaU
(1−m) ≤ ∆a

aLaU
aL =

∆a

aU
=

1− aL
aU

.

Next suppose we know c, but are not given any information
about m. Hence we must compute m ∈ [mL, mU] = [1−
aU(1− c), 1− aL(1− c)]. Then b ∈ [aLc, mU], and ∆b =
mU − aLc = 1− aL(1− c)− aLc = 1− aL. Also, ∆m =
1 − aL(1 − c) − 1 + aU(1 − c) = ∆a(1 − c). So we see
that knowing m (and not c) gives a better bU, and knowing
c (and not m) gives a better bL. But the ∆b is the same in
both cases.

Finally, suppose we are given m ∈ [mL, mU] and c ∈
[cL, cU]. Then inference with material implication gives



iteration mL
1−a1(1−c0)

mU
1−a0(1−c1)

cL
1−(1−m0)/a0

cU
1−(1−m1)/a1

aL
(1−m1)/(1−c0)

aU
(1−m0)/(1−c1)

start 0 1 0 1 0 1

1 0.5 1 0 1 0 1

2 0.5 0.8 0 0.8 0.2 1

3 0.5 0.8 1/6 0.8 0.6 1

4 0.5 0.8 1/6 0.75 0.6 0.8
start 0 1 0 1 0 1

1 0 1 0 1 0.6 1

2 0.2 1 0 1 0.6 0.8
3 0.5 1 1/6 1 0.6 0.8

4 0.5 0.8 1/6 0.75 0.6 0.8

start 0.2 0.8 0 1 0.1 0.9
1 0.2 0.8 0 7/9 0.2 0.9

start 0.3 0.8 0 1 0 1
1 0.3 0.8 0 0.8 0.2 1

Figure 6: Updating bounds with new data: q means q was manually reset due to new information into to the system. If q
was outside the old bounding box, q means q was clipped up to the old bound qL, and q means clipped down to the old qU.

bL = aLc(aL,mL) = aL +mL − 1, bU = mU which gives
∆b = 1− aL + ∆m. Bayesian inference gives bL = aLcL,
bU = m(aL, cU) = 1− aL(1− cU), and ∆b = 1− aL(1−
∆c) = 1 − aL + aL∆c. And if we kept the best bounds
from both, we would have bL = max{aL +mL−1, aLcL},
bU = min{mU, 1− aL(1− cU)}.

A priori, any of these four bounds could be optimal. In
practice, the values of cL,mU would already be reset to the
computed values if the original values were less optimal than
the computed ones in the optimization/clipping phase. In this
case we would just have b ∈ [aLcL,mU]. Then ∆b = mU −
aLcL. We can’t simplify algebraically, but mU ≥ m(aL, cU)
and cL ≤ c(aL,mL) ≤ cU give ∆b ≥ m(aL, cU)− aLcL =
(1−aL)+aL∆c, ∆b ≥ mU−aLc(aL,mL) = (1−aL)+∆m.

Now we want to compute bounds on b when we have a gen-
eralized implication A

γ−→ B. The equations in Lemma 2
are true for anyB with P(B |A) = c, but b is itself not func-
tionally related to any of m, c, a. Consequently, we can only
get bounds on b, even if we know all of m, c, a, x precisely.
In this case, we use P(A ∩ B) ≤ P(B) ≤ P(A ∪ B), to
get the well-known (tight) bounds x ≤ b ≤ m, i.e., bL = x,
bU = m. Using Lemma 4.ii, 4.iii, we can express these
bounds in terms of g:

bL = (1− γ)ag + γ(a+ g − 1), (5)
bU = (1− γ)ag + γ(a+ g − 1) + (1− a). (6)

Of course, these formulas apply when we have precise
probabilities for a, g. If we only have bounds for a and

g, we compute
∂

∂a
bL(a, g) > 0,

∂

∂g
bL(a, g) > 0, and

∂

∂a
bU(a, g) < 0,

∂

∂g
bU(a, g) > 0. Using Lemma 8 we

can compute (bL)L = xL, (bL)U = xU, (bU)L = mL,
(bU)U = mU. We will abuse notation and write bL = (bL)L
and bU = (bU)U, and discard the other two:

bL = bL(aL, gL) = (1− γ)aLgL + γ(aL + gL − 1) (7)
bU = bU(aL, gU)

= (1− γ)aLgU + γ(aL + gU − 1) + (1− aL). (8)

Whether bL refers to the function in (5) or the value in
(7) will be clear from context. Furthermore, ∆b = (1 −
aL) + [(1− γ)aL + γ·1]∆g, and if g is precise we just have
∆b = 1− aL, as noted above for the case of precise m, c.

4 IMPLICATION CHAINS WITH
GENERALIZED IMPLICATION

Implications chains (i.e., hypothetical syllogism) are of par-
ticular interest for rule-based reasoning, hence we briefly
summarize the properties of the generalized implication
chains.

Suppose we have a sequence of generalized implications

Bi γi

−→ Bi+1, for i = 0, 1, . . . , N−1. Let A = B0, and
suppose we are given bounds, a ∈ [aL, aU], on the initial
antecedent A. We want to compute the bounds for the final
consequent bN . We first do this for arbitrary γ. Then we
easily derive the bounds for material implication (modus
ponens, hypothetical syllogism) and Bayesian inference by
setting γ = 0, 1.



Theorem 9. Fix arbitrary γ and suppose we are given
a sequence of generalized implications Bi γ−→ Bi+1, for
i = 0, 1, . . . , N −1. Suppose A = B0 and that we are
given bounds a ∈ [aL, aU], gi ∈ [giL, g

i
U], for i < N . Let

Y i = γ(1− gi) + gi and Zi = γ(1− gi). Then the bounds
at the end of the generalized implication chain are

bNL = aL

N−1∏
i=0

Y i
L −

N−1∑
i=0

Zi
U

N−1∏
j=i+1

Y j
L

 ,

bNU = 1− ZN−1
L −

(1− Y N−1
U )

aL

N−2∏
i=0

Y i
U −

N−2∑
i=0

Zi
L

N−2∏
j=i+1

Y j
U

 .
Proof. We first note that Y i

L = Y i(giL), Y i
U = Y i(giU),

Zi
L = Zi(giU), Zi

U = Zi(giL). To prove the claim we give
a straightforward induction on n. For the base case n = 1,
simple substitution and algebra gives b1L = aLY

0
L − Z0

U =
(1− γ)aLg

0
L + γ(aL + g0L − 1), which is just (7). Similarly,

b1U = 1 − aL(1 − Y 0
U ) − Z0

L = 1 − aL + (1 − γ)aLg
0
U +

γ(aL + g0U − 1), which is just (8).

For the inductive step, we get bn+1
L = bnLY

n
L − Zn

U

=
[
aL
∏n−1

i=0 Y
i

L −
∑n−1

i=0

(
Zi

U
∏n−1

j=i+1 Y
j

L

)]
Y n

L − Zn
U

= aL
∏n

i=0 Y
i

L −
∑n

i=0

(
Zi

U
∏n−1

j=i+1 Y
j

L

)
Y n

L − Zn
U

= aL
∏n

i=0 Y
i

L −
∑n

i=0

(
Zi

U
∏n

j=i+1 Y
j

L

)
Y n

L , as desired,

and similarly for bN+1
U .

Recall that biL = · · · , biU = · · · are automatically clipped to
remain in [0, 1], as per Definition 5, but that this clipping is
lost if we combine and rearrange the RHS expressions for
these quantities, rather than referring to the LHS quantities
themselves. So the above formulas assume no clipping was
necessary at intermediate stages of the recursion.

Note that since γ = 0 ⇒ Y = c, Z = 0, and γ = 1 ⇒
Y = 1, Z = 1 − m, we can easily recover the classical
cases below.

Corollary 10. If we are using Bayesian inference, then
γ = 0. So ci ∈ [ciL, c

i
U], for i < N are given, and the

bounds at the end of the implication chain are

bNL = aL

N−1∏
i=0

ciL , bNU = 1−

(
aL

N−1∏
i=0

ciL

)(
1− cN−1U

)
We note that for typical data (not all ciL = 1) we see bNL → 0
and bNU → 1.

Corollary 11. If we are using material implications in our
chain, we just set γ = 1 in the formulas above. So mi ∈
[mi

L, m
i
U], for i < N , are given, and the bounds at the end

of the implication chain are

bNL = aL −
N−1∑
i=0

(
1−mi

L
)
, bNU = mN−1

U .

We note that for typical data (not all mi
L = 1) we have

bNL → 0. Also, bNU just depends on the last implication.

Lemma 12. Suppose we are given a sequence of general-

ized implications Bi γi

−→ Bi+1, for i = 0, 1, . . . , N−1. Let
A = B0, and suppose we are given the bounds a ∈ [aL, aU],
and the bounds gi ∈ [giL, g

i
U], for i < N . Then the bounds

for the end of the generalized implication chain can be
computed using Theorem 9.

Proof. We just use Lemma 4.vii to write all of the γi, gi

pairs in terms of a single fixed γ̂ (of our choice), and the
newly computed ĝi. Then apply Theorem 9. However, these
bounds might not be optimal for the reasons discussed in
Section 3.5.

Lemma 13. The generalized implication chain, Bi γ−→
Bi+1, for i = 0, 1, . . . , N − 1, from Theorem 9, can be
replaced with a single implication A

γ−→ B, where A = B0,
B = BN , and the bounds [bNL , b

N
U ] are the same, whether

computed from the implication chain or the single implica-
tion.

Proof. Note that everything is specified except for the
bounds on g. Since γ, aL, bL = bNL , and bU = bNU are
all fixed, equations (7), (8) give two linear equations each
with one unknown.

Several consequences of this result are noteworthy:

(a) The upper bound aU of the initial antecedent A plays
no role in the determination of the bounding interval of the
final consequent BN . This comes as no surprise because the
same is true for a single rule (see (8)).

(b) The lower bound bNL of the consequentBN is completely
determined by the lower bounds of the antecedent A and the
rules being cascaded together; their upper bounds play no
role in its determination. In fact, if the lower bound of the
antecedent A or any of the rules is zero, the lower bound of
the consequent is zero.

(c) In the case γ = 1 (material implication) the upper bound
bNU of the consequent BN is completely determined by, in
fact it is equal to, the upper bound of the last rule BN−1 →
BN ; neither its lower bound nor the antecedent A nor the
other rules play a role in the determination of bNU .

(d) In the case γ = 1 (material implication), we com-
pute ∆bN = bNU − bNL = ∆bN = ∆mN−1 + (1 −
aL) +

∑N−2
i=0 (1 − mi

L). Interestingly, this implies that
∆bN ≥ ∆mN−1, i.e., the uncertainty interval associated



with the consequent BN can never be narrower than the
uncertainty interval associated with the rule at the end, viz.,
BN−1 → BN . In fact,

∆bN


= ∆mN−1, if mN−1

L = 0 or
aL = mi

L = 1, 0 ≤ i ≤ n− 2;

> ∆mN−1, otherwise.

5 DISCUSSION

Our investigation of the properties of the generalized rule
revealed several ways for expressing and computing bounds.
In particular, it showed the close relationship between proba-
bilistic material implication and Bayesian conditional, espe-
cially when used for inference with rules like modus ponens.
Paired with the generalized rule, inference principles like
modus ponens can generate bounds on the consequent that
depend both on the γ value and the rule bounds, and the
theorem about implications chains shows that it is possible
to calculate inferences from any mixture of rule bounds and
γ values (recursively in the worst case when clippings hap-
pens, see the discussion after Lemma 8). This then enables
mixed rule-based systems with different γ values for rules,
e.g., high γ values for rules that are based on little data and
are more conceptual in nature, and low γ values for rules
for which sufficient data exists. In general, one possible
application of the γ parameter is to make it a function of the
amount of data from which rules have been extracted: the
more data is available, the closer the representation should
go do the normatively correct Bayesian end point. The is-
sue of the interpreting the generalized rule remains, and
is not addressed here, but the starting point for that inves-
tigation would be the observation that if we consider the
range of the conditional going down from > to A, i.e., go-
ing from P(A → B | >) = P(A → B) all the way to
P(A→ B |A), we will get exactly the generalized rule.

6 CONCLUSION AND FUTURE WORK

The goal of this paper was to investigate the relationship
of probabilistic material implications and Bayesian condi-
tionals, and for this purpose we utilized a generalization
that subsumed both as special cases. We provided methods
for obtaining various bounds from different rules and also
proved a generalization for implication chains that deter-
mines the bounds for mixed rule-based inference chains.
An interesting extension of this would be to consider a sys-
tem of nodes, each holding a probability that is updated
in real-time as new information becomes available, and to
then study how changes in the bounds propagate through the
system. Furthermore, while the goal of this paper was not
to speculate about interpretations of the γ parameter of the
generalized rule, it would be interesting to see whether there
is a natural interpretation of γ. We could only briefly allude

to thinking about it in terms of conditional probabilities, or
in terms of empirical support, i.e., the amount of data avail-
able for deriving probabilistic rules, but other interpretations
are certainly possible and would be interesting to pursue.
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