
From Teleoperation to Autonomy: “Autonomizing”
Non-Autonomous Robots

B. Kievit-Kylar1, P. Schermerhorn1, and M. Scheutz3

1Cognitive Science Program, Indiana University, Bloomington, IN 47404, USA
2Department of Computer Science, Tufts University, Medford, MA 02155, USA

Abstract— Many complex tasks (search and rescue, explo-
sive ordinance disposal, and more) that eventually will be
performed by autonomous robots are still performed by
human operators via teleoperation. Since the requirements
of teleoperation are different from those of autonomous oper-
ation, design decisions of teleoperation platforms can make
it difficult to convert such platforms for autonomous use.
In this paper, we discuss the differences and the potential
difficulties involved in this conversion, as well as strategies
for overcoming them. And we demonstrate these strategies by
“autonomizing” a fully teleoperated robot designed for tasks
such as bomb disposal, using an autonomous architecture
that has the requisite capabilities.

Keywords: tele-operation, autonomy, conversion

1. Introduction
Teleoperated robots are becoming widely available for all

kinds of activities, from defusing bombs (like the IRobot
Packbot in war zones)1 to remote presence robots (like the
Vgo)2. These robots are able to go places and do things that
would normally be too dangerous for humans, or simply
be too expensive to be practical. They include a range of
sophisticated equipment and low-level control algorithms,
and would seem to be naturally suited, and are certainly
highly desirable, for autonomous operation. Compared to
autonomous robots, teleoperated robots are easier to build
and easier to sell because no control system for autonomous
operation has to be designed (all the intelligence and con-
trol lies with the human operator instead) and sometimes
poorer quality or fewer sensors can be used (as humans
can generally make better use of available sensors than
current autonomous techniques). Hence, it is unsurprising
that increasing the efficacy of teleoperation interfaces is a
continued research focus (e.g., [1], [2], [3]).

One obvious drawback of teleoperation is the need to
have a live control stream of data for sensors and effectors.
However, given the constraints that make robots appealing
tools, it may be difficult or impossible to establish the
data connection (e.g., because of the distances involved or
environmental interference), and requiring a controller to be

1http://www.irobot.com/gi/ground/510_PackBot
2http://www.vgocom.com/what-vgo

close to the robotic platform may put the operator in danger,
eliminating the primary advantage of using a robot. Even in
the absence of such obstacles, the need for constant human
attention adds expense and limits the overall effectiveness of
the robot. The ability to operate these robots autonomously
would avoid many of these limitations, but researchers need
access to the robots to continue to improve the performance
of autonomous robot architectures to the point where the
human operator is not needed.

The common response to the above issues has been
the design of “hybrid autonomous/teleoperated” systems
that combine the strengths of both approaches. Mixed-
initiative architectures are suitable as extraplanetary rover
control systems, where prohibitive communication delays
necessitate some degree of autonomy, while the higher-
level decision-making remains in the hands of a team of
human experts [4]. Several groups have examined effective
mechanisms for adjustable autonomy, so that the balance
between teleoperation and autonomy can be dynamically
altered to fit the circumstances [5], [6], [7].

While mixed-initiative systems touch on the autonomiza-
tion problem, these systems are designed from the ground
up with partial autonomy in mind. Very little work has
been done on converting systems that were designed to
be purely teleoperated into partially or fully autonomous
systems. Not only is the literature on the transformation of
non-autonomous robots into autonomous ones far sparser,
but the existing papers also focus mostly on the integration
of one particular robotic platform. E.g., Barreto [8] describes
the autonomization of the ANDROS platform using the idea
of interchangeable “brick” components to add new sensory
capabilities. Similarly, Stewart and Khosla[9] describe a
modular control mechanism for a Puma 560 in which a
teleoperation module is replaced with an autonomous one.

We believe that a greater understanding of how a
conversion can be done would be greatly beneficial to the
field. In this paper, we describe our efforts for developing
systematic principles for converting non-autonomous
teleoperated robots into fully autonomous platforms.
We start with a brief background on teleoperated and
autonomous robots. We then discuss some of the design
philosophies that affect “autonomizing” teleoperated
systems. Next we describe our transformation of the
Multi-Mission Payload Platform (M2P2) into a general



purpose autonomous system. After presenting an evaluation
of the new system in a “bomb disposal” task, we finish
with some discussion about limitations of this technique
as well as how generalizable it is to other robotic
platforms (http://www.apitech.com/products/
multi-mission-payload-platform-m2p2).

2. “Autonomizing” Teleoperated Robots
Successfully implementing an autonomous architecture on

a robot that has been designed for teleoperation requires
overcoming a variety of challenges. All of these challenges
are traceable in some way to how different constraints factor
into the design of purely teleoperated robots.

While there are some obvious mechanical differences
existing in the hardware needed to perform communication
with an operator verses an autonomous system, many more
subtle assumptions go into the construction of these two
types of robotic platforms. Autonomous and teleoperated
robots will often require different levels of sophistication
in the sensors needed to perform their tasks. For example,
while the output of wheel encoders and range-finders may be
very useful in allowing a program to determine its position,
often humans rely on more expensive sensors such as video
cameras to quickly expose them to a high volume of noisy
data. As well as sophistication in sensors, complex robots
with many moving parts require complex control systems.
While a human operator may only be able to focus on a
subset of controls at any given time, microchips are able
to compartmentalize the various effectors allowing simulta-
neous meaningful control of all. While more user friendly
interfaces or multiple operators may alleviate the control
problem to some degree, it can not match the orchestration
of a single programmatic control architecture. Similarly, the
computational requirements of a remotely-controlled robot
can be very low. Hence, there may be no general-purpose
onboard computer, or that computer may be underpowered
to handle the tasks (problem-solving, sensor processing, etc.)
required for autonomous operation.

The same goes for effectors; for example, the design
of a gripper that will be actuated via a gamepad in the
hands of a skilled user might look very different from
what an autonomous robot architect might ideally envision
(e.g., because it has fewer safeguards, relying instead on
the operator’s skill and judgment). Even at the mundane
level of connectivity, different requirements are evident;
a relatively low-bandwidth wireless connection might be
acceptable for teleoperation (e.g., lower frame-rates, lower
resolution, or higher noise in a camera feed may be easier for
a human operator to deal with than for a vision processing
algorithm; similarly for audio streams and voice recog-
nition). Autonomous operation may, therefore, necessitate
the addition or replacement of computational, sensing, or
effecting equipment on the teleoperation platform.

We now address specific challenges:

a) Physical connection: Sensors and effectors need to be
exposed to the control architecture. In some cases it may be
possible to make use of the existing teleoperation channel,
but (as noted above), this will sometimes not be feasible.
In that case, it will be necessary to create alternative inter-
faces (e.g., RS-232 or USB-based serial or wired Ethernet
connections). Moreover, if device drivers and libraries do
not provide access at the right level of abstraction, it may
be necessary for the control architecture to implement a
software interface, as well.
b) General control algorithms for effectors: Similarly,
depending on the nature of the particular sensors and effec-
tors, it might be possible to use existing control algorithms
(e.g., for a mobile robot base or for an n-degree of freedom
manipulator) or to use them after only minor adaptations. In
the worst case (typically because a given piece of hardware
is used differently under teleoperation than under autonomy),
new algorithms need to be developed for particular sensors
and effectors. For example, feedback from sensors such as
wheel encoders can be used to generate a simple, immediate,
computational understanding of an autonomous robot’s pose.
However, the human operator is unlikely to find encoder
counts useful, so they may not be exposed via a software
interface, and in the worst case, may not even be present
at all. Other sensors, such as cameras, are often easier to
access, but may still require additional processing steps (e.g.,
to extract individual frames for visual processing from a
video stream encoded for efficient transmission).
c) Control architecture: Naturally, one of the biggest
changes will be the inclusion of the autonomous control
architecture itself. A wide variety of configurations is pos-
sible; depending on the task, the control architecture will
comprise different components, possibly including a planner,
an action execution component, components for user inter-
faces including screen-based and possibly spoken natural
language dialog interfaces. The task approach can either be
pre-programmed (e.g., in terms of action scripts) or the robot
can be dynamically instructed during task execution. The
latter requires the control architecture to use problem-solving
for new tasks for which no action scripts exist [10].
d) “Plug-and-play” generalizability: Adding an existing
control system can be relatively straightforward if it imple-
ments and uses a well-defined API structure. Typically, sen-
sors will fall under a particular sensing category, e.g., range
sensors, vision sensors, force sensor, etc., thus allowing for a
generic interface to be adapted for the particular sensor use.
Similarly, typical effectors such as wheels for mobile plat-
forms, grippers, or robotic arms will allow for abstractions
that map effector-specific commands and properties to more
generic interfaces that can interact with standard algorithms.
If the control system is designed with such generic interfaces
in mind, the problem can be viewed as one of ensuring
that the control system’s expected interfaces are mapped
properly onto the teleoperated robot’s hardware and software



interfaces. The difficulty here is that there is unlikely to be a
one-to-one match of functional units between the teleopera-
tion platform and the control architecture. For example, the
robot’s interface may support driving arm joint motors at a
given velocity, in agreement with the control architecture’s
expectations. However, it may lack a predefined position-
based joint motion mechanism, which must be added as
part of the integration if the control architecture expects it.
Similarly, there is no reason to assume that both architectures
will use the same relative sign or units.
e) Programatic interface: Ideally, whether it is imple-
mented as a software library (e.g., C/C++ shared objects,
Java classes, etc.), simply given as a communication protocol
(e.g., custom serial protocols, standardized infrastructures,
etc.), or some combination of the two, the interface for a
new piece of hardware will be well-specified and clearly doc-
umented. However, given that teleoperated robot platforms
are not originally intended to be targets for development,
the likelihood of undocumented features or errors in the
specification is somewhat higher than normal. In such cases,
it may be necessary to examine how the teleoperation
controller interfaces with the robot architecture that it was
built with. Studying the effects of (or responses to) valid
messages sent from the original teleoperated controls, can
be very helpful for “filling in” gaps. These messages can
then either be analyzed for patterns or stored as a response
lookup table to be used later by the software.
f) Simulation: Simulation is a valuable tool for any au-
tonomous robot architecture, and not just to facilitate testing
before deploying on the physical robot. Take, for example,
the case of arm movement and manipulation. Since human
operators inherently have extremely rich mental models of
the systems that they are working with, they do not require
precise measurements of all of the possible positions in
joint space. Simply by viewing a handful of video frames
taken from a mounted camera, the operator can determine
approximately how that camera is mounted in relation to the
robot and the target as well as determining an appropriate
movement path. For the autonomous architecture, on the
other hand, pre-building a highly accurate model of the
known environment (the robot and its manipulators) will
allow it to avoid the time-consuming process of building
relational models on the fly. Such simulation planning also
allows a robotic architecture to plan movements through
space that optimally avoid obstacles, which is especially im-
portant in cases where feedback from the platform regarding
joint positions is of less than ideal fidelity.

2.1 Experimental Platform
The robot we chose to autonomize is the APITech Multi-

Mission Payload Platform (M2P2). This robot was designed
to be controlled by a human operator primarily via a wire-
less XBox game controller. The M2P2 is a three wheeled

holonomic robot with each wheel capable of rotating in-
dependently. It is equipped with a 2 DOF arm terminated
by a 2 DOF gripper. The operator can get the robot’s view
of its environment through two cameras, one mounted on
the platform and one mounted on the arm. In addition, the
platform includes both a speaker and a microphone, allowing
the operator to speak through the robot and hear any sounds
near the robot.

Communication in the M2P2 is a subset of JAUS (the Joint
Architecture for Unmanned Systems, a standard for open
interoperability in robotic architectures [11]), augmented
by a small number of custom message types. The M2P2
implements a set of core movement functionality as well as
including custom messages for the robot arm control and
specific sensors. JAUS messages on this robot are passed
on two onboard networks, one for sensors and one for
effectors. Messages are transmitted wirelessly to a pack
based Operator Control Unit (OCU). Video streams are
played back on a dedicated tablet PC along with custom
built software to facilitate control of robot movement.

We integrated the M2P2 into ADE (the agent develop-
ment environment), a Java-based infrastructure for devel-
oping robotic architectures [12], [13], [14]. ADE provides
communication mechanisms that allow modular functional
components to interact in a distributed fashion using Java
remote method invocations. ADE components can regis-
ter their own services and look up services provided by
other components, and connections between components are
monitored to ensure robust execution. A well-defined suite
of programming interfaces allows consistent access to a
variety of sensors (e.g., laser range-finders, GPS sensors, and
cameras) and effectors (e.g., robot bases such as the Segway
RMP, Mobilerobots Pioneer, and Videre Era). Implementing
these interfaces on the M2P2 allows us to take advantage of
the existing autonomy facilities in ADE, including problem-
solving and goal management.

2.2 Communication
The first step in autonomization is to establish commu-

nication pathways between the teleoperated robot base and
the computer that will host the autonomous architecture. This
meant bypassing the existing wireless RF interface used by
the teleoperation rig to instead make direct (wired) Ethernet
connections to the robot.

Once the physical connection has been made, it must be
tested. Before the cheap availability of high performance
micro processors and network adapters, connection types
were likely all proprietary and highly compact. Now, devel-
opers are moving toward higher bandwidth communication
to help improve comprehension of the messaging system.
Protocols like the Internet Protocol (IP) both internally
provide a lot of functionality (message ordering, routing,
etc.) but also have many tools to help receive, send and
process information. Robots running such protocols can



often be tested with packaged communication processing
tools, while rarer protocols may require testing specific to a
given communication design.
g) Communicating with Effectors: Although communi-
cations protocols could theoretically be arbitrarily complex,
they break down into two parts, syntax and semantics. For
each functional ability to be run on the robot, syntax is the
set of argument variables with possibly some information on
their size and type, and semantics is the generalized under-
standing of how the bits in each argument are interpreted
(as flags, as integers representing feet, doubles representing
miles per hour, etc.). When trying to back-engineer a com-
munication protocol, the syntax of the command must be
determined first. The syntax alone however is not sufficient
for interpreting and generating commands of that type as the
variables must be unpacked as values and then those values
given in meaningful units or conditions.

For example, when implementing robot arm control for
the M2P2, we determined from the JAUS protocol that the
command to modify the arm position was a concatenation of
values each representing a velocity of one of the arm joints.
This information alone was insufficient even to determine
the exact syntax of the command. Through feedback from
the manufacturer in conjunction with systematic testing of
options, and validation of the specifications, we found the
ordering of the joints and number of bytes allocated to each
joint in the command. While this specified the syntax of the
commands, it was still unclear how each set of around four
bytes (more for some joints and less for others) translated
into a velocity on the physical arm.

Some of the most common encoding variants are; flags,
scaled integers, IEEE floating point or doubles, and angles.
Flags can be tested through simple trial and error when the
outcome of the flag is an obvious physical change in the
system. Scaled integers (where the values are interpreted
as integer values times a scaler plus an offset), are often
easy to detect as similar integer input values will lead to
similar output speeds or other output types. Floating point
or double precision number should be tested similarly to
scaled integers, where similar inputs cause similar outputs
however instead of using similar integer representations to
test, convert the values into either doubles or floating points.
Angles, while a subset to scaled integers or decimal precision
numbers, are a special case as they are cyclic in nature and
this must be accounted for when trying to determine if a
particular encoding is of this form.

When all attempts at understanding the semantics fail
(i.e., a systematic test of the possible input space provides
no observable consistences), an alternative approach is to
build a simple input/output lookup table. Recording what
direction a particular joint makes and potentially some gross
speed conditions, for a set of given inputs, can allow a
simply designed inverse process where a desired speed can
be achieved by finding the closest speed known in the lookup

table. Some times, it is also sufficient to have the robot
operate at a single speed (or more often, one speed in both
the positive and negative direction) in which case a hard
coded single value can be used.

The JAUS protocol specifies two main types of movement
commands: “set velocity” and “move relative”. Because this
platform was designed to be controlled by a remote human
operator, only the “set velocity” commands are implemented.
Similarly, although the wheel units almost certainly include
wheel encoders, they are not accessible via the JAUS in-
terface. This was a common theme to the design, where
simplifying steps were used in terms of what to expose to the
external system based on the assumption that the robot would
not operate autonomously. However, with the “set velocity”
commands, we were able to implement all of the elements of
the movement interface expected by the control architecture.

Teleoperated robots are often designed to expect contin-
uous command feedback from an operator. The robot may
receive a constant stream of drive commands even though
the operator has held the movement joystick at a constant
angle. Since the robot can not correct its error if the human
operator is disconnected, if no new commands are received
in a given amount of time, most designs will stop the robot
movement. While this may be logical for an autonomous
system as well, there is a stronger bias in a teleoperated
system to default to no action and let the human override
if this is a problem. While converting a teleoperated system
this is important to note as it may require additions such
as message repetition at constant intervals to keep the robot
performing a desired action.
h) Communicating with Sensors: One of the most im-
portant sources of information for an autonomous robot
is the camera; we will illustrate the process of establish-
ing communication with a sensor using the example of
interfacing with the M2P2 camera. From the programmer’s
perspective, it would be easiest if it were possible to simply
grab fully-formed individual frames from the video stream.
However, such an encoding scheme would consume too
much bandwidth in many domains, so a variety of protocols
take advantage of similarities between adjacent frames to
compress the data stream. Moreover, although many of these
video encoding protocols are well-known, in some cases
proprietary variations may have been added to the standard
protocol to meet the needs of the particular robotic platform.
This imposes additional challenges when converting a tele-
operated robot for autonomous operation, as even the base
protocol might be unknown, and any proprietary extensions
are unlikely to be published.

As noted above, the main challenge for utilizing the
cameras is deciphering the video stream. Primary variations
in video streams to be aware of at this stage are, different
color models (RGB, CMYK, etc) and streaming verses static
video translation (some decoders require the full video buffer
to be available before decoding can begin, this will not work



Fig. 1: Architecture layout of the M2P2 and controller
laptop.

for streaming video feed from a robot).
When decoding the M2P2 video format, we started by

searching the data for likely protocol elements, such as
sequential markers added to verify order of packets received.
This allowed us to discover the higher fidelity “key frames”
that were sent at regular intervals to allow cumulative error
between frames to be reset. In this particular case, we were
able identify the protocol using the key frames and apply
standard decoding routines to extract frames from the stream.
We determined by the data header, that the M2P2 used a
slightly augmented mpeg encoding variant. After removal of
the additional formatting, the video stream could be parsed
into readable raster images, using the FFMPEG decoder.

2.3 System Configuration and Control
Once basic communication protocols had been estab-

lished, the system was integrated with the ADE infras-
tructure. A general purpose JAUS component was written
to facilitate creation and interpretation of JAUS messages.
Figure 1 shows the connections between the M2P2 control
architecture and the architecture on the laptop used to control
the newly autonomous robot.

The newly added laptop served as the primary intelligence
control for the robot platform. As the M2P2 server is fully
ADE compliant, it has access to all other ADE servers
and functionality available to other holonomic robots in
that environment. This includes a vision server to process
incoming camera feeds, planners, and natural language inter-
preters. The M2P2 becomes a removable module fitting into
a larger autonomous robotic infrastructure. As well as adding
functionality, the ADE infrastructure adds error handling,
security and the ability to offload processes not only from
the original robots processors but also from those physically

Fig. 2: Visualization of the robot arm simulator.

added to the robot. A smaller, less capable control unit can
then be used to interface with the robot while the computa-
tionally expensive operations such as image processing can
be handles by external, more powerful computers.

A web camera was connected to the laptop directly
and mounted on the front of the mobile platform. While
the robot had built in video feeds, these were slow, of
lower quality, and computationally consuming to process
directly on the control computer (As the signal had to pass
through the JAUS communication protocol first). Connecting
a new camera to the laptop helped the software react in
real time (while the video feeds from the robot were still
accessible). While the built in cameras were not used in
this particular experimental paradigm, having the ability to
interface directly with the on-board cameras allows future
projects to take advantage of views that may be more difficult
to introduce with external hardware. The robot arm has a
small camera which gives a “dog’s mouth” perspective on the
gripper. Having an accessible video feed from this camera
will allow for much more complex and delicate manipulation
in future tasks.

To facilitate planning of arm movements, we developed a
simulation environment for the robot joints (Figure 2). The
simulation environment is written as an extension of a 3D
visualization environment that was designed for the ADE
infrastructure. Code is written in native Java and can be run
with the visualization on or off. This allows the simulation to
be run on either a standard PC with a GUI showing progress
or a high performance computational grid to run detailed
large-scale searches of the complex arm movement space.

In the simulation environment, a robot arm is specified
as a series of rigid blocks connected by joints. Blocks are
attached to each other in a familial hierarchy starting with
the root block that is connected to the robot frame. Each
block is defined as a collection of primitive objects (spheres,



rectangular solids, cylinders, etc.) with affine transformations
applied relative to that block’s starting position and orien-
tation. As with most 3D tools, sub-objects can be nested
in a parent block and an affine transformation specified for
the entire block of sub-objects. Each joint is also capable of
defining how that joint is allowed to rotate. Rotation can be
in any of the three cardinal planes (around the X, Y, and Z
axis). A center of rotation is specified both for block that
is to be rotated as well as the parent block to which it is
attached. A starting rotation angle can be given as well as
bounds on rotation in each of the planes. All specifications
are stored and read from an XML formatted data file.

When the control architecture determines a goal point to
move the arm to, the planning mechanism in the simulation
environment begins. A goal is specified as a coordinate in
three-dimensional space relative to the root of the robot
arm as well as an orientation of the end effector at that
point. Planning is carried out using a gradient descent
technique which can either be mimicked in real-time by the
physical robot (and feedback used from the arm pose of the
actual robot if available), or stored as an action sequence
and played back at a future time. In the gradient descent
algorithm, the robot attempts to move each of its joints a
fixed small distance in each direction that the joint is allowed
to move in. A fitness function is used to calculate the fitness
of each of these new arm locations and the movement with
the highest fitness is selected to be performed. This pattern is
iterated until a local maximum is found. The fitness function
is a scaled combination of the distance of the effector from
the goal, the orientation of the effector relative to the desired
end orientation and a negative strength from all joints based
on their proximity to any collisions in the environment.

While gradient descent will not be sufficient to solve all
arm trajectory problems, it is sufficient for many purposes.
The M2P2 arm moves in a single vertical plane, with two
joints controlling the position of the end effector. Since
it also provides real-time (and can be pre-calculated in
far faster than real-time) movements, it is ideal for the
immediate response time required by tasks such as bomb
defusing for which the M2P2 was designed. The simulation
environment can also be used by more complex path plan-
ning algorithms for more complex environments.

One important complication to arm movement was the
lack of “somatosensory” feedback, as there were no sensors
to detect the relative arm position. To calculate the relative
arm position, we took the arm resting pose as a base (this
location was enforced through physical stops on the robot
joints). Through experimentation, it was determined that
the acceleration time in getting the robot arm from rest
to a desired velocity was minimal. The amount of time
necessary to move the arm a desired distance could be
calculated simply by dividing the distance by the presumed
constant speed of the arm. While this works for low fidelity
situations, the acceleration will cause problems where fine

motor control is required (such as using the grippers to
pick up a small object). To reduce the error, all movements
were blocked into constant length (or angle) chunks. As
the gradient descent approach expected output tests to be
constant sized already, constant sized movement blocks was
the obvious choice.

If the robot had needed to perform multiple tasks, the
cumulative errors would have added up. To combat this, the
forced resting pose could be required after a certain amount
of movement to recalibrate location.

3. Validating the Integration
To evaluate the integration, we devised a simplified ver-

sion of the robot’s primary function: bomb disposal. In this
test, the robot was required to detect a suspicious object (“the
bomb”), approach it, and retrieved it. It was then required
to detect the (“safe”) disposal receptacle, move to it, and
deposit the “bomb” inside. This task can be decomposed
into five phases, as depicted in Figure 3.

Detect object: Object detection was performed using
simple color detection and blob size thresholding. The ADE
vision component processed frames from the web camera,
producing a description of each detected object that included
its relative position in the frame (and hence relative to
the robot’s heading) and its size in the visual field. The
autonomous control system made regular requests to the
vision component until a positive identification was made,
at which point control progressed to the next phase.

Move to object: Once the object was detected, the control
module computed the course adjustments to move to it using
a visual servoing approach [15]. Rotational adjustments were
made based on the horizontal position of the object in the
frame. Given the assumption that the object in question
would be on the floor, distance could be estimated using
the object’s vertical position in the frame. When the object
was determined to be in the effective region of the gripper,
the approach phase was concluded.

Plan/perform reach: The reach and grasp actions were
constructed dynamically using the arm motion planner de-
scribed above. The “reach” goal was set based on the object’s
relative location as determined by the vision component. The
control system sent the plan steps generated by the gradient
descent algorithm to the arm, moving the gripper toward the
goal state: poised over the target object.

Detect receptacle: The receptacle was detected in the
same way that the target object was detected. A different
color was used as the indicator.

Move to receptacle / drop: When the robot moved such
that it judged its manipulator was over the receptacle,
the block was released and the robot ended its movement
pattern.

A video of the bomb disposal demonstration can be
viewed at http://tiny.cc/autonomized.



Fig. 3: The data control path and data flow during the experiment (the control path indicates at what steps different
computational units were activated).

4. Conclusions and Future Work
Limitations to autonomizing teleoperated robots are dic-

tated by the design of the robot in question and the persis-
tence of the group attempting to perform the automation. In
general, if basic platform movement can be achieved, most
traditional robotic tasks can be performed with the possible
addition of necessary sensors and manipulators. To this end,
the basic platform can be thought of as an operation module
with the potential addition of pre-existing functional modules
attached. If very fine control is needed over the robots pose,
it may not be feasible to augment a teleoperated system,
since such fine feedback may not be available, and extremely
difficult to add into the physical architecture. Although we
used multiple software infrastructures in our case study
integration, we used only one hardware platform (the M2P2
robot). In future work, integration of multiple existing hard-
ware platforms would lead to a more modularized schema
for conversion (e.g., a chassis from one manufacturer and a
manipulator from another could both be integrated into the
same software architecture).

References
[1] M. Luimula, K. Saaskilahti, T. Partala, S. Pieska, J. Alaspaa, and

A. Lof, “Improving the remote control of a mobile robot using posi-
tioning and ubiquitous techniques,” in Proceedings of the 2007 IEEE
International Conference on Automation Science and Engineering,
September 2007, pp. 1027–1033.

[2] I. Farkhatdinov and J.-H. Ryu, “Hybrid position-position and position-
speed command strategy for the bilateral teleoperation of a mobile
robot,” in Proceedings of the 2007 International Conference on
Control, Automation and Systems, October 2007, pp. 2442–2447.

[3] C. W. Nielsen, M. A. Goodrich, and R. W. Ricks, “Ecological inter-
faces for improving mobile robot teleoperation,” IEEE Transactions
on Robotics, vol. 23, no. 5, pp. 927–941, October 2007.

[4] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J. Hsu, A. Jonsson,
B. Kanefsky, P. Morris, K. Rajan, J. Yglesias, B. G. Chafin, W. C.
Dias, and P. F. Maldague, “MAPGEN: mixed-initiative planning and
scheduling for the mars exploration rover mission,” IEEE Intelligent
Systems, vol. 19, no. 1, pp. 8–12, January-February 2004.

[5] M. Goodrich, D. O. Jr., J. Crandall, and T. Palmer, “Experiments in
adjustable autonomy,” in Proceedings of the 2001 IJCAI Workshop
on Autonomy, Delegation and Control: Interacting with Intelligent
Agents, Seattle, WA, August 2001, pp. 1624–1629.

[6] M. Y. Cheng and R. Cohen, “A hybrid transfer of control model for
adjustable autonomy multiagent systems,” in Proceedings of the 4th
International Joint Conference on Autonomous Agents and Multiagent
Systems, The Netherlands, 2005.

[7] P. Scerri, D. Pynadath, and M. Tambe, “Why the elf acted au-
tonomously: Towards a theory of adjustable autonomy,” in Proceed-
ings of the 1st International Joint Conference on Autonomous Agents
and Multiagent Systems, Bologna, Italy, 2002.

[8] R. D. Barreto, “Migration from teleoperation to autonomy via mod-
ular sensor and mobility bricks,” Master’s thesis, The University of
Tennessee, Knoxville, August 2006.

[9] D. Stewart and P. Khosla, “Rapid development of robotic applications
using component-based real-time software,” in International Confer-
ence on Intelligent Robots and Systems-Volume 1, August 1995.

[10] R. Cantrell, M. Scheutz, P. Schermerhorn, and X. Wu, “Robust
spoken instruction understanding for HRI,” in Proceedings of the 2010
Human-Robot Interaction Conference, March 2010.

[11] S. Rowe and C. R. Wagner, “An introduction to the joint architecture
for unmanned systems (JAUS),” Cybernet Systems Corporation, Ann
Arbor, MI, Tech. Rep., 2008.

[12] J. Kramer and M. Scheutz, “Robotic development environments for
autonomous mobile robots: A survey,” vol. 22, no. 2, pp. 101–132,
2007.

[13] M. Scheutz, “ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures,” Applied
Artificial Intelligence, vol. 20, no. 4-5, pp. 275–304, 2006.

[14] V. Andronache and M. Scheutz, “Integrating theory and practice: The
agent architecture framework APOC and its development environment
ADE,” in Proceedings of AAMAS 2004. ACM Press, 2004, pp. 1014–
1021.

[15] P. Corke, “Visual control of robot manipulators—a review,” in Visual
Servoing: Real-Time Control of Robot Manipulators Based on Visual
Sensory Feedback, K. Hashimoto, Ed. World Scientific, 1993, pp.
1–31.


