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Inverse Reinforcement Learning (IRL)

- Given a set of trajectories
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What if we could swap out the reward function...
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..with a statement in linear temporal logic?
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Example: CleaningWorld

H

- Vacuum cleaning robot in messy room
- Limited battery life
- Actions: vacuum, wait, dock, undock

- vacuum and wait actions deplete battery life



Linear temporal logic (LTL)

A simple propositional logic encoding time

pu=p || 1V | d1AD | D1 — ¢y |
Xo1| Go1 | For | o1 U ¢

where ¢1, ¢, are LTL statements; p a proposition from some set
M.

- X¢1: “in the next time step, ¢1”
- Gor: “In all present and future time steps, ¢;"
- F¢q: “in some present or future time step, ¢7”

- 01 U ¢y “¢q will be true until ¢, becomes true”



Advantages of specifications over reward functions

- Handle more temporally complex properties and
behaviors than (Markovian) reward functions

- Generalize to new MDPs and unseen states, if propositions
in.common

- Interpretable! (useful, e.g,, for Al ethics and safety)

(Arnold, Kasenberg, and Scheutz 2017)



Relating MDPs to LTL

- Augment the MDP with a set N of atomic propositions (e.g.

roomClean, batteryDead)
- L(s): which propositions true in state s ( valuation of s)
- LTL formulas are evaluated over an infinite sequence of

valuations o1, 07, - -

- We say that 7 E ¢ iff £(so), £(S1), - F ¢
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Deterministic Rabin Automata (DRASs)

- Each LTL statement ¢ has a corresponding Deterministic
Rabin Automaton D(¢)
- Afinite state machine over infinite sequences of valuations
- D(¢) accepts on input 1,05, iff 01,02, - E ¢

- Can construct a product MDP - the Cartesian product of
the original MDP and the DRA D(¢)
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Specification inference vs IRL

Specification inference

- Given a set of trajectories
7., 7™ where

7' =S¢, g, $1, A1,
T 7ST,'7 OT,'a ST,'—FI
- ... figure out which LTL
statement ¢ “best

explains” those
trajectories.

Inverse reinforcement learning

- Given a set of trajectories

', where

i
T =50, do, 51, A1,
T JST,‘7GT,'7ST,'+'|

- ... figure out which reward
function R “best explains”
those trajectories.
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“Best explains”

- We prefer specifications which are simpler
- e.g. GroomClean vs G((p V —=p) A =F=(=roomClean — 1))
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“Best explains”

- We prefer specifications which are simpler
- e.g. GroomClean vs G((p V —=p) A =F=(=roomClean — 1))
- We prefer specifications which “specifically describe” the
observed behaviors

- No trivial (GT) or contradictory (GL) specifications
< If 71 ... 7™ completely satisfy ¢ and ¢ is very hard to
satisfy without trying, then ¢ describes 7', --- . 7™ well
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As an optimization problem...

- A multi-objective optimization problem over the set of LTL
statements:

(;2{%(0!9/‘5 (¢),0b/(9))

where smaller values of Obj°® correspond to simplicity, and
smaller values of ObjX correspond to statements which
specifically describe the trajectories

14



Obj°: simplicity

- We (simply) say that a candidate statement is simpler if it
consists of fewer symbols than another statement:

Obj°(¢) = (¢)

where ¢(¢) is the length of ¢ in symbols

- (each connective, operator, and proposition counts as one
symbol)

- G((Xvacuum) U roomClean)) consists of 5 symbols

15



Specifically describing trajectories

- A candidate specification specifically describes an agent'’s
behavior if the observed behavior (in expectation)

deviates less from the specification than random behavior
does

- How to measure deviation from specification?

- Idea: allow agent to temporarily “suspend” the
specification, but pay a cost for doing so



Violation cost

For an infinite trajectory 7 = sg, dg, S1,aq,--- and N a set of
nonnegative integers, let 7\N be the sub-
sequence of 7 omitting the time steps indexed by elements of N

wait o wait o vacuun
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Violation cost

For an infinite trajectory T = sg, dg, S1,aq,--- and N a set of
nonnegative integers, let 7\N be the sub-
sequence of 7 omitting the time steps indexed by elements of N
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Violation cost

For an infinite trajectory 7 = sg, g, S1,aq,--- and N a set of
nonnegative integers, let 7\N be the sub-
sequence of 7 omitting the time steps indexed by elements of N

== N =
7_\{0,2} = Sip ds, S3,

We define the violation cost of an infinite trajectory = with
respect to an LTL statement ¢ to be the (discounted) number of
time steps that need to be omitted from 7 to make 7 satisfy ¢:



Computing expected violation cost for a policy

The total violation cost from a product state (s, g) under
product-space policy #® satisfies the following Bellman-like
equation:

Viol} => 7®(( a) ) T(s,a,s") min{1

acA s’'eS

+Violy” ((s', a)), Violg ((s,6(a, £(s))))}

where g is the state of the DRA D(¢), and § is the transition
function of D(¢).

We can thus use value iteration to compute this for all product
states (s, q)’.

TThere are a few caveats regarding initialization, etc. - see the paper for details.



Obj*: specifically describing trajectories

- We define our objective as

ObjX(¢) = Viol® (s&) — Viol5 ™ (s2)
where 799 is the random policy and s® is the initial
product state, and 7® is the observed product-space policy
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The observed product-space policy 7®

- For each finite trajectory 7 = sg, ag, $1,01, - -+ , ST, AT, ST41,
we can compute a corresponding product space trajectory
7® = (S0,q0), A0, (51, G1), @1, - -+ , (ST, 1), AT, ST4+1, GT41
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The observed product-space policy 7®

- For each finite trajectory 7 = sg, ag, $1,01, - -+ , ST, AT, ST41,
we can compute a corresponding product space trajectory
7® = (S0,q0), A0, (51, G1), @1, - -+ , (ST, 1), AT, ST4+1, GT41

- We can then compute a “product space action restriction”
A*((s,q)) C A(s) for every product state (s, q) by the
following rules:

- If some observed trajectory ® contains (s, g), then
A*((s,q)) is the set of all actions observed at (s, q) in any

trajectory
- If (s, q) is never observed in any trajectory, A*((s, q)) = A(s)
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The observed product-space policy 7®

- For each finite trajectory 7 = sg, ag, $1,01, - -+ , ST, AT, ST41,
we can compute a corresponding product space trajectory
7® = (S0,q0), A0, (51, G1), @1, - -+ , (ST, 1), AT, ST4+1, GT41

- We can then compute a “product space action restriction”
A*((s,q)) C A(s) for every product state (s, q) by the
following rules:

- If some observed trajectory ® contains (s, g), then
A*((s,q)) is the set of all actions observed at (s, q) in any

trajectory
- If (s, q) is never observed in any trajectory, A*((s, q)) = A(s)

- We define the observed product-space policy 7€ as the
random policy over A*
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Algorithm for Inferring LTL specifications

Given some set of trajectories 7', --- , 7™

For each candidate LTL specification ¢:
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Algorithm for Inferring LTL specifications

Given some set of trajectories 7', --- , 7™

For each candidate LTL specification ¢:

- Compute the DRA D(¢) and product MDP M®

- Compute the observed product-space policy 7®

- Compute the “violation cost” objective function by
0ob/X(¢) :== Violg® (s§) — Viol;%”d(sg?)

- Compute

Obj>(¢) = £(¢)
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Algorithm for Inferring LTL specifications

Given some set of trajectories 7', --- , 7™

For each candidate LTL specification ¢:

- Compute the DRA D(¢) and product MDP M®
- Compute the observed product-space policy 7®
- Compute the “violation cost” objective function by

iX c r® o oa®
Obj (¢) = V/Olg (56@) = \/Iold)rand(s(og)

- Compute

Obj>(¢) = £(¢)

Compute ming(0bj°(¢), 0bj*(¢))
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Multi-objective optimization

- Any multi-objective optimization algorithm will do, if it can
optimize over grammars (we used NSGA-II)

- Running any such algorithm will result in a set of
Pareto-efficient candidate specifications ¢1, - - - , ¢

More explanatory
but more complex

Obj*

\ Simpler but less explanatory

ObjX

22
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Evaluation: CleaningWorld

H

- Mess takes 5 vacuum actions to clean; initial battery life: 3
- Propositions: roomClean, batteryDead
- Proposition for each action: vacuum, wait, dock, undock
- Trajectories: robot continually vacuums, docking and
recharging only when necessary
- Cut off after 10 time steps, before room completely clean

- Ran specification inference 20 times

2%



Evaluation: CleaningWorld

Table 1: Pareto efficient solutions in action-based CleaningWorld

¢ | 0bj*(¢) | Obj*(¢) | # Runs
G(roomClean) -72.74240 2 20
G(F roomClean) -75.15686 3 20
G(vacuum Vv F roomClean) | -75.15832 5 3
G(F(roomClean Vv docR)) | -75.15782 5 3
G((F roomClean) v docR) | -75.15832 5 2
G((XroomClean) v vacuum) | -75.64639 5 2
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Contribution

An algorithm for inferring linear temporal logic (LTL)
specifications from agent behavior in Markov Decision
Processes.
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Future work

- Efficiency/scalability

- Unknown transition dynamics, POMDPs, multi-agent
domains

- Active learning
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