
Norm Conflict Resolution in Stochastic
Domains

Daniel Kasenberg Matthias Scheutz
February 6, 2018

Human-Robot Interaction Laboratory (HRILab)
Tufts University

Introduction

• Artificial agents will need to be aware of human moral and
social norms...

• ...and use them in decision-making
• Complication: norms may conflict

1

VacuumWorld

2

VacuumWorld: Norm Conflict

3

Logic- and reward-based systems

• Logic-based approaches to normative reasoning
• Often use deontic logic for sophisticated normative
reasoning

• Inconsistent principles→ normative explosion (e.g.,
everything obligated)

• Usually not well-suited to stochastic environments

• Reward-based approaches to normative behavior
• Encode norms implicitly, using reward functions
• Difficult to interpret, explain, generalize to new domains

4

Our contribution

• A hybrid approach, employing ideas from logic- and
reward-based approaches

• Represent norms in linear temporal logic (LTL)
• Agents in Markov Decision Process
• Deal with conflicts by minimizing a notion of ‘violation
cost’

5

Linear temporal logic (LTL)

A propositional logic encoding time

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 |
Xϕ1 | Gϕ1 | Fϕ1 | ϕ1 U ϕ2

where ϕ1, ϕ2 are LTL statements; p a proposition from some set
Π.

• Xϕ1: “in the next time step, ϕ1”
• Gϕ1: “in all present and future time steps, ϕ1”
• Fϕ1: “in some present or future time step, ϕ1”
• ϕ1 U ϕ2: “ϕ1 will be true until ϕ2 becomes true”

GroomClean,G¬robotDamaged,G¬humanInjured

6

Relating MDPs to LTL

s0, a0, s1, a1, s2, a2, s3,τ =
⇓ ⇓ ⇓ ⇓

¬roomClean ¬roomClean ¬roomClean roomClean

¬batteryDead ¬batteryDead ¬batteryDead ¬batteryDead

wait wait vacuum · · ·

• Augment the MDP with a set Π of atomic propositions (e.g.
roomClean, batteryDead)

• L(s): which propositions true in state s (valuation of s)
• LTL formulas are evaluated over an infinite sequence of
valuations σ1, σ2, · · · ; that is, σ1, σ2, · · · ⊨ ϕ

• We say that τ ⊨ ϕ iff L(s0),L(s1), · · · ⊨ ϕ
7

Deterministic Rabin Automata (DRAs)

• Each LTL statement ϕ has a corresponding Deterministic
Rabin Automaton D(ϕ)

• A finite state machine over infinite words
• Accepts if and only if the LTL statement is satisfied

• Contains all information about agent’s history relevant to
the statement ϕ

GroomClean

roomClean ⊤

¬roomClean

8

Product MDP

• Can construct a product MDP where each “product state”
corresponds to a state of the original MDP, plus a DRA
state

• The optimal course of action is stationary in the product
space

• i.e. depends only on the agent’s current product state. ,roomClean ⊤

¬roomClean


9

LTL Planning (Ding et al. 2011)

• Goal: Maximize the probability of specifying a given LTL
statement ϕ

• Compute the product MDPM× from the Deterministic
Rabin Automaton D(ϕ)

• Determine a set of “good states” from which the agent is
guaranteed to satisfy the LTL statement by following a
certain policy

• Now a reachability problem: maximize the probability of
reaching a set of good states in the product MDP

• Can be solved by linear programming

• Result: optimal policy, stationary in the product space
(but generally not in original MDP)

10

Planning and norm conflicts

• Goal: Satisfy a set of LTL statements ϕ1, · · · , ϕn “as well as
possible”.

• Could use the method of (Ding et al. 2011) with
n∧
i=1

ϕi

• But probability of satisfying all norms might be zero
• We say that a norm conflict has occurred when the
probability of an agent satisfying all of its norms
ϕ1, · · · , ϕn is zero

• Max probability algorithms don’t help decision making in
norm conflicts

11

Violation cost

• To resolve norm conflicts, define some notion of ‘badness’
of norm violations and minimize it

• Idea: allow agent to temporarily “suspend” a norm (for a
time step), but pay a cost for doing so

• Give each norm a weight w
• Agent’s goal is to minimize the expected weighted sum of
costs

12

Conflict resolution DRA

• Can measure violation cost for a norm by adding
self-loops in the DRA (we call the modified DRA a conflict
resolution DRA)

• The agent takes the self-loop instead of entering ‘bad’
DRA states, but incurs a cost

GroomClean

roomClean ⊤

¬roomClean

13

Minimizing expected violation cost

• At each time step, after seeing a new state s′, decide
which norms should be suspended.

• Let ãi = 1 iff ϕi is suspended
• The DRA for ϕi will transition from state qi to state

q′i =

qi if ãi = 1
δi(qi,L(s′)) otherwise

where δi is the transition function of D(ϕi)
• The optimal total violation cost from a product state
(s,q1, · · · ,qn) satisfies the following equation:

ViolN ((s,q1, · · · ,qn)) = min
a∈A

∑
s′∈S

T(s,a, s′) min
ã∈{0,1}n

n∑
i=1

(
wiãi

+ γViolN ((s′,q′1, · · · ,q′n))
)

14

Minimizing expected violation cost

We can use value iteration to compute the optimal expected
violation cost starting from each state:

Viol(k+1)N ((s,q1, · · · ,qn))← min
a∈A

∑
s′∈S

T(s,a, s′)minã∈{0,1}n
n∑
i=1

(
wiãi

+ γViol(k)N ((s′,q′1, · · · ,q′n))
)

• To find the best action(s) from (s,q1, · · · ,qn): take the
argmina∈A

• This gives a product-space policy π∗ : S⊗ → A

15

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration
• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t)

16

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration
• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t)

16

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration
• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t)

16

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration

• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t)

16

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration
• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t)

16

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration
• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t)

16

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration
• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t)

16

Norm conflict resolution algorithm

Given norm system N = {(w1, ϕ1), · · · , (wn, ϕn)}, MDP
M = ⟨S,A, T,R, s0, γ⟩:

Before acting (t = 0):

• Compute conflict resolution DRAs D(ϕi) and product MDP
M⊗

• Graph-theoretic stuff (ensure agent stays in good DRA
states)

• Compute ViolN using value iteration
• Use ViolN to determine optimal product-space policy π∗

At every time step t, after seeing state st:

• Use history to figure out current product state
s⊗t = (st,q1, · · · ,qn)

• Pick action at = π∗(s⊗t) 16

Evaluation: VacuumWorld

• Scenario 1: Business as usual
• Norm system:

{(1.0,GroomClean)}

Robot cleaned up messes as quickly as possible (stopping to
recharge when necessary)

17

Evaluation: VacuumWorld

• Scenario 2: Broken glass
• Norm system:

{(1.0,GroomClean), (20.0,G¬robotDamaged),
(400.0,G¬humanInjured)}

Robot cleaned up glass despite the risk of damage; otherwise
as in Scenario 1

18

Evaluation: VacuumWorld

• Scenario 3: Interrupting phone calls
• Norm system:

{(1.0,GroomClean), (20.0,G¬robotDamaged),
(400.0,G¬humanInjured),
(5.0,G((¬XrobotSpeak) U (¬humanTalking)))}

Robot interrupted phone call (safety > politeness); otherwise
as in Scenario 1

19

Discussion/Future Work

• More sophisticated preference models (e.g., CP-nets)
• Alternatives to discounting violation cost
• More sophisticated logics (e.g., LDL - see Brafman,
Di Giacomo, and Patrizi 2018; also deontic modality)

• Improving time/space complexity
• Unknown dynamics, POMDPs, multi-agent settings
• Learning norms from natural language (Dzifcak et al. 2009)
and from agent behavior (Kasenberg and Scheutz 2017)

• Inverse norm conflict resolution (Kasenberg and Scheutz
2018)

20

Acknowledgments

• Funding agencies
• ONR MURI grant N00014-16-1-2278
• NSF IIS grant 1723963

21

References

Brafman, Ronen, Giuseppe Di Giacomo, and Fabio Patrizi (2018). “LTLf and
LDLf Non-Markovian Rewards”. In: Proceddings of the 32nd AAAI
Conference on Artificial Intelligence.

Ding, Xu Chu et al. (2011). “MDP optimal control under temporal logic
constraints”. In: Proceedings of the IEEE Conference on Decision and
Control, pp. 532–538. issn: 01912216. doi: 10.1109/CDC.2011.6161122.
arXiv: 1103.4342.

Dzifcak, Juraj et al. (2009). “What to do and how to do it: Translating natural
language directives into temporal and dynamic logic representation for
goal management and action execution”. In: Proceedings - IEEE
International Conference on Robotics and Automation, pp. 4163–4168. issn:
10504729. doi: 10.1109/ROBOT.2009.5152776.

Kasenberg, Daniel and Matthias Scheutz (2017). “Interpretable Apprenticeship
Learning with Temporal Logic Specifications”. In: Proceedings of the 56th
IEEE Conference on Decision and Control (CDC 2017).

– (2018). “Inverse Norm Conflict Resolution”. In: Proceedings of the 1st
AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society.

22

https://doi.org/10.1109/CDC.2011.6161122
http://arxiv.org/abs/1103.4342
https://doi.org/10.1109/ROBOT.2009.5152776

