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1 INTRODUCTION
Robots and other artificial agents are increasingly being considered
in domains involving complex decision-making and interaction
with humans. These agents must adhere to human moral social
norms: agents that fail to do so will be at best unpopular, and at
worst dangerous. Artificial agents should have the ability to learn
(both from natural language instruction and from observing other
agents’ behavior) and obey multiple, potentially conflicting norms.

One popular candidate solution to the problem of learning moral
and social norms from behavior is inverse reinforcement learing
(IRL) [10]. By observing the behavior of agents in stochastic en-
vironments, IRL algorithms can determine a reward function that
“best explain” that behavior. IRL and reward-driven planning could
solve the twin problems of learning (from observation) and obeying
moral and social norms. IRL may, however, be inadequate for AI
ethics due to the following challenges (as we have described in [2]):
(C1) Some temporally complex moral and social norms rely on

information about the agent’s past history that may not be
encoded in the state space, and thus cannot be represented
by a reward function; IRL cannot infer these norms.

(C2) Reward functions learned in one domain may not be easily
transferable to other domains; and

(C3) It is often difficult to interpret the reward functions inferred
by IRL; interpretability is a desirable property for AI ethics
(e.g., for correction).
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Our research seeks to overcome these challenges by allowing
robots in stochastic domains, such as Markov Decision Processes
(MDPs), to learn (by observing other agents’ behavior) and obey
moral and social norms represented in temporal logic.

2 RELATEDWORK
Most “top-down” approaches to morality (those that explicitly rep-
resent moral injunctions and norms) employ deontic logics, some
of which support complex temporal sequencing of actions and
propositions (e.g. [1]). A number of papers address the challenge of
conflicting norms in single- and multi-agent domains. Some (such
as [11]) solve conflicts by directly modifying norms themselves;
others (such as [3]) employ nonmonotonic logics that avoid many
of the logical problems with conflicting obligations. These methods
generally assume deterministic environments, and thus may not be
well-equipped for probabilistic domains.

Our planning algorithm extends work employing LTL specifi-
cations in MDPs (e.g., [6]) to manage multiple conflicting norms.
Our norm inference work extends [4], which infers temporal logic
specifications from deterministic domains.

3 NORMS IN TEMPORAL LOGIC
Linear temporal logic (LTL) is a propositional logic augmented with
the operators X, G, F, and U. Xϕ means “in the next time step, ϕ”;
Gϕ means “in all present and future time steps, ϕ”; F means “in
some present or future time step, ϕ”; and ϕ1Uϕ2 means “ϕ1 will
hold until ϕ2 is true”.

Encoding norms in LTL overcomes the challenges (C1)-(C3):
• LTL can represent temporally complex concepts that cannot
be represented by (Markovian) reward functions. For exam-
ple, [7] describe a robot elder care domain. The robot may
be obligated to give care to the person, but only if the person
consents to that care. The person’s desire (or lack thereof)
for care may be expressed only occasionally, and the robot
is expected to remember the person’s last preference. The
desired behavior cannot be expressed as a reward function,
but can be expressed by the following LTL statement:

G((consentGiven → ((XcareGiven)UconsentW ithdrawn))

∧ (consentW ithdrawn → ((X¬careGiven)UconsentGiven)) (1)

• LTL statements may be transfered to new domains, with
previously-unseen states and actions, as long as the set of
propositions can be mapped onto the new states.

• Given the meanings of the propositions, an LTL statement
may be easily interpreted. For example, the meaning of (1)
is “whenever consent is given, care is given until consent
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is withdrawn; whenever consent is withdrawn, care is not
given until consent is given”.

4 RESULTS
4.1 Planning to obey conflicting norms
We define a norm system N as a set of weighted norms (LTL state-
ments):

N = {(w1,ϕ1), · · · , (wn ,ϕn )} (2)
The weightwi represents the importance the agent ascribes to ϕi .

Given a norm systemN , we have developed an algorithm allow-
ing an agent to “maximally satisfy” N [9] . We define “maximally
satisfying” a norm system in terms of a notion of violation cost.

Given an infinite agent behavior trajectory τ = s0,a0, s1,a1, · · · ,
we define the violation cost of the trajectory with respect to a norm
ϕ as the (discounted) minimum number of time steps that must be
omitted from τ in order for τ to satisfy ϕ. The violation cost of a
trajectory with respect to a norm system is then the weighted sum
of the violation costs with respect to the norms.

Each LTL norm can be shown to correspond to a deterministic
Rabin automaton (DRA), a finite state machine over infinite words.
Violation cost may be implemented by augmenting the DRA corre-
sponding to each norm with self-loops (corresponding to omitting
one time step), but causing the agent to incur a cost whenever these
transitions are followed. When we compute the Cartesian product
of these augmented DRAs with the original MDP (the product MDP),
the expected violation cost is Markovian, and the problem may be
solved with value iteration (there are some graph-theoretic caveats,
which are explained in [9]). The optimal policy is non-stationary
in the original MDP, but is stationary in the product MDP.

We have tested this approach in several (simulated) domains,
and in each case found agent behavior to match intuitions about
the “right” behavior in the domains.

4.2 Inferring norms from behavior
Given an MDP with known dynamics and a set τ 1, · · · ,τm of agent
trajectories, we developed an algorithm for inferring an LTL state-
ment that “best explains” the observed trajectories [8]. The algo-
rithm is based on the following principles:

• Simpler norms are preferred to more complex norms; and
• Norms that “specifically” describe behaviors are preferred.
If a norm ϕ is hard to satisfy randomly, but is satisfied by
trajectories τ 1, · · · ,τm , then ϕ explains τ 1, · · · ,τm well.

This can be framed as a multi-objective optimization problem

min
ϕ∈LT L

(ObjS (ϕ),ObjX (ϕ)) (3)

whereObjS measures formula complexity (in particular,ObjS (ϕ) =
ℓ(ϕ), the length of ϕ in symbols where each proposition, connective,
and operator counts as one symbol). ObjX measures this notion of
“specific description” and is given by

Violϕ (π
o ) −Violϕ (π

rand ) (4)

where Viol is the notion of violation cost defined earlier, πo is a
(product-space) policy constructed from the trajectories τ 1⊗, · · · ,τ

m
⊗ ,

and π rand is the uniformly random policy.
This problemmay be solved using any approach formulti-objective

optimization that can operate over the syntax of LTL (we used

NSGA-II [5]). This yields a set of Pareto-efficient norms, fromwhich
the preferred norm may be selected.

We tested this approach in several simple domains, and found
that it retrieved norms that well described the input trajectories.

5 FUTUREWORK
We aim to develop more efficient implementations, enabling real-
time planning and inference (e.g., our planning algorithm takes
exponential time in the number of norms). These steps will enable
us to implement our algorithms on robots and perform human-
subject experiments.

We aim to allow more sophisticated reasoning about norms
by adding deontic operators to our formulation. We also aim to
augment the logic to allow quantification over objects.

6 CONCLUSION
To interact in morally and socially acceptable ways with humans,
robots will need to learn and obey moral and social norms. We seek
to facilitate these capabilities using the language of temporal logic
and the framework of Markov Decision Processes. We have initiated
our pursuit of this goal by developing algorithms for planning to
obey sometimes-conflicting norms in stochastic domains, and for
inferring temporal logic norms from observed agent behaviors.
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