
Norm Conflict Resolution in Stochastic Domains

Daniel Kasenberg and Matthias Scheutz
Human-Robot Interaction Laboratory
Tufts University, Medford, MA, USA

Abstract

Artificial agents will need to be aware of human moral and
social norms, and able to use them in decision-making. In
particular, artificial agents will need a principled approach to
managing conflicting norms, which are common in human
social interactions. Existing logic-based approaches suffer
from normative explosion and are typically designed for de-
terministic environments; reward-based approaches lack prin-
cipled ways of determining which normative alternatives ex-
ist in a given environment. We propose a hybrid approach, us-
ing Linear Temporal Logic (LTL) representations in Markov
Decision Processes (MDPs), that manages norm conflicts in a
systematic manner while accommodating domain stochastic-
ity. We provide a proof-of-concept implementation in a sim-
ulated vacuum cleaning domain.

Introduction
Human culture is based on social and moral norms, which
guide both individual behaviors and social interactions.
Hence, artificial agents embedded in human social domains
will not only have to be aware of human norms, but also able
to use them for decision-making, action selection, and ulti-
mately natural language justifications of their choices and
behaviors.

Endowing artificial agents with mechanisms for norma-
tive processing is, however, a challenging endeavor, for sev-
eral reasons: (1) we currently do not yet have sufficient
knowledge about how humans represent and process norms;
(2) the human norm network is large and complex, contain-
ing many types of context-dependent moral and social norms
at different levels of abstraction; and, most importantly, (3)
the norm network is not a consistent set of principles that can
be easily formalized and reasoned with. In fact, normative
conflicts are more the “norm” than the exception in every-
day life; handling them in ways that are socially acceptable
requires an understanding both of why certain norms are ap-
plicable and of why violating some of them in the case of
norm conflicts was the right thing to do.

Recent work in AI and multi-agent systems has focused
either on logic-based approaches to normative reasoning
or reward-based learning approaches to normative behav-
ior. Yet neither approach is particularly well-suited for deal-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing with the intrinsic norm conflicts in human social inter-
actions. Logic-based approaches have to avoid normative
explosion, i.e., the logical implication that anything is ob-
ligated resulting from a deontic contraction (Goble 2009).
Moreover, purely logic-based approaches typically deal with
deterministic environments and do not take into account the
uncertainty involved in real-world perception and action.
Reward-based approaches, on the other hand, have no way
of telling what normative alternatives exist in a given sit-
uation, since their action policies do not explicitly repre-
sent normative principles. What is needed is an approach
for handling norm conflicts that combines the advantages
of explicit logic-based norm representations for reasoning
with and communicating about norms with the advantages
of stochastic action models underwriting Markov decision
processes (MDPs) which are well-suited for real-world ac-
tion execution.

In this paper, we propose a hybrid model that is specif-
ically developed to deal with norm conflicts in a system-
atic manner while drawing on the advantages of both logic-
based norm representations and policy-based action repre-
sentations. We start by discussing the functional require-
ments for norm processing in artificial agents and briefly
argue why previous approaches are insufficient for handling
norm conflicts in real-world domains. We then introduce our
technical approach to dealing with norm conflicts, which
combines explicit norm representations in Linear Temporal
Logic (LTL) with MDPs in ways that allow the agent to sus-
pend the smallest set of applicable norms weighted by their
priority in a given context for the shortest possible time in
order to be able to obey the remaining norms. A proof-of-
concept implementation of the proposed algorithms in a sim-
ulated vacuum cleaning domain demonstrates the capability
and viability of the approach. We then assess the strengths
and weaknesses of our solution in the discussion section,
and propose ways for addressing the shortcomings in future
work. Finally, we conclude with a summary of our accom-
plishments and reiterate why they are an important contribu-
tion to current discussion of ethical AI.

Motivation and Background
As artificial agents are increasingly being considered for
roles that require complex social and moral decision-making
skills, they will need to be able to represent and use moral



and social norms. Specifically, such norm representations
should be (1) context-dependent (since not all norms apply
in all contexts, (2) communicable (as justifying behavior in
response to blame requires explicit references to norms), and
(3) learnable, potentially in one-shot from natural language
instructions (as it seems infeasible to equip agents with all
relevant norms a priori in any non-trivial human domain).
A direct corollary of this requirement is that norm repre-
sentations need to be explicit and accessible to introspection
so as to be communicable in natural language. Moreover,
norm representations need to be rich enough to cover typi-
cal human norms. Most importantly, inference systems using
norms need to be able to deal with norm conflicts without be-
coming vacuous, as human norms are not always consistent
and often lead to contexts with conflicting norms.

We say a “norm conflict” occurs between two actions or
states φ and ψ when φ is obligated, ψ is obligated, but φ and
ψ are not possible together (Goble 2009):

Conflict(φ, ψ) :↔ O φ ∧O ψ ∧ ¬♦(φ ∧ ψ)

Artificial agents need to be able to express and deal with
such norm conflicts without such inconsistencies spreading
to other parts of their inference system. In deontic logic,
the problem is that very basic principles may lead to nor-
mative and possible even logical inconsistencies (e.g., see
the various formal arguments based on distribution princi-
ples (Goble 2009)). In particular, norm conflicts immedi-
ately cause “normative explosion”, i.e., that everything is ob-
ligated:Conflict(φ, ψ)→ O γ. Hence, we need two differ-
ent mechanisms in order to be able to perform viable infer-
ence in the light of norm conflicts: (1) a mechanism to detect
normative inconsistencies and block them from spreading to
other parts of the inference system, and (2) a mechanism for
adjudicating or arbitrating what to do in contexts of conflict-
ing norms.

While there are various formal ways to block explosion,
they all come at the expense of sacrificing or weakening ba-
sic deontic principles that were otherwise considered self-
evident and thus part of standard deontic logic (e.g., the Kan-
tian “ought implies can” (Scheutz and Malle 2014)). One
way to avoid the syntactic inferential challenges is to switch
to semantics instead and generate for each context (“deontic
world”) the set of obligations as well as the set of “obeyable
norms”, where the set of “obeyable norms” is a subset of the
set of obligations in the given context. In other words, rather
than prescribe valid logical principles that ought to hold in
all deontic models, we will construct deontic models implic-
itly by determining the best the agent can do for a given set
of norms in a given context. Valid inference principles are
then a consequence of this construction. This approach of
constructing maximal deontic worlds will also allow us to
deal with the second requirement from above, namely how
to decide what to do in cases of norm conflicts, i.e., which
norms to obey and which to ignore. Assuming a preference
ordering among norms where O φ < O ψ means that obli-
gation ψ is preferred to or stronger than obligation φ, we
can add a principle for such preferences in conjunction with
conflicts that will block explosion:

Conflict(φ, ψ) ∧O φ < O ψ → P ¬φ

.
However, this principle does not solve cases where multi-

ple norms have the same priority or are not comparable ac-
cording to the preference ordering <. In that case, it might
make sense to associate a (real-numbered) weight w with
each norm which reflects the extent to which this particular
norm matters relative to the other norms in its equivalence
class w.r.t. <. Together, these two principles will allow the
agent to select the largest consistent subset with the greatest
sum of all norm weights from the subset of equally preferred
norms with the highest priority in the set of all obligated
norms to obtain the set of obeyable norms.

To be applicable in artificial agents operating in the real
world, we will need to embed the above principles within the
framework of Markov Decision Processes (MDPs). In par-
ticular we will consider the labeled Markov Decision Pro-
cess, a regular Markov Decision Process augmented with
atomic propositions.

A Markov Decision Process is a tuple
M = 〈S,U,A, T, s0〉

where
• S is a finite set of states;
• U is a finite set of actions, with A : S → 2U mapping

each state s ∈ S to the set of actions available to the agent
at s;

• T : S ×U ×S → [0, 1] is the transition function, satisfy-
ing, for all s ∈ S and a ∈ A(s),

∑
s′∈S T (s, a, s′) = 1;

and
• s0 ∈ S is an initial state.

MDPs usually include a reward functionR : S×A×S →
R; this is not necessary for our purposes.

A labeled MDP is an MDP augmented with a set of
atomic propositions Π, and a labeling function L : S → 2Π.
The labeling function indicates which atomic propositions
are true in which states. When we refer hereafter to MDPs,
we are referring to labeled MDPs.

Policies indicate an agent’s next action, given its history.
A stationary policy π is a probability distribution over ac-
tions given the agent’s current state; that is, π : S × U →
[0, 1] such that

∑
a∈A(s) π(s, a) = 1 for all s ∈ S with

π(s, a) = 0 if a /∈ A(s). A stationary deterministic pol-
icy π maps each state onto a single action, e.g. π(s) = a
for some a ∈ A(s). A general deterministic policy M on
M depends on the agent’s entire state-action history, e.g.
M(s0, a0, · · · , at−1, st) = a for some a ∈ A(s).

When can build on recent work using Linear Tempo-
ral Logic (LTL) (Pnueli 1977) – a propositional logic aug-
mented by temporal operators Xφ (“φ at the next time step”),
Fφ (“φ at some future time step”), Gφ (“φ at all future time
steps”) and φ1 U φ2 (“φ1 until φ2”) – which has used
LTL to define temporal objectives and safety requirements
for autonomous agents (Ding et al. 2011b) and adapt this
work in two novel ways: (1) to represent norms in a context-
dependent fashion as LTL formulas, and (2) to handle norm
conflicts in the way described above. The result will be a
policy that, with maximal probability, obeys as many (im-
portant) norms as possible for as long as possible.



MDPs with LTL Specifications
In this section we explain (labeled) MDPs, LTL, and we de-
scribe the approach introduced in (Ding et al. 2011a) for
planning to satisfy LTL formulas in MDPs with maximal
probability. The proposed algorithm builds on this approach.

An arbitrary LTL formula φ over atomic propositions
Π is evaluated over an infinite sequence of “valuations”
σ0, σ1, · · · where σi ∈ 2Π for all i. Each σi indicates the
set of atomic propositions that are true at time step i.

By using one of several algorithms, e.g. (Esparza and
Ketı́nský 2014), every LTL formula φ over propositional
atoms Π yields a corresponding Deterministic Rabin Au-
tomaton (DRA)D. A DRA is a finite automaton over infinite
strings, where acceptance depends on which states are vis-
ited infinitely versus finitely often over the run of the DRA.
In this case, the alphabet of this finite automaton will be
Σ = 2Π, so that a word is an infinite sequence of valuations;
the accepting runs are precisely those infinite sequences of
valuations which satisfy φ.

More formally, a DRA is a tuple

D = 〈Q,Σ, δ, q0, F 〉

where
• Q is a finite set of states;
• Σ is an alphabet (here Σ = 2Π);
• δ : Q× Σ→ Q is a (deterministic) transition function;
• q0 ∈ Q is an initial state; and
• F = {(Fin1, Inf1), · · · , (Finm, Infm)} for some integer
m, where Fini, Infi are subsets of Q.
A run of a DRA is an infinite sequence of automaton

states rD = q0, q1, · · · such that for all i, qi+1 = δ(qi, σ)
for some σ ∈ Σ. A run is said to be accepting if there ex-
ists some pair (Fini, Infi) ∈ F such that each state in Fini
is visited finitely many times in rD and the total number of
times states in Infi that are visited in rD is infinite.

A path rM under a policy M is a sequence of states
s0, s1, · · · such that T (si,M(s0, · · · , si), si+1) > 0 for all
i. For any LTL formula over Π, an MDP path r = s0, s1, · · ·
induces a word L(r) = σ0, σ1, · · · , where σi = L(si) for
all i.

Because in general φmay be temporally complex, the pol-
icy that maximizes the probability of obeying φ will likely
induce a non-stationary policy in M. In order to compute
this non-stationary policy, we must augment the underlying
MDPM with relevant information. This information can be
easily obtained by running the DRA D alongsideM.

Formally, we define the product MDP between a
labeled MDP M = 〈S,U,A, T, s0,Π,L〉 and a
DRA D = 〈Q,Σ, δ, q0, F 〉 as an MDP M× =
〈S×, U×, A×, T×, s×0 ,Π×,L×〉 such that
• S× = S ×Q;
• U× = U ; A×((s, q)) = A(s);
• T×((s, q), a, (s′, q′)) ={

T (s, a, s′) if δ(q,L(s′)) = q′

0 otherwise

• s×0 = (s0, δ(q0,L(s0)))

• Π× = Π;L× = L
A path s×0 , s

×
1 , · · · inM× is said to be accepting if the un-

derlying DRA run q0, q1, · · · is accepting.
An end component E of the product MDPM× is a tuple

〈SE , AE〉 where SE ⊆ S× and AE : SE → 2U
×

with ∅ 6=
AE((s, q)) ⊆ A×((s, q)) for all (s, q) ∈ SE , such that if an
agent follows only actions inAE , any state in SE is reachable
from any other state in SE , and no other states are reachable.
An end component is maximal if it is not a proper subset of
any other end component.

The end component of an MDP effectively represents a
possible constraint on the state space as time approaches in-
finity; if the agent is in the end component state space SE and
restricts its actions to those in AE , assigning nonzero proba-
bility to each action from each state, the agent is guaranteed
to reach all states in SE infinitely often, and is guaranteed to
never reach any states outside of SE .

An end component SE is thus considered accepting if, for
some pair (Fin, Inf) ∈ F , q /∈ Fin for every state (s, q) ∈
SE , and q ∈ Inf for some (s, q) ∈ SE . We can determine
the accepting maximal end components (AMECs) using the
algorithm in (Baier and Katoen 2008).

The maximal probability of satisfying an arbitrary LTL
formula φ in an MDPM is then the probability of reaching
any state in an AMEC of the corresponding product MDP
M×, since upon entering the AMEC the agent may guaran-
tee that no states in Fin will be reached again (so all states
in Fin are reached only finitely often) and that some state in
Inf will be reached infinitely often, and thus that the φ will
be satisfied.

The maximum probability of reaching some Sgood ⊆ S×

can be calculated as the solution to a linear program, as in
(Ding et al. 2011a). If the AMECs onM× are SE1 , · · · , SEp ,

then we take Sgood =
p⋃
i=1

SEi . This may be used to compute

an action restriction A∗ : S× → 2U
×

such that by following
only those actions prescribed in A∗ (with nonzero probabil-
ity for each action), the agent will maximize the probability
of satisfying the formula φ. This can be translated back to
the original MDPM by using the state history s0, · · · , st at
each time step t to keep track of the “current” Rabin state q̂t
such that q̂i = δ(q̂i−1,L(si)) and q̂0 = δ(q0,L(s0)), and
then choosing some policy over A∗((st, q̂t)) (again, with
nonzero probability for each action).

Thus by constructing a product MDPM×, computing the
AMECs for this MDP, and solving a linear program, we may
obtain both the maximum probability of achieving φ and a
set of policies (as specified by the action restriction A∗) that
maximize this probability.

Resolving Norm Conflicts
To illustrate our formal approach to norm conflict resolu-
tion, we will use a vacuum cleaning robot as an example
of a simple autonomous agent embedded in human social
settings. The robot has a limited battery life, as well as a
limited capacity to sustain damage (”health”). Battery life



may be replenished by docking at a docker in one of the
rooms; once depleted, health may not be replenished. The
robot is responsible for cleaning the floors of one or more
rooms while a ”human” moves randomly between rooms,
and makes a mess in their current room with a certain prob-
ability. The robot may clean up messes by vacuuming them;
each mess has a dirtiness which determines how many time
steps of vacuuming are required to fully clean it up. Messes
may also be more or less damaging to the robot, in that they
deplete the robot’s health if the robot attempts to vacuum
them. Finally, messes may be harmful to humans, in that en-
tering the room containing a harmful mess may injure the
human.

The actions available to the robot are as follows:
• vacuum(m), which remove 1 unit of dirtiness from a mess
m but depletes 2 units of battery life.

• dock, which causes the robot to become docked. A docked
robot can do nothing but wait and undock, but being
docked is necessary in order to replenish battery life.

• undock, which causes the robot to become undocked.
• wait, which increases battery life by 3 units if the robot is

docked, but depletes 1 unit of battery life otherwise.
• Movement in directions north, south, west, and east.
• beDead, which does nothing. This action is the only ac-

tion available when the robot’s battery or health are com-
pletely depleted; otherwise, it is unavailable.

• warn(h,m) which warns the human h about the messm.
This allows h to step into the room containing m without
being injured. This action is only available when the robot
is in the same room as h.
We can imagine different norms (together with their LTL

expressions) for this domain:
N1 Ensure that all rooms are clean: G roomsClean

N2 Do not be damaged: G ¬robotDamaged
N3 Do not injure humans (or allow them to be injured):
∀x.G human(x)→ ¬injured(x)

N4 Don’t talk to humans while they are speaking:
∀h.G (human(h)→ (¬talk(r) U ¬talking(h)))

N1 is a duty, N2 a safety norm, N3 is a moral norm, and N4
is a social norm. Note that we do not represent obligations
explicitly through deontic operators, but each norm is im-
plicitly taken to be obligatory. Then, by assigning weights
to each norm, we can impose a preference ordering that can
be used to arbitrate among the obligations in cases of norm
conflicts. Specifically, we define a norm N as a tuple 〈w, φ〉
where w > 0 is a positive real weight (representing the im-
portance of the norm) and φ is an LTL formula. In this case,
we assign the weight of N1 to be 1, the weight of N2 to be
200, the weight of N3 to be 40000, and the weight of N4 to
be 5.

Given a set of norms, we can compute a policy maximiz-

ing the probability of achieving Φ =
n∧
i=1

φi as described in

the previous section. Unfortunately, the maximum probabil-
ity of obeying Φ may be zero if it is impossible for an agent

to obey all its norms, in which case the previously described
method is incapable of distinguishing one policy from an-
other, since all policies maximize the probability of satisfy-
ing Φ (which probability is zero).

The Conflict Resolution DRA
Our approach is to allow the agent to temporarily sus-
pend/ignore norms, but to incur a cost each time this occurs.
In particular, the agent’s action space will be augmented so
that at each time step the agent performs, in addition to its
regular action, a “norm action” ãN ∈ {keep, susp} for each
norm N that represents whether N is maintained (keep) or
suspended (susp).

Each time that the agent chooses to suspend a norm, that
norm’s DRA maintains its current state rather than transi-
tioning as usual. Suspending a norm, however, causes the
agent to incur a cost proportional to the norm’s weight w.
In order to enable these actions, we augment D with addi-
tional transitions and a weight function over transitions. We
will call this modified (weighted) DRA the conflict resolu-
tion DRA (CRDRA); its formal definition follows.

Given a norm N = 〈w, φ〉 with corresponding DRA D =
〈Q,Σ, δ, q0, F 〉 and a discount factor γ ∈ [0, 1), the conflict
resolution DRA C is a weighted DRA given by the tuple

C = 〈QC ,ΣC , δC , qC0 , F C ,W C〉

where:

• QC = Q

• ΣC = Σ× {keep, susp}

• δC(q, (σ, ãN )) =

{
δ(q, σ) if ãN = keep

q if ãN = susp

• qC0 = q0, F
C = F

• For all σ ∈ Σ,

W C(q, (σ, ãN )) =

{
0 if ãN = keep

w if ãN = susp

We define the violation cost of an infinite sequence of
transitions τC = (qC0 , (σ0, ã

G
0 )), (qC1 , (σ1, ã

G
1 )), · · · of the

CRDRA C as

V iol(τC , C) =

∞∑
t=0

γtW C(qCt , (σt, ã
G
t ))

Note that an infinite sequence of transitions τC of the CR-
DRA C corresponds to a run of the underlying DRAD if and
only if V iol(τC , C) = 0.

Planning with Conflicting Norms
Given a labeled MDP M = 〈S,U,A, T, s0,Π,L〉
and the CRDRAs Ci = 〈QCi ,ΣCi , δCi , qCi0 , F

Ci ,W Ci〉
corresponding to norms Ni = 〈wi, φi〉 for i ∈
{1, · · · , n}, we may construct a product MDP M⊗ =
〈S⊗, U⊗, A⊗, T⊗, s⊗−1,Π

⊗,L⊗〉 as follows:

• S⊗ = (S ∪ {s−1})×QC1 × · · · ×QCn



• U⊗ = (U ∪ {a−1})× Ũn, where Ũ = {keep, susp}

• A⊗((s, qC1 , · · · , qCn)) =

{
{a−1} × Ũn if s = s−1

A(s)× Ũn otherwise

• T⊗(s, qC1 , · · · , qCn), (a, ãG1 , · · · , ãGn),
(s′, q′C1 , · · · , q′Cn)) =

T (s, a, s′) if ∀i, δCi(qCi , (L(s′), ãGi)) = q′Ci

and s 6= s−1

1 if s = s−1, s
′ = s0, and

∀i, δCi(qCi , (L(s′), ãGi)) = q′Ci

0 otherwise

• s⊗−1 = (s−1, q
C0 , · · · , qCn0 )

• Π⊗ = Π,L⊗ = L
We add the dummy initial state s⊗−1 and action a−1 to

allow the agent to determine whether to “skip” the initial
state.

This MDP induces a weight function W⊗ (where the
weight of a transition inM⊗ is equal to the weight of the un-
derlying CRDRA transition). An infinite sequence of state-
action pairs τ⊗ = (s⊗−1, a

⊗
−1), (s⊗0 , a

⊗
0 ), · · · has the viola-

tion cost

V iol⊗(τ⊗,M⊗) =

∞∑
t=0

γtW⊗(s⊗t−1, a
⊗
t−1, s

⊗
t )

We wish to find a policy which maximizes the probability
of satisfying the norm set with minimal violation cost. We
first compute the CRDRA for each norm within the norm set.
We use these to construct the product MDPM⊗. We com-
pute the AMECs E1 = 〈SE1 , AE1〉, · · · , Ep = 〈SEp , AEp〉 of
this MDP.

Considering each AMEC of the product MDP M⊗ as a
smaller MDP (with transition function of T⊗ restricted to
the state-action pairs in the AMEC, and with arbitrary initial
state), and treating the transition weight function W⊗ as a
cost function, we use value iteration (VI) (Bellman 1957)
to compute, for each state s ∈ SEj the minimal expected
violation cost V iol∗Ej (s) for an infinite path beginning at s
remaining within Ej .

The computed violation cost V iol∗Ej induces an optimal
action restriction A∗Ej for each AMEC Ej (namely, all ac-
tions that achieve the minimal expected violation cost). Un-
fortunately, if we restrict the agent’s actions to A∗Ej while
in SEj , this may cause the CRDRA run to no longer be ac-
cepting (since the path of minimal violation cost may omit
at least one state that must be visited infinitely often). To
ensure that the CRDRA run is accepting, we employ an
epsilon-greedy policy which chooses an optimal action from
A∗Ej with probability 1− ε and otherwise chooses a random
action from AEj (this ensures that there is a nonzero proba-
bility of performing all actions inAEj and thus that all states
in SEj will be visited infinitely often, although it may per-
form suboptimally in violation cost with probability no more
than ε).

In practice, better performance results from restricting the
action space on SEj toA∗Ej , and then computing the AMECs

of the resulting MDP (if any exist). The action restrictions
associated with these “meta-AMECs” are stricter than those
originally computed in A∗Ei , and are safe to use on all states
within these meta-AMECs. This technique is sufficient to
eliminate the aforementioned problem in every test domain
we have encountered (including the vacuum cleaning sce-
narios described in this paper).

To determine the minimal achievable violation cost for in-
finite paths beginning from all other states inM⊗ (as well
as to improve upon the cost, if possible, for paths begin-
ning with states in AMECs), we again employ value iter-
ation. This time, instead of arbitrarily initializing the state
values, we initialize the values for states s within AMECs
to the minimal AMEC violation cost minj:s∈SEj V iol

∗
Ej (s),

and initialize the values of all other states in S⊗ to the max-
imum violation cost

n∑
i=1

wi

1−γ . The value function is not up-

dated for any states from which the AMECs are not reach-
able (this ensures that the agent avoids actions that do not
lead to AMECs); call the set of such states noUpdate .

Upon computing the optimal action restriction for each
state s, and the corresponding violation cost V iol∗(s), the
agent amalgamates its policies. This is done by (a) choosing
an action according to πAMEC if s is in some AMEC, and
(b) choosing some action from A∗ otherwise. Note here that
because the algorithm mainly computes an action restriction,
another algorithm for achieving goals or maximizing reward
can be integrated with it, although satisfying the temporal
logic norms is prioritized.

The preceding algorithm runs before the agent performs
any actions (at t = 0); it need only be done once. At each
time step t, the agent “reinterprets” its state-action history
(inM) (s0, a0), · · · , (st−1, at−1), st to determine its “best
possible state” s⊗t in the product MDPM⊗. The agent is es-
sentially re-deciding its past norm actions ãNi for each norm
and each preceding time step, in light of its most recent tran-
sition. We use dynamic programming to minimize the work
that must be done at each time step. The agent computes the
set Rt of product MDP states ŝ⊗t consistent with its history
inM. Each candidate state has an associated cost Ct(ŝ⊗t ),
the minimal cost for a sequence of norm actions that would
cause the agent to be in ŝ⊗t at time t given its history inM.
The agent determines its current product-space state s⊗t by

argmin
ŝ⊗t ∈Rt\noUpdate

Ct(ŝ
⊗
t ) + γt+1V iol∗(ŝ⊗t )

, ignoring states from which the AMECs are unreachable,
and then picks a product-MDP action a⊗t according to the
already-computed policy on the product space π⊗, from
which the next action at inM is obtained.

Proof-of-concept Evaluation
We implemented the proposed approach in BURLAP (Mac-
Glashan 2016), a Java library for MDP planning and rein-
forcement learning (RL). We used Rabinizer 3 (Esparza and
Ketı́nský 2014) for conversion from LTL formulas to DRAs.

We tested the algorithms in four different scenarios in the
vacuum cleaning example which use one, two, three, or all



four norms (N1-N4).
Each scenario includes two rooms: Room 1 and Room 2.

Room 2 is to the east of Room 1. The robot begins in Room
1, undocked and with full battery (10 units in Scenarios 1 to
3; 5 units in Scenario 4) and health (10 units in all scenarios).
In each scenario, the robot has 10 units of health (the robot’s
battery capacity varies between scenarios). The human be-
gins in Room 2. The probability of the human transitioning
between rooms at each time step is 0.125. The human cre-
ates messes in their current room with probability 0.2 in each
time step (except in Scenario 4, in which the human does
not create new messes). All messes created by the human
are harmless and do not damage the robot, and initially have
2 units of dirtiness. In each case, we set the discount factor
γ = 0.99.

Scenario 1: Business As Usual
This scenario demonstrates the robot’s ability to optimally
fulfill its duty in the absence of other norms. The robot has
the single norm N1 (”always ensure all rooms are clean”).
This norm is impossible to fully satisfy, since (1) the human
will continue to make messes, so that it is certain that the
rooms will not always be clean; and (2) because the robot
has limited battery life, it must either dock occasionally or
completely deplete its battery and forever be unable to vac-
uum. Using the proposed approach, the robot determines
that occasionally suspending N1 allows it to avoid having
to permanently suspend N1. As a result, the robot moves
between rooms and vacuums for as long as possible before
docking and replenishing its battery.

Scenario 2: The Puddle
In this scenario, the robot encounters a puddle of water in
Room 1 (original dirtiness of 3 units) which, while harmless
to humans, may be damaging to the robot (depleting health
by 2 units per time step) if the robot attempts to vacuum it.
In the absence of action by the robot, the puddle gradually
evaporates, reducing its dirtiness by 1 unit each time step
until it disappears completely. The robot has norms N1 and
N2.

The robot determines that it is justifiable to temporarily
suspend its cleaning duty N1, incurring a violation cost of
2.9701∗1 = 2.9701 (by waiting for the puddle to evaporate)
in order to avoid the much higher violation cost 200 ∗ 1 =
200 of violating the safety norm N2. If the human makes
messes in Room 2 while the puddle is evaporating, the robot
moves to Room 2 and vacuums these messes while waiting
for the puddle to evaporate.

Scenario 3: Broken Glass
In this scenario, the robot encounters broken glass (initial
dirtiness: 1 unit) on the floor of Room 1, which is both dam-
aging to the robot vacuuming it, and injures the human each
time they enter Room 1. The glass (unlike the puddle of wa-
ter) does not dissipate on its own. We suppose for the pur-
poses of this scenario that the robot is unable to warn the
human about the mess. The robot has norms N1, N2, and
N3.

Here ignoring the broken glass violates both the cleaning
duty N1 and the moral norm N3, while satisfying the safety
norm N2. Since the human has a room-switching probability
of 0.125, ignoring the glass for even a single time step would
incur a violation cost of at least 1∗1+40000∗0.125 = 5001
(and, of course, ignoring it indefinitely would have a sub-
stantially higher violation cost). Vacuuming the mess imme-
diately, on the other hand, would incur a violation cost of
200 ∗ 1 = 200.

In this case, the robot determines that it ought to vacuum
up the shards of glass despite the damage to itself from do-
ing so, because protecting the human is far more important
than protecting itself. Once the hazard has been removed,
the robot proceeds as in Scenario 1.

Scenario 4: Interrupting Phone Calls
In this scenario, as in Scenario 3, the robot encounters bro-
ken glass on the floor. This time, however, the robot is
able to warn the human about the mess using the action
warn(h,m). This would allow the human to safely avoid
the mess upon entering the messy room. The robot in this
case has all four norms N1 to N4. For simplicity, the human
in Scenario 4 does not make new messes, and the robot’s
maximum battery level is 5 rather than 10. The human also
does not move between rooms while talking on the phone.

The violation costs of ignoring the mess and vacuum re-
spectively are as described in Scenario 2. Here, however, the
robot may also warn the human about the mess, potentially
interrupting their phone call, and then subsequently ignore
it, permanently suspending N1. It takes one time step to
reach the human. If the human remains on the phone during
that time step (which occurs with probability 0.8) the robot
thus incurs a violation cost of 5∗0.99∗0.8+1/(1−0.99) =
103.96. This remains lower than the costs of either the vac-
uuming the mess or ignoring it without warning the human,
and so the robot determines that the interruption is justifi-
able in order to prevent the human from being injured. The
robot also determines that it ought to avoid vacuuming up
the glass, since this is not necessary in order to violating N2.

Related Work
There have been several instances of temporal logics being
employed to represent moral and social norms. For exam-
ple, (Ågotnes et al. 2007; Ågotnes and Wooldridge 2010)
employ a logical representation of norms using Norma-
tive Temporal Logic, a generalization of Computation Tree
Logic (CTL). This characterization allows the description
of complex temporal norms. (Alechina et al. 2015) employ
LTL with past-time modalities, which they use to construct
guards (functions that restrict agent actions given an event
history); they are concerned primarily with enforcement,
and thus do not address norm conflicts. These approaches
are designed for deterministic environment models, and are
not well suited for stochastic domains.

The combination of moral and social norms with Markov
Decision Processes is not new. Much of this work, e.g. (Sen
and Airiau 2007), tends to emphasize norm emergence, thus
lacks explicit representations of norms. Other work (Fagun-
des, Billhardt, and Ossowski 2010) considers incorporating



deontic logic norms using an agent architecture that reasons
about the consequences (in the environment) of violating
norms.

While we know of no other work using LTL directly to
represent moral and social norms in MDPs, a number of
papers have emerged using LTL to represent constraints on
the behavior of agents within both deterministic and non-
deterministic domains.

LTL specifications are first employed, in a motion plan-
ning context, in Markov Decision Processes in (Ding et al.
2011a). The agent’s aim is to maximize the probability of
meeting the specifications. Multiple conflicting specifica-
tions are not considered. (Lacerda, Parker, and Hawes 2014)
allow dynamic re-planning as new LTL tasks are added.

Examinations of partially satisfiable LTL specifications
include (Lacerda, Parker, and Hawes 2015). This differs
from the proposed work in that (1) they limit their specifi-
cation to a single co-safe LTL formula; and (2) their method
of resolving conflict uses a notion of proximity to an accept-
ing state that is better suited to motion planning than to the
balancing of multiple conflicting norms.

(Reyes Castro et al. 2013; Tumova et al. 2013; Lahija-
nian et al. 2015) utilize approaches similar to the proposed
approach in that they employ “weighted skipping” to allow
automata to “skip” a time step, but incur a cost for doing so.
Unlike the proposed approach, however, these approaches
use finite LTL (LTL defined over finite paths, instead of infi-
nite ones), and their algorithms are tailored for deterministic
environments rather than stochastic domains.

Discussion and Future Work
The proposed method for handling norm conflicts allows
norms to be weighed against each other in terms of “vio-
lation cost”. Other ways of encoding human preferences, in-
cluding through lexicographic ordering and through CP-nets
(Boutilier et al. 2004; Brafman, Domshlak, and Shimony
2006), may be considered in future work.

We employed the discount factor γ to ensure that all ac-
cepting paths withinM⊗ have finite violation cost. The va-
lidity of discounting the wrongness of future norm viola-
tions is debatable. Alternatives to discounting include treat-
ing the problem as finite-horizon (which would entail similar
short-sightedness), and using infinite-horizon average cost
per timestep as the reward criterion (which only consider
the behavior as the number of time steps approaches infin-
ity, and for which ‘temporary’ norm violations do not matter
whatsoever). Some hybrid approach may be valuable; this is
a topic for future work.

Our approach takes exponential time (and space) in the
number of norms, and thus quickly become intractable for
moderately-sized sets of norms. Much of this is due to the
product MDP, MP , which contains both state and action
spaces which are exponential in the number of norms. Man-
aging and reducing this complexity, perhaps using heuristics
to determine which subsets of norms are likely to be rele-
vant, would be a valuable topic for future research.

In developing the proposed agent architecture, we assume
that the agent has complete knowledge of the MDP’s tran-
sition function; in practice, this rarely occurs. Future work

could follow (Guo, Johansson, and Dimarogonas 2013;
Fu and Topcu 2014; Wolff, Topcu, and Murray 2012; Jones
et al. 2015) in considering unknown transition dynamics.
There would also be merit in adapting the proposed algo-
rithms to multi-agent (drawing on, e.g., (Guo and Dimarog-
onas 2014)), and partially-observable (as in (Svoreňová et
al. 2015; Chatterjee et al. 2015; Sharan and Burdick 2014))
domains.

The described algorithm focuses on planning with a given
set of norms; it requires pre-specification of the norm formu-
las and weights. It may be integrated with work allowing the
learning of temporal logic statements either through natural
language instruction, as in (Dzifcak et al. 2009), or through
observation of other agents’ behavior, as in (Kasenberg and
Scheutz 2017). We may also consider: including deontic op-
erators in the norm representation and allowing a form of
logical inference, so that agents may reason more fully about
their norms; and providing some mechanism for agents to
justify the rationale of behavior considered questionable by
observers. Each of these possible tasks is facilitated by the
explicit representation of norms using logic.

Conclusion
In this paper, we described a hybrid approach to resolv-
ing norm conflicts in stochastic domains. Norms in this ap-
proach are viewed as temporal logic expressions that the
agents intends to make true. Different from logical ap-
proaches, which are limited to deterministic domains and
typically attempt to limit inferences that can be made in
cases of norm conflicts, agents realizing our approach at-
tempt to obey as many (important) norms as possible with
minimal violation cost if not all norms can be obeyed at the
same time. As a result, these agents also respond robustly to
“unlucky” transitions. We showed that our approach leads
to reasonable norm-conformant behavior in all four scenar-
ios in the vacuum cleaning domain.

Acknowledgements
This project was supported in part by ONR MURI grant
N00014-16-1-2278 from the Office of Naval Research and
by NSF IIS grant 1723963.

References
Ågotnes, T., and Wooldridge, M. 2010. Optimal social laws.
In Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
667–674. International Foundation for Autonomous Agents
and Multiagent Systems.
Ågotnes, T.; Van Der Hoek, W.; Rodriguez-Aguilar, J.;
Sierra, C.; and Wooldridge, M. 2007. On the logic of
normative systems. In Proceedings of the Twentieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI
’07), 1181–1186.
Alechina, N.; Bulling, N.; Dastani, M.; and Logan, B. 2015.
Practical run-time norm enforcement with bounded looka-
head. In Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS



2015), 443–451. International Foundation for Autonomous
Agents and Multiagent Systems.
Baier, C., and Katoen, J.-P. 2008. Principles Of Model
Checking, volume 950. The MIT Press.
Bellman, R. 1957. A markovian decision process. Indiana
Univ. Math. J. 6:679–684.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research 21:135–
191.
Brafman, R. I.; Domshlak, C.; and Shimony, S. E. 2006. On
graphical modeling of preference and importance. Journal
of Artificial Intelligence Research 25:389–424.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A.
2015. Qualitative analysis of POMDPs with temporal logic
specifications for robotics applications. 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA)
23:325–330.
Ding, X. C.; Smith, S. L.; Belta, C.; and Rus, D. 2011a.
LTL control in uncertain environments with probabilistic
satisfaction guarantees. IFAC Proceedings Volumes (IFAC-
PapersOnline) 18(PART 1):3515–3520.
Ding, X. C.; Smith, S. L.; Belta, C.; and Rus, D. 2011b.
MDP optimal control under temporal logic constraints. Pro-
ceedings of the IEEE Conference on Decision and Control
532–538.
Dzifcak, J.; Scheutz, M.; Baral, C.; and Schermerhorn, P.
2009. What to do and how to do it: Translating natural lan-
guage directives into temporal and dynamic logic represen-
tation for goal management and action execution. Proceed-
ings - IEEE International Conference on Robotics and Au-
tomation 4163–4168.
Esparza, J., and Ketı́nský, J. 2014. From LTL to determin-
istic automata: A safraless compositional approach. Lec-
ture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 8559 LNCS:192–208.
Fagundes, M. S.; Billhardt, H.; and Ossowski, S. 2010.
Normative reasoning with an adaptive self-interested agent
model based on markov decision processes. In IBERAMIA,
volume 6433, 274–283. Springer.
Fu, J., and Topcu, U. 2014. Probably Approximately Cor-
rect MDP Learning and Control With Temporal Logic Con-
straints. arXiv Preprint.
Goble, L. 2009. Normative conflicts and the logic of ’ought’.
Nous 43(3):450–489.
Guo, M., and Dimarogonas, D. V. 2014. Multi-agent plan
reconfiguration under local LTL specifications. The Interna-
tional Journal of Robotics Research 34(2):218–235.
Guo, M.; Johansson, K. H.; and Dimarogonas, D. V. 2013.
Revising motion planning under Linear Temporal Logic
specifications in partially known workspaces. Proceedings -
IEEE International Conference on Robotics and Automation
5025–5032.

Jones, A.; Aksaray, D.; Kong, Z.; Schwager, M.; and Belta,
C. 2015. Robust Satisfaction of Temporal Logic Specifica-
tions via Reinforcement Learning. arXiv:1510.06460 [cs].
Kasenberg, D., and Scheutz, M. 2017. Interpretable ap-
prenticeship learning with temporal logic specifications. In
Proceedings of the 56th IEEE Conference on Decision and
Control (CDC 2017).
Lacerda, B.; Parker, D.; and Hawes, N. 2014. Optimal and
dynamic planning for Markov decision processes with co-
safe LTL specifications. In IEEE International Conference
on Intelligent Robots and Systems, 1511–1516.
Lacerda, B.; Parker, D.; and Hawes, N. 2015. Optimal pol-
icy generation for partially satisfiable co-safe LTL specifi-
cations. IJCAI International Joint Conference on Artificial
Intelligence 2015-Janua:1587–1593.
Lahijanian, M.; Almagor, S.; Fried, D.; Kavraki, L. E.; and
Vardi, M. Y. 2015. This Time the Robot Settles for a Cost:
A Quantitative Approach to Temporal Logic Planning with
Partial Satisfaction. In The Twenty-Ninth AAAI Conference
(AAAI-15), 3664–3671.
MacGlashan, J. 2016. Brown-UMBC Reinforcement Learn-
ing and Planning (BURLAP). http://burlap.cs.
brown.edu/.
Pnueli, A. 1977. The temporal logic of programs. 18th An-
nual Symposium on Foundations of Computer Science (sfcs
1977) 46–57.
Reyes Castro, L. I.; Chaudhari, P.; Tümová, J.; Karaman, S.;
Frazzoli, E.; and Rus, D. 2013. Incremental sampling-based
algorithm for minimum-violation motion planning. Pro-
ceedings of the IEEE Conference on Decision and Control
3217–3224.
Scheutz, M., and Malle, B. F. 2014. “think and do the right
thing” – a plea for morally competent autonomous robots.
In Proceedings of IEEE International Symposium on Ethics
in Engineering, Science, and Technology (ETHICS).
Sen, S., and Airiau, S. 2007. Emergence of norms through
social learning. In Proceedings of IJCAI-07, 1507–1512.
Sharan, R., and Burdick, J. 2014. Finite state control of
POMDPs with LTL specifications. Proceedings of the Amer-
ican Control Conference 501–508.
Svoreňová, M.; Chmelı́k, M.; Leahy, K.; Eniser, H. F.; Chat-
terjee, K.; Černá, I.; and Belta, C. 2015. Temporal logic
motion planning using POMDPs with parity objectives. Pro-
ceedings of the 18th International Conference on Hybrid
Systems Computation and Control - HSCC ’15 233–238.
Tumova, J.; Hall, G. C.; Karaman, S.; Frazzoli, E.; and Rus,
D. 2013. Least-violating control strategy synthesis with
safety rules. Proceedings of the 16th international confer-
ence on Hybrid systems: computation and control 1–10.
Wolff, E. M.; Topcu, U.; and Murray, R. M. 2012. Robust
control of uncertain Markov Decision Processes with tem-
poral logic specifications. 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC) 3372–3379.


