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Introduction
Artificial agents will need to be able to reason about and
obey human moral and social norms. Additionally, agents
must be able to learn norms, both from instruction (e.g., by
natural language interaction with humans) and by observing
the behavior of humans or other agents. This is necessary
because (1) humans have many moral and social norms, per-
haps too many to be able to pre-program; and (2) moral and
social norms may vary between cultures, and across time.

Both of these challenges – obeying moral and social
norms, and learning them – are complicated by the fact that
such norms may conflict. When an agent’s norms cannot all
be satisfied, that agent should be able to “minimize the bad-
ness” of their behaviors in some principled way. Norm con-
flicts also make learning norms (e.g., from behavior) more
difficult, since (1) the agent will need to learn preferences
between norms as well as the norms themselves (in case of
future conflict), and (2) the observed behaviors may be a
compromise between inconsistent normative principles.

Our work addresses the problem of learning (from behav-
ior) and obeying potentially-conflicting norms in stochastic
domains. In particular, we represent moral and social norms
as statements in Linear Temporal Logic (LTL), and we em-
ploy the framework of Markov Decision Processes (MDPs).

Related work
We compare our work to two particular approaches to learn-
ing and obeying moral and social norms: those involving
logic, and those involving reward.

Many of the “logical” approaches to conflicting norms
employ deontic logics. Some (Vasconcelos, Kollingbaum,
and Norman 2009) modify (or “curtail”) the norms them-
selves to ensure that conflicting norms never apply in the
same contexts. Other approaches use nonmonotonic logics
that avoid some of the problems associated with conflict-
ing obligations (Beirlaen, Straßer, and Meheus 2013). These
methods generally assume deterministic environments, and
are not easily adapted to stochastic domains.

Reward-based approaches to AI ethics often use some
variant of inverse reinforcement learning (IRL) (Ng and
Russell 2000). These approaches seek to learn a reward
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function (presumably representing moral and social norms)
from observed agent behavior. We have argued elsewhere
(Arnold, Kasenberg, and Scheutz 2017) that such ap-
proaches may be incapable of representing temporally com-
plex norms, and lack interpretability.

Linear temporal logic
Linear Temporal Logic (LTL) is a propositional logic aug-
mented with temporal operators X,G,F,U. Xφ means “in
the next time step, φ”; Gφ means “in all present and future
time steps, φ”; Fφ means “in some present or future time
step, φ”; and φ1Uφ2 means “φ1 will hold until φ2 holds”.

Results
Norm conflict resolution
Let Φ = (φ1, · · · , φN ) be a set of LTL statements, and
w = (w1, · · · , wN ) be a vector of nonnegative real weights.
We may then define a norm system N = (Φ,w) Here each
weight wi represents the relative importance the agent as-
cribes to the norm φi.

Ideally, the goal of a norm-obeying agent would be to find
some (in general non-stationary) policy that obeys all LTL
norms with probability 1. However, in practice this may not
be possible. We call a norm conflict any situation in which
the probability of an agent simultaneously obeying all of
its norms is zero. We refer to the problem of determining
a “least bad” course of action in the event of norm conflicts
as norm conflict resolution (NCR).

In (Kasenberg and Scheutz 2018b) we provide an NCR
algorithm. To do so, we define a notion of “violation cost”:

Considering an infinite behavior trajectory τ =
s0, a0, s1, a1, · · · , we may “omit” some set J of time steps
from τ to yield a modified trajectory τ\J . For example, if
J = {1, 2} then τ\J = s0, a0, s3, a3, s4, a4, · · · . We can
then define the violation cost Violφ(τ) of τ with respect to
some norm φ as the (discounted) size of the smallest set of
time steps J that must be omitted in order for τ\J to satisfy
φ. The violation cost of a trajectory τ with respect to a norm
system N is weighted sum of the violation costs of τ with
respect to each of the norms in N .

The goal of the agent, then, is to find a (general) policy
that minimizes expected violation cost with respect to the



norm system. To do this, we construct from each norm a cor-
responding deterministic Rabin automaton (DRA), a type of
finite state machine over infinite words. We then construct a
product MDP - the Cartesian product of the original MDP
and the DRAs for each of the agent’s norms. While the op-
timal expected violation cost is not Markovian in the origi-
nal MDP, it is Markovian in the product MDP, and can thus
be computed by value iteration (with some graph-theoretic
caveats; see (Kasenberg and Scheutz 2018b) for details).
This can be used to find the optimal policy (which is sta-
tionary in the product MDP).

In each of the simulated domains in which we tested our
NCR algorithm, the results matched our intuition about the
right behavior given the norms and their relative importance.

Norm inference
In (Kasenberg and Scheutz 2017), we developed a norm in-
ference algorithm which, given some set of (finite) trajecto-
ries representing agent behavior, seeks to determine a tem-
poral logic statement that “best explains” those norms.

We formulated norm inference as a multi-objective op-
timization problem minφ∈LTL(ObjS(φ),ObjX(φ)), where
ObjS captures a notion of formula complexity. ObjX rep-
resents the idea that norms that specifically explain the ob-
served behavior (as opposed to random behavior) should be
preferred:

ObjX(φ) = Violφ(πo)−Violφ(πrand) (1)
where the Violφ(π) is the expected violation cost under
the (product-space) policy π, πo is the “observed” product-
space policy determined by the observed trajectories, and
πrand is the uniformly random policy.

This problem may be solved using any multi-objective op-
timization algorithm capable of optimizing over a grammar.
The result will be a set of Pareto-efficient solutions, from
which a norm may be selected.

We have tested this approach in several simple domains,
and found it was able to retrieve norms that explained the
observed trajectories. We have also (Kasenberg, Arnold, and
Scheutz 2018) undertaken a comparison between our norm
inference approach and reward-based approaches to learning
from behavior.

Inverse norm conflict resolution
For agents attempting to learn potentially-conflicting norms
by observing behavior, one crucial problem is to learn a set
of relative preferences among these norms. To this end, in
(Kasenberg and Scheutz 2018a) we define an “inverse norm
conflict resolution” (INCR) algorithm that, given a set of be-
havior trajectories and a set Φ of norms, determines a vector
w of weights which “best explain” the behaviors.

INCR proceeds by minimizing the relative entropy be-
tween the “observed product-space policy” πo and the op-
timal product-space policy (the policy minimizing violation
costs, determined by our NCR algorithm) with respect to
the norms. The algorithm uses fixed-point iteration and gra-
dient descent to minimize this objective; the result is a set of
weights w∗ so that the optimal norm-obeying policy for the
norm system (Φ,w∗) approximates the observed behavior.

Future work
Whereas our norm inference algorithm returns a set of
Pareto-efficient norms such that only one should be chosen,
future work will incorporate this with INCR to allow learn-
ing a set of norms (and a corresponding weight vector) that
jointly explain the observed behaviors.

One advantage of representing norms in logic is their
interpretability. This may enable the agent to learn norms
through natural-language instruction, and to generate expla-
nations when questioned about behavior in NCR scenarios.
We aim to incorporate these capabilities in future work.

LTL is not sufficient to perform complex reasoning about
duties, since it lacks explicit deontic operators. Future work
may explore using temporal deontic logics that enable such
reasoning. To do this, we would need to adapt our existing
algorithms to such logics.

Conclusion
Through our work in norm conflict resolution, norm infer-
ence, and inverse norm conflict resolution, we have taken
first steps towards our goal of an artificial agent able to learn
and obey conflicting moral and social norms in stochastic
domains.
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