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Abstract

Although temporal logic has been touted as a fruitful lan-
guage for specifying interpretable agent objectives, there has
been little emphasis on generating explanations for agents
with temporal logic objectives. In this paper, we develop
an approach to generating explanations for the behavior of
agents planning with several temporal logic objectives. We
focus on agents operating in deterministic Markov decision
processes (MDPs), and specify objectives using linear tem-
poral logic (LTL). Given an agent planning to maximally sat-
isfy some set of LTL objectives (with an associated prefer-
ence structure) in a deterministic MDP, we introduce an al-
gorithm for constructing explanations answering both factual
and “why” queries, which queries are also specified in LTL.

1 Introduction
As artificial agents are increasingly considered for deploy-
ment in areas where their decisions can impact the lives of
humans, the research community is becoming increasingly
concerned with developing agents which can explain their
decisions to humans. This demand is exemplified by recent
laws, such as the European Union’s General Data Protection
Regulation, which assert that individuals have the right to
an explanation of autonomous agents’ decisions when these
decisions affect them personally (Goodman and Flaxman
2017). Further, the ability for human teammates and inter-
actants to understand why an agent made certain decisions
can help to facilitate trust between humans and artificial
agents, which can boost performance on joint human-agent
tasks (Lomas et al. 2012; Wang, Pynadath, and Hill 2016;
Garcia et al. 2018).

Temporal logic has been considered a fruitful language
for specifying intepretable objectives for agents in both
deterministic and stochastic environments (Arnold, Kasen-
berg, and Scheutz 2017; Camacho and Mcilraith 2019).
As such, temporal logic planners may be considered “low-
hanging fruit” for explainable planning. Nevertheless, there
has been little work in generating explanations about the be-
havior of agents planning with temporal logic specifications.
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In this paper, we consider an agent that attempts to maxi-
mally satisfy some set of linear temporal logic (LTL) speci-
fications with a given preference structure in an environment
modeled as a deterministic Markov decision process (MDP).
Assuming such an agent (which we describe in section 3),
our primary contribution is an approach for answering both
factual (“did ψ occur?”) questions about the agent’s behav-
iors, and questions requiring explanation (“why did ψ oc-
cur?”) where the object (“ψ”) of the questions is also spec-
ified in LTL. In the remainder of the paper, we situate our
work in the literature; we then present these contributions,
and demonstrate our approach, extended to relational do-
mains and integrated with a natural language interface, in an
example domain. We then discuss our approach and fruitful
avenues for future work, and conclude with a summary of
our contributions.

2 Related Work
Our work may be categorized within the field of explainable
planning (XAIP) (Fox, Long, and Magazzeni 2017). Within
this field, work has generally focused on classical planning
domains with a single goal state or set of states. Sreedharan
et al. (2019b) use hierarchical abstraction to construct proofs
of plan unsolvability in classical planning domains. Borgo,
Cashmore, and Magazzeni (2018) employ contrastive ex-
planations (explanations involving queries about alterna-
tive courses of action) in a classical planning setting; later
Krarup et al. (2019) broaden the scope of questions to which
such agents can respond. Their approach is similar to ours in
that generating the alternative plans entails replanning with
additional objectives/constraints. However, whereas Krarup
et al. provide a particular set of question templates which
their system can answer and operate in classical planning
domains, our approach operates in MDPs and allows arbi-
trary questions in linear temporal logic.

Also of interest is the field of explainable reinforcement
learning (XRL). Explainable RL, like our approach, con-
siders agents operating in Markov decision process envi-
ronments (though our agents are assumed to know the ob-
jectives and the environmental dynamics). Hayes and Shah
(2017) provide mechanisms for explaining agent policies,
including responding to “why” queries about particular ac-



tions, by describing the difference between the world state
in which the query action was (not) performed and other
states in which the query would be false. Whereas this pro-
vides a description of under what conditions the target query
would have been violated, our approach focuses on the con-
sequences of the agent behaving otherwise. Madumal et al.
(2019) attempt to learn a causal model of the agent’s en-
vironment to respond to “why” questions (about individ-
ual actions) using counterfactual reasoning. van der Waa et
al. (2018) generate contrastive explanations in response to
queries regarding individual actions, sequences of actions,
or the agent’s policy as a whole. Our approach also uses con-
trastive explanations, but uses temporal logic both for spec-
ifying agent objectives and as query language, allowing a
broader class of queries.

We focus on temporal logic planning within MDPs. The
present paper is the first to explicitly consider how to explain
temporal logic planner decisions by appealing to an agent’s
temporal logic specifications. Raman et al. (2013) generate
explanations for agents with temporal logic specifications,
but emphasize explaining why tasks cannot be completed.

Early work on planning with linear temporal logic (LTL)
specifications in MDPs includes that of Ding et al. (2011),
who employ dynamic programming to construct a policy
which almost surely satisfies an LTL specification. Subse-
quent work has considered how to plan with LTL specifi-
cations that are only partially satisfiable (Lacerda, Parker,
and Hawes 2015; Lahijanian et al. 2015), and how to work
with multiple specifications which may not all be satisfiable
(Tumova et al. 2013; Kasenberg and Scheutz 2018) or rep-
resented as beliefs over formulas (Shah, Li, and Shah 2019).
The present work builds on these latter approaches, describ-
ing how an agent planning with multiple specifications in
LTL may answer questions about its behavior, including
“why” questions.

3 Preliminaries: Planning with LTL
specifications

The primary contribution of this paper is an algorithm for
explaining the behavior of an agent planning in a Markov
decision process (MDP) environment with objectives spec-
ified in linear temporal logic (LTL), by appealing to those
specifications; that algorithm is described in section 4. In
this section we describe how such a planning agent operates.

The planning approach described in this section is similar
to the approach described by Kasenberg and Scheutz (2018).
The key differences are (1) the use of co-safe and safe LTL
statements to avoid constructing ω-automata; (2) the use of a
binary cost function instead of the timestep-based cost func-
tion Kasenberg and Scheutz describe; and (3) a preference
structure that allows priorities (specifications of such differ-
ent priorities that they cannot be traded off).

3.1 Markov Decision Processes
For the purposes of this paper, we consider an LTL planner
operating in a (labeled) Markov decision process (MDP) en-
vironment.

We define a finite MDPM as a tuple xS,A, P, s0, γ,Ly,
where S is a finite set of states,A is a finite set of actions, P :
S ˆAˆ S Ñ r0, 1s is a transition function (mapping state-
action pairs to a probability distribution over new states); s0

is an initial state; γ P r0, 1q is a discount factor, and L :
S Ñ 2Π where Π is a finite set of atomic propositions. For
any state S, Lpsq represents the set of atomic propositions
that are true in s (and all propositions in ΠzLpsq are false in
s).1

While the planning approach can operate in any MDP, the
explanation algorithm we introduce requires a deterministic
environment (where the transition function P outputs only
zero or one). We will further discuss this assumption in sec-
tion 6.

Example domain: ShopWorld. In the ShopWorld MDP,
the agent represents a robot going shopping for its owner
in a shop selling some object the user wants to buy. While
in the store, the robot may pick up the object (pickUp),
put it down (putDown), buy it (buy), or leave the store
(leaveStore). The object for sale has a cost, and the agent
has an initial amount of starting currency, so that the agent
can only buy the object if it can afford it. State propositions
include whether the agent is currently holding the object
(holding), whether the object has been bought in a previous
time step (bought), whether the agent can afford the object
(canAfford), whether the object is on the shelf (onShelf ),
and whether the robot has left the store (leftStore). We as-
sume a trajectory ends when the agent has left the store (so
that the final state has leftStore true).

3.2 Linear temporal logic (LTL)
Linear temporal logic (LTL) (Pnueli 1977) is a propositional
logic augmented with the temporal operators X, G, F, and
U. Here Xφ means “in the next time step, φ”; Gφ means
“in all present and future time steps, φ”; Fφmeans “in some
present or future time step, φ; and φ1Uφ2 means “φ1 will
be true until φ2 is true”.

The truth of a given LTL statement φ is evaluated over an
infinite sequence of subsets of Π (with Π as defined in sec-
tion 3.1); we say Π0,Π1, ¨ ¨ ¨ ( φ, where Π0,Π1, ¨ ¨ ¨ Ď Π
2. We say that an infinite sequence of MDP states s0, s1, ¨ ¨ ¨
satisfies φ if and only if Lps0q,Lps1q, ¨ ¨ ¨ ( φ; with slight
abuse of notation we say s0, s1, ¨ ¨ ¨ ( φ.

For a LTL specification φ, we follow Kupferman and
Vardi (2001) in saying that a finite sequence of states τ1 “
s0 ¨ ¨ ¨ sT is a good prefix for φ if for all infinite trajectories
τ2 “ sT`1sT`2 ¨ ¨ ¨ we have that τ1 ¨ τ2 ( φ (where ¨ rep-
resents the concatenation of the trajectories). Similarly we
define a bad prefix as τ1 such that for all τ2 we have that
τ1 ¨ τ2 * φ. We say that φ is safe if every infinite trajectory
τ such that τ ( φ has a good prefix; we say that φ is co-safe
if every infinite τ such that τ * φ has a bad prefix.

Planning with the full syntax of LTL requires construct-
ing ω-automata over infinite words, restricting our attention

1MDPs traditionally also include reward functions, but these are
unnecessary for this paper.

2The full semantics of LTL are not important to this paper, and
are described in Pnueli (1977).



to safe and co-safe LTL objectives allows us to use finite
state machines (see section 3.3). Syntactic safety and co-
safety (Kupferman and Vardi 2001) provide subclasses of
LTL whose formulas are always safe/co-safe respectively.
We thus focus on syntactically safe and co-safe specifica-
tions, excluding specifications such as GFφ (“φ should be
performed infinitely often”); we do not feel this greatly con-
strains the queries to which our algorithm can respond, since
we primarily consider finite agent trajectories.

LTL specifications in ShopWorld. In the ShopWorld do-
main, the agent may have LTL specifications such as the fol-
lowing:

FpleftStore^ holdingq,

G pleftStore^ holding ^ boughtq.

The first (which is co-safe) represents a goal to leave the
store while holding the object, and the second (which is safe)
represents an injunction against shoplifting.

3.3 Finite state machines for (co-)safe LTL
specifications

For each co-safe LTL statement φ over propositions Π,
we can define a finite state machine (FSM) Mφ “ xQφ,

Σφ, δφ, qφ0 , F
φy, where

• Qφ is a set of automaton states;
• Σφ “ 2Π is the input alphabet (so that each MDP state

provides input for this automaton via the labeling function
L);

• δφ : Qφ ˆ Σφ Ñ Qφ is a transition function;

• qφ0 is the initial automaton state; and

• Fφ is a set of accepting states;
such that Mφ accepts on a given finite MDP trajectory τ “
s0 ¨ ¨ ¨ sT if and only if that trajectory is a good prefix for
φ. (For safe LTL statements φ, the finite automaton instead
accepts on τ if τ is a bad prefix for φ.)

We will define qφ‹ as the function that maps a finite state
trajectory s0, s1, ¨ ¨ ¨ , sT to the FSM state after running this
sequence through Mφ:

qφ‹ ps0, ¨ ¨ ¨ , sT q :“

$

’

&

’

%

δφpqφ0 ,Lps0qq if T “ 0

δφpqφ‹ ps0, ¨ ¨ ¨ , sT´1q,

Lps0qq otherwise

For a finite state trajectory τ and co-safe φ, qφ‹ pτq P Fφ if
and only if τ is a good prefix for φ.

Given an LTL statement φ and a FSM state q P Mφ, we
define the satisfaction level Satpφ, qq by

Satpφ, qq :“

$

&

%

1 if φ is co-safe and q P Fφ

´1 if φ is safe and q P Fφ

0 otherwise.
(1)

We note that for a given finite trajectory τ , Satpφ, qφ‹ pτqq
returns whether τ is a good prefix for φ, a bad prefix for φ,
or neither.

3.4 The product environment
When planning with LTL specifications, a common ap-
proach is to construct the Cartesian product between the
original environment and the specifications, the result of
which is a “product environment” in which the problem is
Markovian.

Suppose an MDP environment M “ xS,A, P, s0, γ,Ly
and a set of LTL specifications Φ “ φ1, ¨ ¨ ¨ , φn. We define
the product MDP Mb as a tuple xSb, Ab, Pb, sb0 , γ

by,
where

• Sb is the set of all states of the form

sb “ ps, qφ1 , ¨ ¨ ¨ , qφnq (2)

where qφi P Qφi for all i P t1, ¨ ¨ ¨ , nu;

• Ab “ A;

• Assuming that the product state sb takes the form (2) and
assuming that s1b is similarly defined, then we define

Pbpsb, a, s1bq :“

$

’

&

’

%

P ps, a, s1q if @i P t1, ¨ ¨ ¨ , nu,
δφipqφi ,Lps1qq “ qφi

1

0 otherwise;

• sb0 :“ ps0, δ
φ1pqφ1

0 ,Lps0qq, ¨ ¨ ¨ , δ
φnpqφn

0 ,Lps0qqq; and

• γb “ γ.

The product MDP Mb stores the finite automaton states
corresponding to all the agent’s LTL specifications Φ “

φ1, ¨ ¨ ¨ , φn.
A given trajectory τ “ s0, ¨ ¨ ¨ , sT in M has a corre-

sponding trajectory inMb:

τb :“ sb0 , ¨ ¨ ¨ , psT , q
φ1
‹ pτq, ¨ ¨ ¨ , q

φn
‹ pτqq (3)

τb is the unique trajectory respecting Pb with underly-
ing MDP states corresponding to τ . The final state of this
trajectory, psT , q

φ1
‹ pτq, ¨ ¨ ¨ , q

φn
‹ pτqq, is sufficient to deter-

mine whether τ is a good prefix, bad prefix, or neither for
each of φ1, ¨ ¨ ¨ , φn; we can see that the satisfaction level of
τ for each φi is easy to compute from the product state. We
can construct a satisfaction vector for a given product state
as follows:

SatpΦ, sbq :“ rSatpφ1, q
φ1q, ¨ ¨ ¨ ,Satpφn, q

φnqsT (4)

3.5 Preferences over LTL specifications
Given a set φ1, ¨ ¨ ¨ , φn of LTL specifications, we may assign
these specifications a priority vector z ě 0 P Zn and a
weight vector w ě 0 P Rn. Each specification φi has an
associated priority zi and weight wi.

Specifications with different priorities cannot be traded
off amongst each other: the agent will always prefer vi-
olating specifications of lower priority to violating those
of higher priority, no matter how many such specifications
must be violated. That is, given the choice between satisfy-
ing φi with priority zi and satisfying k specifications each
of φj has priority zj ă zi, the agent will always choose to
satisfy φi regardless how large k is.



Specifications of the same priority, however, can be traded
off, with the weights wi the exchange rate between these
specifications. For example, if the agent can satisfy either
tφ1u or tφ2, φ3u, then the agent will choose to satisfy φ1 if
and only if w1 ą w2 ` w3.

This priority-weight approach is slightly more compli-
cated than using weighted specifications alone, as Kasen-
berg and Scheutz (2018) do; in principle we could ac-
commodate specifications of incomparably different prior-
ity within a weighted-formula framework by, e.g., assign-
ing a “higher-priority” specification a weight greater than
the sum of all “lower-priority” specifications’ weights. The
priority-weight approach is less cumbersome to the specifi-
cation provider, and preserves a conceptual distinction be-
tween comparably and incomparably important specifica-
tions, which may be particularly salient he when some spec-
ifications represent safety constraints or moral norms. Fur-
ther, this approach is beneficial in relational domains (which
we introduce in section 5.1) where specifications may in-
clude object variables and have multiple bindings, and where
it may not be known a priori precisely how many objects ex-
ist in the environment. In any case, our planning approach
applies to weighted specifications as well (let z “ 0).

We can implement priorities and weights using a prefer-
ence matrix over φ1, ¨ ¨ ¨ , φn, which we define as a k ˆ n
matrix Pz,w, where k “ maxi zi is the maximum prior-
ity of any specification. For each i P t1, ¨ ¨ ¨ , nu, we set
Pzi,i :“ wi; all other entries are zero.

Colexicographic comparison ącolex is defined over vec-
tors as follows: we say that v ącolex v1 if v ‰ v1 and, for
the maximum i such that vi ‰ v1i, vi ą v1i.

For vectors v and v1 we say that v ąpz,wq v1 if

Pz,wpv ´ v1q ącolex 0.

When applied to satisfaction vectors as described in 3.4,
the relation ąpz,wq implements priorities and weights be-
tween specifications as described in this section.

Preferences in ShopWorld. In the ShopWorld domain,
the agent would treat the injunction against shoplifting as
higher-priority than the goal to leave the store while holding
the object; i.e. z “ r0, 1sT ; w “ r1, 1sT .

3.6 The LTL planning problem
We define the LTL planning problem by a tuple xM,
Φ, pz,wqy whereM is a MDP, Φ “ pφ1, ¨ ¨ ¨ , φnq is a set
of LTL specifications, and z and w are priority and weight
vectors respectively. Given such a problem, we wish to com-
pute a policy that maximally satisfies the LTL specifications
according to the preference relation ąpz,wq:

π‹ “ arg max
π

`

Eτ„πrSatpΦ, τqs,ąpz,wq
˘

(5)

where the optimization is over non-Markovian policies,
which may depend on the agent’s complete history; and
SatpΦ, τq is given by

SatpΦ, τq :“ SatpΦ, sbT q (6)

where sbT is the final state of the product trajectory τb
induced by τ as defined in 3.4.

In order to solve this problem, we note that we can use
Sat to define a reward vector function RΦ : Sb ˆ Ab ˆ
Sb Ñ Rn as follows:

RΦpsb, ab, s1bq :“ SatpΦ, s1bq ´ SatpΦ, sbq (7)

Under this definition of RΦ, we can see that for a given
trajectory τ “ s0, ¨ ¨ ¨ , sT , the satisfaction vector SatpΦ, τq
is given as

SatpΦ, τq “ SatpΦ, sb0 q `
T´1
ÿ

t“0

RΦpsbt , a, s
b
t`1q. (8)

The initial term can be safely ignored for planning pur-
poses because the agent’s behavior cannot control this value;
thus solving the LTL planning problem is akin to solving the
maximizing the (undiscounted) sum of reward vectors (ac-
cording to ąpz,wq) over Markovian policies inMb:

max
πb

˜

Eτb„πb

«

T´1
ÿ

t“0

RΦpsbt , a, s
b
t`1q

ff

,ąpz,wq

¸

(9)

If the agent knows the MDP model M, then this problem
can be easily maximized using value iteration to produce an
optimal product-space policy. (Any additional reward func-
tions or objectives can be added, e.g., at priority less than all
the LTL specifications; for example, by adding a constant
reward function Rps, aq “ ´1 at minimal priority, the agent
can generate the trajectory of minimal expected length, pro-
vided that the MDP terminates.)

Behavior in Shopworld. Given the ShopWorld agent we
have described with LTL specifications to obtain the object
and not to shoplift, the agent could exhibit two behaviors: (1)
if the agent starts with sufficient money to afford the object,
it performs the actions pickup; buy; leaveStore; otherwise,
it performs only the action leaveStore.

4 Constructing explanations
In this section we describe algorithms for answering tempo-
ral logic queries which ask either factual questions requiring
“yes/no” answers, or “why” questions requiring the agent
to justify properties of its behavior trajectory in terms of its
specifications. By allowing temporal logic queries, the sys-
tem may respond to a broader class of questions than those
about the utility of a particular action or sequence of actions.

Given some temporal logic query (see section 4.1), our
explanation algorithm, EXPLAINLTLQUERY (finally de-
scribed in section 4.4) returns an explanation structure (sec-
tion 4.3), an object intended to contain sufficient informa-
tion for the user to understand whether (for factual queries)
an LTL property was true of the agent’s behavior, or (for
“why” queries) how the agent’s actual trajectory differs from
alternative trajectories in which the premise of the query is
violated, in terms of the agent’s LTL specifications. In this
latter case, it functions as a justification of the agent’s ac-
tual behaviors, in that the evidence computed shows that the



agent’s behavior satisfies its specifications better (or at least
not worse) than any alternative trajectory that would violate
the query premise (if such a trajectory even exists). In order
to accomplish this, the computed explanation structure con-
tains evidence that the (real or alternative) trajectory violates
some set of LTL statements; we describe how to compute
such evidence in section 4.2.

The primary assumptions of our explanation generation
approach are: (1) that the queries in question are either syn-
tactically safe or syntactically co-safe (as introduced and
discussed in section 3.2); and (2) that the environment is de-
terministic. We discuss the implications of assumption (2) in
section 6.

4.1 LTL queries
For maximum flexibility, we allow queries pertaining to ar-
bitrary properties expressed in LTL. These queries can be
factual (whether a given property holds), or they may de-
mand a justification (“why” a given property holds). Thus
the query language is defined as:

Q ::“ φ? |Why φ?

where φ is an LTL statement.

LTL queries in ShopWorld. In the ShopWorld example
domain, a user may ask questions such as:

(Q1) FpleftStore^ onShelfq?

(Q2) Why G pleftStore^ holdingq?

4.2 Minimal evidence that τ is unsatisfactory for
a LTL statement φ

We say that a finite trajectory τ is satisfactory for an LTL
statement φ if (a) φ is safe, and τ is not a bad prefix for φ;
or (b) φ is co-safe, and τ is a good prefix for φ. We will call
τ unsatisfactory if it is not satisfactory. We denote the set of
satisfactory trajectories for φ by TrajXpφq.

In this section we describe how to construct “minimal ev-
idence” that a given trajectory τ is unsatisfactory for an LTL
statement φ.

Let us use the standard definition of a literal as either a
ground atom ` “ p, where p P Π, or its negation. We will
say that a particular MDP state s P S entails ` (denoted
s ( `) iff (a) ` is negated (` “  p) and p R Lpsq; or (b) ` is
not negated and ` P Lpsq. We will denote the complete set
of positive and negative literals for Π as LpΠq.

We specify evidence as a set of pairs pt, `q where t is a
nonnegative integer and ` P LpΠq. We say that a set E of
such pairs is entailed by a finite trajectory τ “ s0, ¨ ¨ ¨ , sT if
for all pt, `q P E, t P t0, ¨ ¨ ¨ , T u and st ( `; we will denote
this by τ ( E.

We define the minimal evidence that τ is unsatisfactory
for φ as the smallest set E‹ of (timestep, literal) pairs which
are entailed by τ , and which are sufficient by themselves to
prove that τ is unsatisfactory for φ (that is, no matter what
the settings of the other propositions in Π, any trajectory
entailing E‹ must be unsatisfactory for φ). E‹ is defined

formally by

E‹ :“ mint|E| : E Ď t0, ¨ ¨ ¨ , T u ˆ LpΠq; τ ( E; (10)

for all τ 1 s.t. τ 1 ( E, τ R TrajXpφqu

To interpret what this optimization problem computes,
consider a human or other agent who completely under-
stands the LTL specification φ and what it entails, but has
not directly observed the trajectory τ . The explainee may
be interested in a description of τ which is succinct (con-
taining no more information than necessary to verify that τ
violated φ). This is what (10) computes, where succinctness
is defined in terms of the number of literals conveyed. (We
further discuss the suitability of this approach in section 6.)

This is a combinatorial optimization problem which may
be solved using one of many existing methods. We will de-
fine EVIDENCE as an algorithm which computes the solution
to this problem.

Minimal evidence in ShopWorld. Consider the Shop-
World domain and the trajectory τ given by the agent per-
forming the sequence of actions pickUp; buy; leave, and
consider the LTL statement φ :“ FpleftStore^onShelfq.

The minimal evidence that τ violates φ is given by

tp0, leftStoreq, p1, onShelfq, p2, onShelfq, p3, onShelfqu.

Note that minimal evidence is not necessarily unique; in
this case, there are four (timestep, literal) sets of size four
(corresponding to choosing onShelf vs leftStore in time
steps 1 and 2).

4.3 Explanation structures
Let E be the set of sets of (timestep, literal) pairs; that is, the
output of EVIDENCE will always be an element of E .

For this paper’s purposes, we define an explanation struc-
ture as a tuple xΓ, E, τ 1, E1y where:

• Γ is the type of the explanation (in tQUERYFALSE,
QUERYTRUE, NEGQUERYIMPOSSIBLE, ALTQUERY)u;

• τ 1 is a finite agent trajectory (orH, if not computed);

• E,E1 Ă LTLˆ E ; that is, each is a set containing one or
more tuples pφ,Eφq where φ is an LTL statement and Eφ
is evidence supporting a violation of φ.

E and E1 provide evidence of the extent to which the
agent’s trajectory τ and an alternative trajectory τ 1 (de-
scribed in section 4.4) respectively violate some set of LTL
statements.

4.4 Constructing an explanation for a query
EXPLAINLTLQUERY constructs an explanation structure
for a query Q for an agent with LTL specifications Φ :“
φ1, ¨ ¨ ¨ , φn, preferences characterized by priorities z and
weights w, and with actual trajectory τ (see Alg. 2 in the
supplemental material).

A query may either be of the form “ψ?” or “Why ψ?”,
where ψ is a LTL statement. In the former case, the question
is factual, and in this case our algorithm should return

xQUERYTRUE, tp ψ, EVIDENCEpτ, ψqqu,H,Hy



if τ ( ψ, or

xQUERYFALSE, tpψ, EVIDENCEpτ, ψqqu,H,Hy

if τ * ψ.
If the query has the form “Why ψ?”, then the explanation

helps the asker understand why the agent acted in such a way
that the LTL statement ψ held. Assuming agent trajectory τ ,
explanations are constructed as follows:

1. Determine whether τ ( ψ. If not, the premise of the
“why” question is false; return

xQUERYFALSE, tpψ, EVIDENCEpτ, ψqqu,H,Hy;

otherwise, proceed to step 2.
2. Determine whether any trajectory τ 1 achievable inM sat-

isfies τ 1 (  ψ. This can be done by solving the LTL plan-
ning problem for the tuple xM, ψ,ąpr1s,r1sqy (with only
 ψ as a specification). If the satisfaction vector is unsat-
isfactory for  Q, then ψ is true because  ψ is impossi-
ble; return xNEGQUERYIMPOSSIBLE,H,H,Hy; other-
wise, proceed to step 3.

3. If this step is reached, then τ ( ψ and at least one trajec-
tory τ 1 * ψ. We now want to compare τ with alternative
trajectories which would satisfy ψ, in terms of how well
they satisfy Φ. Rather than compare τ with all such trajec-
tories, we compare with the alternative trajectory which
best satisfies the agent’s LTL specification:

τ 1 “ min
τ*ψ

pSatpΦ, τq,ąpz,wqq (11)

To compute this, we augment Φ by adding  ψ at a pri-
ority higher than those of the agent’s other specifications,
solving the LTL planning problem

@

M, pΦ, ψq,ąpz1,w1q

D

, (12)

where z1 “

„

z
maxi zi ` 1



and w1 “

„

w
1



.

Colexicographic comparison will prefer all trajectories
satisfying  ψ to those satisfying ψ, so (because Dτ 1 :
τ 1 (  ψ) the solution to (12) will satisfy  ψ; but subject
to this constraint, the trajectory best satisfying φ1, ¨ ¨ ¨ , φn
according to preference ordering ąpz,wq will be com-
puted. We can then return the explanation

xALTQUERY,

tpφi, EVIDENCEpτ, φiqq : i P t1, ¨ ¨ ¨ , nu, τ R TrajXpφiqu,

τ 1, tpφi, EVIDENCEpτ, φiqq : i P t1, ¨ ¨ ¨ , nu, τ
1 R TrajXpφiquy.

While this algorithm is intended to construct a explana-
tion structure with sufficient information to explain the an-
swer to a posed factual or “why” question, some of this
information may not be necessary: the user may be inter-
ested only in which specifications the alternative trajectory
violates, not in the (timestep, literal) pairs in E and E1; or
they may not require explanations related to specifications
that the real and alternative trajectories satisfy equally well.
Interfaces for presenting the explanations to users (such as
the natural language interface described in section 5.3) may
prune the explanation structures as desired.

Explanation output in ShopWorld. Consider the Shop-
World domain with LTL specifications as specified in sec-
tion 3.2, and suppose the agent does not have enough money
to buy the item, so the agent’s true trajectory τ is charac-
terized by the single action leaveStore. For Q2 as defined
in section 4.1, EXPLAINLTLQUERY might return the re-
sponse

xALTQUERY,

tpFpleftStore^ holdingq, tp0, holdingq, p1, holdingququ,

τ 1, tpG pleftStore^ holding ^ boughtq,

tp2, leftStoreq, p2, holdingq, p2, boughtququy.

where τ 1 is the alternative trajectory characterized by the
action sequence pickUp; leaveStore (since the agent has no
money, in order to leave the store while holding the object it
must shoplift).

Here the explanation type Γ is ALTQUERY, because there
exists at least one trajectory (τ 1 is one such) inM in which
the agent leaves the store while holding the item. The ev-
idence E indicates that the agent’s true trajectory τ is un-
satisfactory for the rule FpleftStore ^ holdingq (leave
while holding the item); this can be seen to be true because
holding is false at time steps 0 and 1 (i.e., for the whole tra-
jectory). The evidence E1 indicates that the alternative tra-
jectory would have violated the more important injunction
against shoplifting; the evidence for this is that at time step
2, the propositions leftStore and holding are true in τ 1,
bought bought is false (i.e., the agent shoplifted at time 2).

5 Implementation and Example
In this section we describe additional details of our imple-
mentation of the algorithms described in sections 3 and 4;
we also describe their integration in a natural language in-
terface and provide some example questions and answers in
a relational version of the ShopWorld domain.

5.1 Operating in relational domains
For simplicity we have presented our explanation algo-
rithm (as well as the planning problem) for an agent with
LTL specifications operating in a simple (non-relational)
MDP. Our implemented system operates in object-oriented
MDP (OO-MDP) environments, and correspondingly uses
an object-oriented extension to LTL.

OO-MDPs resemble MDPs, except that each OO-MDP
state can be factored into the states of one or more objects.
Each action takes zero or more arguments, corresponding to
objects to which the action is to be applied. Rather than a
set of atomic propositions, an OO-MDP has a set of atomic
predicates, each may take objects as arguments.

Our implemented system employs an object-oriented syn-
tactic extension to LTL which we call violation enumeration
language (VEL). VEL augments LTL by allowing predicates
with zero or more arguments, which arguments may be the
names of specific objects in the OO-MDP, or may be ob-
ject variables bound by existential (“Dx.φpxq”) or universal
(“@x.φpxq”) quantification. It also allows enumerated object
variables (”

A

x.φpxq”), where the agent’s goal is to maxi-
mize the number of bindings of x for which φpxq holds.



Our system uses VEL for specifying both objectives and
queries (though only quantified, not enumerated, variables
are allowed in queries). The primary advantage of using
VEL over LTL here is convenience in compactly represent-
ing concepts like “everything” and “something”. Under the
hood, VEL can be thought of as “syntactic sugar” map-
ping down to underlying LTL concepts: universal quantifi-
cation corresponds to a conjunction over objects; existen-
tial quantification corresponds to a disjunction; enumerated
variables correspond to constructing a separate specification
(with equal weight and priority) for each binding of the vari-
able. We employ VEL instead of LTL because, especially
where there are multiple objects and for specifications with
multiple quantified/enumerated variables, the corresponding
LTL statements are cumbersome.

The only modification required to the algorithm to incor-
porate VEL specifications is to keep track of the bindings of
the quantified/enumerated variables. For @x.φpxq we need
only return evidence of one unsatisfactory binding of x; for
Dx.φpxq we need to prove that all bindings of x is unsatis-
factory. For

A

x.φpxq we list all unsatisfactory bindings of
x.

5.2 Relational ShopWorld
For this example, we use an object-oriented version of Shop-
World in which the shop sells two items: a pair of glasses
(glasses) and a watch (watch). The robot may pick up ob-
jects (pickUppxq, where x P tglasses, watchu), put down
objects putDownpxq), buy an object (buypxq), or leave the
store (leaveStore). State predicates include whether the
agent is currently holding an object (holdingpxq), whether
an object has been bought in the past (boughtpxq), whether
the agent can afford an object (canAffordpxq), whether an
object is on the shelf (onShelfpxq), and whether the robot
has left the store (leftStore).

The agent is equipped with the VEL specifications

p

A

x.FpleftStore^ holdingpxqqq,

A

x.G pleftStore^ holdingpxq ^  boughtpxqq,

where the first represents a goal to leave the store with as
many things as possible, and the second again represents an
injunction against shoplifting, penalizing each object stolen.

If we specify the preferences as z “ r0, 1sT and w “

r1, 1sT , then the anti-shoplifting specification is prioritized.
Suppose we set the initial state of this OO-MDP to be one

in which the agent can afford the glasses or the watch, but
not both, then the behavior of the VEL planner will be to
pickUp and buy one of the objects, and then leave the store
(leaveStore). For the purposes of our example, we will sup-
pose that the agent buys the glasses and not the watch.

5.3 Explanations in ShopWorld
We have implemented our LTL/VEL planning algorithm as
well as our explanation generator using the Brown-UMBC
Reinforcement Learning and Planning (BURLAP; Mac-
Glashan 2016) library’s MDP representations and planning

algorithms, and using scheck (Latvala 2003) to convert tem-
poral logic formula into finite state machines.3

While EXPLAINLTLQUERY takes as input queries spec-
ified in the VEL extension of the query language described
in section 4.1 and returns explanation structures (see sec-
tion 4.3), we have incorporated this approach into a natu-
ral language pipeline, employing a combinatory categorial
grammar (CCG) parser to convert input into the query lan-
guage. Once the explanation structure is generated, a natural
language generation (NLG) module constructs a response to
the “why” question based on its type Γ.4 See Figure 1 for
a graphical depiction of this process. The explanation struc-
ture is then stored in memory, so that follow-up questions
(asking for more details of the alternative trajectory τ 1, of
the bindings for which τ 1 is unsatisfactory, etc) may be an-
swered without recomputing the structure.

Table 1 describes queries that a user might ask in the
ShopWorld domain, both natural language form and as a
VEL query, as well as the explanation structures computed
by EXPLAINLTLQUERY and stored in/retrieved from mem-
ory, and the agent’s natural language responses. Note that
• The type of the explanation structure determines the form

of the response (e.g., NEGQUERYIMPOSSIBLE produces
sentences “It was impossible to[...]”; ALTQUERY pro-
duces sentences “I could have [...] but/and [...]”).

• The bindings x{glasses and x{watch from E and E1 are
used in the natural language responses.

• The pt, `q tuples generated by the algorithm described in
section 4.2 and stored in E and E1 are not currently used
in the responses, but could be used if the user requires
more evidence that τ 1 fails to satisfy some particular spec-
ification.
In (Kasenberg et al. 2019) we conducted a human-subject

evaluation on the system described, in which participants
on Amazon Mechanical Turk read snippets of dialogue be-
tween a user and the system (or one of two baseline systems)
and evaluated the dialogues in terms of intelligibility, their
mental models of the system’s functioning, and their trust in
the system’s ability to obey rules (measured subjectively via
Likert scales). We found that the system outperformed both
baselines in terms of intelligibility and mental model, and
one baseline in terms of trust. Note that the baselines used
the same underlying explanation algorithm and differed pri-
marily in the natural language generation approach; thus this
study should not be construed as supporting the utility of our
explanation algorithm per se.

6 Discussion and Conclusion
In this paper, we provided an algorithm for an agent plan-
ning in an MDP environment with temporal logic specifica-
tions to respond to both factual questions and “why” ques-
tions which require the agent to justify its decisions in terms
of its specifications, and which are answered by comparing

3Our VEL planning and explanation generation code are avail-
able at https://github.com/dkasenberg/vel-explanation.

4At present, our parsing and NLG modules support only a sub-
set of VEL; they are described further in Kasenberg et al. (2019).



Figure 1: EXPLAINLTLQUERY with natural language

Input: “Why didn’t you leave the store while holding anything?”

Why @x.G pleftStore^ holdingpxqq?

xALTQUERY, ttpFpleftStore^ holdingpwatchqq,

tp0, holdingpwatchqq, p1, holdingpwatchqq, p2, holdingpwatchqququ,Hu, τ 1,

tpG pleftStore^ holdingpglassesq ^  boughtpglassesqq,

tp3, leftStoreq, p3, holdingpglassesqq, p3, boughtpglassesqququy

Output: “I could have left the store while holding everything, but that would have violated more important rules”

Parsing (CCG)

EXPLAINLTLQUERY

Natural language generation

Table 1: Sample questions and responses – EXPLAINLTLQUERY in dialogue
Input utterance VEL query Explanation in memory Output utterance

“Why didn’t you buy
anything?”

Why @x.G boughtpxq? xQUERYFALSE, tp@x.G boughtpxq,

tp2, boughtpglassesqququ,H,Hy
“I bought the glasses”

“Why didn’t you buy
everything?”

Why Dx.G boughtpxq? xNEGQUERYIMPOSSIBLE,H,H,Hy “It was impossible for me to buy every-
thing”

“Why didn’t you
leave the store while
holding everything?”

Why @x.G pleftStore

^ holdingpxqq?

xALTQUERY,

ttpFpleftStore^ holdingpwatchqq,

tp0, holdingpwatchqq,

p1, holdingpwatchqq,

p2, holdingpwatchqququ,Hu, τ 1,

tpG pleftStore^ holdingpglassesq

^  boughtpglassesqq,

tp3, leftStoreq,

p3, holdingpglassesqq,

p3, boughtpglassesqququy

“I could have left the store while hold-
ing everything, but that would have vi-
olated more important rules”

ãÑ“How would you
have done that?”

“I would have picked up the glasses,
picked up the watch, bought the watch,
and left the store”

ãÑ“What rules would
you have broken?”

“I would have left the store while hold-
ing the glasses, which I had not bought”

ãÑ“How would that
have been worse?”

“Leaving the store while holding the
glasses which I had not bought is worse
than not leaving the store while holding
the watch”

the agent’s actual behavior to a hypothetical alternative tra-
jectory in which the question’s premise is false. The query
language (especially with the VEL extension) allows a broad
range of questions to be posed. To demonstrate our explana-
tion generator we integrated it in a natural language pipeline,
as shown in section 5.3.

Miller (2019) provides valuable insights from the social
sciences for explainable AI, including four major findings:

1. Explanations are contrastive. The explanations provided
by our algorithm are contrastive in that they compare a
fact (the agent’s actual trajectory, and the temporal logic
property ψ that it satisfies, where Why ψ? is the user’s
query) with a foil (the trajectory satisfying ψ which best
satisfies the agent’s specifications).

2. Explanations are selected. Whenever possible, our cur-
rent approach assumes that the agent’s behavior is respon-
sible for the temporal logic property ψ. Since this behav-
ior in turn is caused by the agent’s maximal satisfaction of
its specifications, the response is evidence that no trajec-
tory satisfying  ψ would have satisfied the specifications

any better. “Why ψ?” could be interpreted in other ways,
however: by describing how the initial state would need to
be different in order for the agent to make ψ false (as in
Hayes and Shah 2017); or by using causal reasoning to
determine what other agent or elements of the environ-
ment caused ψ to be true (as Miller emphasizes).5 Our
work could be extended to include such reasoning.

3. Probabilities probably don’t matter. While our approach
to the LTL planning problem works in stochastic domains,
EXPLAINLTLQUERY requires a deterministic environ-
ment in order to appeal to a single alternative trajectory.
Future work could extend our explanation framework to
stochastic domains, though how best to specify explana-
tions appealing to stochastic state transitions is unclear,
especially when the actual trajectory violated specifica-
tions badly due to “bad luck”. Miller provides valuable
5Reasoning such as this is conspicuously absent from our algo-

rithm when it determines that ψ holds because  ψ is impossible:
no attempt is made to determine what about the environment makes
 ψ impossible.



dos and (especially) don’ts for managing the probabilistic
aspects of explanations. Further human-subject research
may provide additional insight into these questions.

4. Explanations are social. Through our interface with a nat-
ural language dialogue system, we have made some initial
strides towards embedding our explanations in social in-
teraction (particularly through beginning with high-level
explanations and allowing the user to ask certain follow-
up questions). Despite this, our approach currently makes
particular (hardwired) assumptions about the explainee’s
knowledge. For example, our “minimal evidence” algo-
rithm (section 4.2) describes how to convey the smallest
number of literals about a trajectory τ so that an explainee
who perfectly understands the temporal logic statement φ
could infer that τ failed to satisfy φ. Extending this ap-
proach to model the explainee and adapt the explanation
to their knowledge is an important topic for future work.
Our algorithms operate in time exponential in certain in-

puts (e.g., the number of specifications), and so would scale
poorly to large problems. Improving our algorithms’ com-
putational efficiency is important for future work.

In this paper we employed a preference system involving
both priorities and weights (see section 3.5). A more general
framework to preferences over LTL statements is described
by Kupferman, Perelli, and Vardi (2014); future work could
adapt our approach to this characterization of preferences.

Our approach assumes that the agent fully understands
the dynamics of its environment and its behavior trajectory
within that environment; future work could extend this to
instances in which the agent has is still learning the envi-
ronment dynamics or to partially observable environments.
Engaging in dialogue about the agent’s trajectory and its
specifications may facilitate two-way model reconciliation
(Chakraborti et al. 2017; Sreedharan et al. 2019a) processes
in which the agent may modify its specifications and envi-
ronment model through interaction with the user.
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