
Facing up to the Inevitable: Intelligent Error Recovery in
Massively Parallel Processing in Memory Architectures

James Kramer and Matthias Scheutz
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
Email: {jkramer3,mscheutz}@cse.nd.edu

Phone: (574) 631-{8380,0353}
Fax: (574) 631-9260

Jay Brockman and Peter Kogge
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556, USA

Email: {jbb,kogge}@cse.nd.edu
Phone: (574) 631-{8810,6763}

Fax: (574) 631-9260

Abstract— Massively parallel “Processing-In-Memory”
(PIM) architectures have been shown to yield increases in
performance due to their “memory-centric” nature. However,
as PIM is still a developing technology, advanced issues such
as error detection and failure recovery have not yet been
addressed. We describe the application of concepts found
in our multi-agent system, ADE, to PIM, incorporating its
mechansims for automatic and intelligent error detection,
failure recovery, and dynamic system reconfiguration in the
PIM architecture, enhancing architecture robustness.

Index Terms— Fault tolerance, System recovery, Intelli-
gent systems, Parallel architectures, Distributed computing

I. Introduction
“We consider errors by people, software, and hard-

ware to be facts, not problems that we must solve,
and fast recovery is how we cope with these inevitable
errors” [1]. This guiding principle of recovery oriented
computing (ROC) succinctly summarizes some of the
critical challenges that future massively parallel com-
puting architectures need to address. The problem of
faulty computations (regardless of whether they are
due to errors committed by people, software crashes,
or hardware faults) is exacerbated in the context of
long-term, autonomous operations of massively parallel
applications (e.g., the computing infrastructure of future
space ships). Hence, while the first aim in designing,
implementing, and operating massively parallel applica-
tions is to avoid or reduce the potential for errors, the
second, by practical necessity, has to focus on how to
deal with contingencies and recovery from failure.

“Recovery”, in this context, must satsify various re-
quirements. For example, error detection has to oc-
cur prior to recovery, which, in turn, requires system
monitoring and possibly introspection. Moreover, the
process of continuing or recovering interrupted, crashed,
or otherwise disturbed computations necessarily involves
mechanisms for saving state and determining the dy-

namic dependency of parallel computational processes.
Finally, both software and hardware faults may neces-
sitate the dynamic (re-)configuration of the software
infrastructure of a computational system (e.g., relocating
processes in memory, reassigning them to computational
units, restarting them based on saved state, etc.). Such
system reconfigurations need to be fast, efficient, and
sensitive to the computational and communication band-
width requirements of the processes involved.

We believe that the intelligent distribution, monitor-
ing, and (re-)configuration mechanisms that have been
investigated over the last several years in multi-agent
system (MAS) research (e.g., [2], [3]), can provide effec-
tive mechanisms for implementing a “recovery oriented
computing” infrastructure in massively parallel com-
puting systems. Specifically, we propose applying the
techniques for system monitoring, introspection, error
detection, and recovery of a specific MAS developed
in our lab, called ADE [4], [5], to the infrastructure of
massively parallel “processing-in-memory” (PIM) archi-
tectures [6], [7], [8], where computational threads can be
run locally on a simple processor within a memory chip
(without the need of a main processor). We will describe
how “agents” (in ADE) can be deployed throughout
memory to form a tight network of memory clusters,
organized around memory nodes, which are monitored
both for software and hardware faults. Error recovery,
then, involves fault detection within a cluster (or on a
chip) and subsequent relocation of affected processes
to other clusters such that bandwidth requirements are
still met. To achieve this reconfiguration, special ADE
components reason in real-time about the state of their
clusters and the rest of the system to determine the
best configuration given the dynamic state changes (e.g.,
faulty memory components, new memory that has be-
come available, software components that crashed, etc.).

This paper proceeds as follows: Section II contains
background material and a more detailed problem de-

scription. Section III provides overviews of both PIM
and ADE, then discusses how the two can be brought to-
gether. A brief overview of related work in fault-tolerant
and reconfigurable hardware is given in Section IV,
followed by a discussion (including some experimental
results) in Section V and a conclusion in Section VI.

II. Requirements for Error Detection
and Recovery in Massively Parallel
PIM Architectures

Processing-In-Memory (PIM) technology is being de-
veloped to address an increasingly critical problem in
high-performance computing, namely the performance
limitations imposed by the “memory wall” associated
with transferring data between the processor and mem-
ory [9]. The problem gets worse in subsequent genera-
tions of technology, as applications continue to become
more memory-intensive. PIM architectures address this
problem by taking a memory-centric approach, moving
computation directly into the memory system. In doing
so, PIM architectures have been found to have a signifi-
cant positive impact on system performance, while also
making chip design more managable via the tiling of
relatively small, regular logic structures [10].

While PIM architectures can significantly improve
the performance of computing systems by offloading
processes from main processors into memory, they are
still, like all other massively parallel architectures, sub-
ject to performance bottlenecks (e.g., processes that
communicate with each other are not located on the same
or in adjecent memory chips, thus requiring higher net-
work traffic). Moreover, in the long-term, computational
components will eventually fail (for reasons including
software bugs, hardware faults, network unavailability,
etc.). The problem of single component failures is exac-
erbated when considering multiple component failures,
which can potentially occur at multiple sites at the
same time, and may, in the worst case, lead to large-
scale system failures. Especially in massively parallel
system with millions of parallel processes, individual
component failures will be difficult, if not impossible,
to detect (e.g., components might give the appearance
of working properly, or might not respond for an ex-
tended period of time, or might crash only occasionally
under difficult-to-trace conditions). Without automatic
monitoring of component execution, determining the
circumstances under which they fail is problematic.
Moreover, without automatic recovery mechanisms, it
will be impossible to maintain system integrity and
resume individual computations (e.g., from the last saved
state prior to the time of fault occurrance) without
risking large-scale, catastrophic system failure.

Various techniques have been proposed to detect
and alleviate errors and failures in massively parallel
computing systems, such as redundant processing (i.e.,

replication), concurrent error detection, watchdog pro-
cesses, checkpointing, etc. [11], [12], [13], [14]. A price
is paid in each case, characterized in terms of overhead
(e.g., additional time, memory space, hardware, etc.).
For instance, replication requires (at least) multiplication
of computational hardware (for simultaneous execution)
or processing time (for serial execution). Alternately,
checkpointing requires mechanisms that periodically
save processing state, with the associated costs of ad-
ditional complexity, requisite memory, and interruption
of the process. The frequency and efficiency of the
checkpointing mechanism will determine how much
space is required, how much data is lost during recovery,
and what needs to be re-computed afterwards.

In every case, at a minimum, some form of monitoring
is required to identify when and where an error or failure
has occurred, in addition to a policy that dictates the
steps of the recovery process (e.g., information about
restarting computations, or continuing them if saved
state is available). Call this minimum recovery oriented
computing (MROC). Given the dimensions of massively
parallel systems, MROC itself requires distribution, as
otherwise it would create an intolerable performance
bottleneck. Hence, at any given time, multiple MROC
mechanisms will be at work simultaneously at dif-
ferent places in the system, each in charge of some
local environment and some remote MROC components,
which also need recovery if their underlying hardware
infrastructure fails.

Due to their distributed nature, MROC components
require additional synchronization and communication
mechansims that allow them to both notify remote com-
ponents of local failures and obtain status and recovery
information from the remote components. Recovery in
such a system is then a highly distributed process that
can ultimately lead to a systematic restart of the whole
system (from a saved state) if all local recovery efforts
fail. Ideally, this process should not only reliably recover
from failures, but also be sensitive to the processing
requirements of the recovered components (e.g., memory
availability, communication bandwidth, etc.). Hence, it
is desirable for MROC to be able to allocate resources
in a way that attains the best (or near-best) performance
for the recovered components, given the dynamic system
contraints at the time of recovery (both in terms of
hardware and software).

III. Combining PIM and ADE
Because PIM is a developing technology, systematic

error detection and error recovery of hardware and
software components has not yet been addressed. We
propose adapting our existing multi-agent ADE sys-
tem, designed for fault-tolerant and real-time distributed
computing in heterogeneous computing infrastructures,
to PIM architectures. Specifically, we modify “heavy-

weight” ADE components (intended to run as compu-
tational processes on server hosts) to run as “light-
weight” threads on PIM memory nodes, while retaining
their monitoring and introspection mechanisms as well
as the reasoning mechanisms incorporated into the spe-
cial ADE infrastructure components responsible for dy-
namic system (re-)configuration capabilities. Critically,
by implementing ADENodes as PIM threads that run
in memory without using any computation time of the
main CPUs, the proposed adaptation will overcome the
performance bottleneck imposed by systematic large-
scale ROC components, thus combining the advantages
of processing in memory with the intelligent system
monitoring, introspection, and reconfiguration mechan-
sims of ADEthat give rise to a highly robust, reliable and
efficient autonomic computing infrastructure.

We start with a brief overview of the PIM architecture
and the ADE system, and then present the details of
the adaptation, which can, in addition to performing
error detection and recovery, take performance needs of
recovered components into account.

A. An Overview of PIM
Processing-In-Memory, or PIM, [6], [7], [8] involves

coupling large amounts of logic and memory on a
single VLSI chip to greatly reduce latency. Rather than
denoting a specific implementation, PIM is a collection
of methods and technologies that cover all aspects of
pushing computation into the memory system, including
programming and execution models, microarchitectural
organization, and physical design and layout. However,
in this case, we use “PIM” to refer to the PIM-Lite [15],
[16], [10] reference implementation, in addition to the
related HTMT [17], [18] and DIVA [7] projects.

Using PIM, accesses from logic to memory no longer
have to go through the memory hierarchy; rather, compu-
tation “follows the data” to memory, yielding up to an or-
der of magnitude reduction in effective latency, directly
addressing the “memory wall” [9] of computer perfor-
mance. Two derivative benefits are immediately gained:
(1) a reduction of total silicon area, as driver/receivers,
off-chip pads, and long range clocking logic are largely
eliminated and (2) a reduction of power consumption
due to removal of logic circuitry.

The PIM-Lite ISA was designed from the outset to
support multiple threads, minimizing the cost of moving
thread state by keeping most of it in memory at all
times, while the microarchitecture supports simultaneous
multi-thread processing. In the PIM model, the state
information of a thread is kept in memory as a data
frame, a region of contiguous memory locations within
a single node. The execution state of a PIM-Lite thread
is completely described by a continuation consisting
of two pointer values: a frame pointer, FP , which
points to the starting location of the data frame, and
an instruction pointer, IP , that points to the current

instruction. Threads in a PIM node are kept in a thread
pool, responsible for scheduling their execution; the
compactness of the continuation representation allows
context switches to take place in single clock cycle.
Threads that operate on a common frame are synchro-
nized with a counting semaphore in the frame slot.

When a PIM thread needs to access data that is
not on the current node, there are two choices: either
bring the data to the thread, or move the thread to the
data. Given the small thread state and the likelihood of
future references to data on a node, the latter option
is especially attractive. The determination as to whether
a given virtual address is on the current node or not
(i.e., the locality) is established by checking the local
page table; if an address is not local, PIM supplies
conditional memory transfer instructions. Remote data is
accessed via a parcel, a very lightweight message pass-
ing mechanism for transferring frame and continuation
data between nodes.

B. An Overview of ADE
ADE [4], [5] is a framework for agent development

that provides robust and reliable middleware services
for the distribution of complex agent architectures across
many hosts. In addition to facilitating parallel operation
of components, it includes mechanisms for monitoring,
error detection, and recovery services that are opera-
tional at application run-time to provide a fault-tolerant
computational environment.

The basic component in ADE is an ADENode, which
is comprised of one or more computational processes
(potentially with multiple threads) that serve requests.
Accessing the services provided by an ADENode is
accomplished via inter-process communication through
some message passing interface. A “supervisor”, a
special type of ADENode, monitors the status of
ADENodes, keeping track of the response of nodes
that “register” with it. The supervisor provides the
backbone of an ADE system; all nodes must register
with a supervisor to gain access to the monitoring and
recovery mechanisms. A set of ADE components may
contain multiple supervisors that mutually register with
one another (to form a connected graph of sub-graphs),
providing both mutual redundancy and the means to
maintain distributed knowledge about the system.

All the components of an implemented architecture
(that is, all ADENodes and supervisors) maintain a
communication link during system operation to provide
status information. At a bare minimum, this consists of
a periodic heartbeat signal that indicates a component
is still functioning (although messages may contain
arbitrary data, such as an error code or other information
about internal component operation). Heartbeats form
the basis for system-wide component failure detection,
used to detect and react to failures resulting from
hardware and software problems (e.g., programs not

responding, malfunctioning computational units, etc.).
In the simplest case, non-reception of a heartbeat is
indicative of system disruption (i.e., inaccessibility of
an ADENode), causing total component restart. Slightly
more complicated is an error code that indicates faulty
component operation, which may require a specially
defined procedure for fault correction.

As mentioned above, supervisors are a special form
of ADENode that are able to mutally register with
one another. Each retains knowledge about registered
ADENodes and is able to transfer that information to
other supervisors, thereby creating a recursive set of dis-
tributed monitoring mechanisms. Internally, in addition
to mechanisms for testing target node availability, these
supervisors consist of high-speed reasoning engines that
allow them to quickly determine potential causes for
ADENode faults (e.g., software bugs or non-repsonsive
nodes) and find the best policy for responding to the
fault(s) (e.g., restart, relocation, reconfiguration, etc.).
ADE has been experimentally validated, demonstrating
its utility as a robust, fault-tolerant infrastructure for
distributed applications (as described in Section V).

C. Implementing Light-weight ADENodes
in PIM Threads

As described above, all components in an ADE system
maintain heartbeat signals; a missing heartbeat indicates
a failed component. When an ADENode receives no
acknowledgment of a sent heartbeat, the heartbeat is
suspended until a replacement supervisor “reconnects”,
at which point the heartbeat is redirected to the new
supervisor. When a supervisor does not receive a heart-
beat in some allotted time, the sending ADENode is
presumed failed and restarted (either on the same host,
or elsewhere if the original host is unavailable). Hence,
two basic mechanisms are necessary to translate ADE’s
failure recovery to PIM architectures: communication of
heartbeat messages and the supervisor’s ability to probe
for host availability.

Given PIM’s lightweight and multi-threaded compu-
tational model, in which context switching takes a single
clock cycle, heartbeats can be implemented as individual
threads that send parcel messages to a supervisor, while
a supervisor probe can be a thread that is executed re-
motely. As each ADENode is a single thread, it is feasi-
ble to assign one ADENode to each PIM node, assigning
subsets of ADENodes to supervisors (which themselves
are special kinds of ADENodes with only infrastructure
functionality). Each non-supervisor ADENode automat-
ically connects on startup to its assigned supervisor and
starts its heartbeat signal. An ADENode that receives
no response to a heartbeat behaves just as described
above, as does a supervisor (substituting “PIM node”
for “host”).

In addition to sending regular heartbeat signals, each
ADENode keeps track of threads executing on the local

PIM node. To do so, each thread is required to notify the
resident ADENode on startup, relocation, and shutdown;
the ADENode confirms threads’ operation by examining
the contents of the local thread pool. This notification
process allows an ADENode to determine when threads
exit abnormally (e.g., due to errors), at which point the
ADENode forwards this information to its supervisor,
which will then take appropriate action (e.g., by asking
the ADENode to restart the thread).1 If restart is not
possible on the PIM node (e.g., due to resource limita-
tions such as newly started threads or hardware failures),
the supervisor can either relocate the thread to another
PIM node that it supervises, or request a transfer of the
thread to the ADENode pool of another supervisor (via a
broadcast message as part of the supervisor heartbeats).

D. Improving Performance
The description of failure recovery given above is

suitable for any set of high-level OS processes (or heavy-
weight threads) that involve light-weight (i.e., PIM)
threads across PIM nodes. While it is possible to assign
arbitrary locations to all light-weight threads in a heavy-
weight process/thread, such random assignment could
significantly impact performance (as PIM threads that
need to communicate, but do not reside on the same PIM
node need to be transferred through the PIM network).
Such locality considerations can be addressed with ADE
techniques by defining an appropriate set of dynamically
updated facts that can be introspected upon and reasoned
about with an appropriate policy.

Specifically, the facts used to address locality include:
(1) a unique identifer (ID) for each PIM node, (2) the
threads currently executing on a PIM node, (3) informa-
tion about the system topology, and (4) the “relatedness”
of threads. If not explicitly specified, (1) can be derived
from the PIM node’s system memory location, while the
data for (2) is contained in an ADENode’s heartbeat (for
efficiency, the heartbeat transmits only changes in the
thread list or an “OK” code if no threads have started or
terminated). We assume that (3) is made available via
some simple data structure that represents the system
(e.g., the number of threads available per PIM node, the
interconnections among PIM nodes, the network latency,
etc.) that may reside in a remote memory location; for
redundancy purposes, it can also be replicated at multiple
known memory locations. To specify (4), threads are
considered “related” when they either perform calcula-
tions on shared memory or when one depends on the
other, as determined by memory access pattern.

To obtain the best locality, threads should not only be
located near the memory data they access, but related

1We are currently investigating the possibility of a mixed “heavy-
weight/light-weight” ADE system, in which the main CPUs run heavy-
weight ADE components, which are directly connected to light-weight
supervisors. That way supervisors can initiate more complex recovery
actions at the system level that can use any of the main heavy-weight
processors.

ADE Nodes

Hardware

Process (P2)

Process (P2)

OS Process

Process (P1)

Supervisor

Supervisor

Process (P2)Process (P1) OS Process

Processes and Threads

ADE Nodes

PT

PTPT

PT

PTPT

PTPT PTPT PT PT

Fig. 1. An example PIM/ADE configuration using a grid topol-
ogy. Top: the processes and related PIM threads (PT). Middle: the
ADENodes that implement the processes and threads shown on the top
level. Bottom: twenty PIM nodes in a grid topology; arrows indicate
an ADENode’s PIM node location, while a neighborhood is shown by
a broken line surrounding five PIM nodes (there are two in the figure,
each with a supervisor at its center).

threads should be located near one another as a group,
where “near” is defined exactly as occupying locations
that minimize latency. For example, a system topology
may be a two-dimensional grid (as shown on the bottom
of Fig. 1), such that nodes located next to one another
have the lowest latency. Note that while minimzing
latency may correspond to physical distance (as in the
figure), it is actually a function of the particular topol-
ogy (e.g., a torus or hypercube would exhibit different
latencies).

Configuration–that is, assigning threads to locations–
is handled by a set of supervisors, each of which is
located in the center of a neighborhood, defined as the
set of PIM nodes adjacent to and including the supervi-
sor’s PIM node. As described earlier, supervisors contain
functions for starting, stopping, and relocating threads.
In addition, they have functions for communicating with
other supervisors, allowing them to obtain information
about remote neighborhoods. They also contain the facts
(mentioned above) about both their local neighborhood
and the system topology in a simple list form, as well
as rules that form a policy.

Let N(p) be the neighborhood of PIM node p, t be the
number of a PIM node’s available thread slots, and T be
a given set of interacting threads. The best configuration
k (i.e., the minimal number of PIM nodes on which to

place the threads) is given by k = |T |/t (in the worst
case, where each PIM node has only a single available
thread, k = T). To maintain maximal locality, we wish
to preserve the relation k ≤ N(p) for each T , where the
location of N(p) coincides with the memory accessed
by the threads in T .

There are multiple cases that have to be addressed. In
the case of an individual thread failure, the supervisor’s
job is find a PIM node in its neighborhood on which to
restart the thread. In the case of a PIM node failure, the
supervisor is not only responsible for restarting all the
failed threads, but also locating them properly. This may
entail relocating any or all threads to another node within
the local neighborhood, or potentially sending them
to another neighborhood, transferring responsibility to
another supervisor. Finally, there is also the case where
a supervisor itself or the node on which it is located
fails, handled by using redundant supervisors located
on a different PIM node. These supervisors are not
actively involved in “neighborhood maintenance”, but
communicate only with the primary supervisor. The
specifics of all of the above are dictated by the policy
rules in place for a given supervisor; not only can each
policy be different, but policies may be adapted during
system operation.

IV. Related Work
Error detection and fault-tolerance has been addressed

in various ways in the literature. One error detection
technique is the use of watchdog processors [11], which
concurrently monitor calculations to detect errors. In
fact, the supervisors described above perform a similar
function, following the same two-phase process: setup,
where the watchdog is given information about the
calculations to check and checking, where the informa-
tion is collected concurrently. Supervisor components
are more flexible, however; they do not require special
hardware (as they are implemented in threads that can
execute on any PIM node), while the rule-based policy
used for checking can be adapted or replaced at run-time
(simply by changing the rule representations). Moreover,
the policy can include a number of detection methods,
as well as a variety of recovery techniques, that are also
adaptable and can be replaced at run-time. Similarly,
supervisory components can be used to facilitate or
implement various concurrent error detection (CED)
schemes, such as those found in [13] (e.g., duplication of
processing, parity prediction, and unidirectional codes).

Various methods for fault recovery have also been pro-
posed. For instance, Lach et al. [12] give algorithms for
efficient run-time fault recovery on FPGA architectures.
In the discussion, error detection, locality, and diagnosis
are assumed; we have described concrete detection and
locality mechanisms above, while diagnosis in PIM
and ADE is performed at a node-granularity (which,

− Data Wire
− Network

− Data and Heartbeat

− ADEServer
− Heartbeat Only

− BatteryBa
− Wheel EncoderW

− Bumper DeviceBu

− Motor DeviceMo
− Laser DeviceL

Sp − Speakers

C − Camera Device
Mi − Microphone

− Sonar DeviceSo

Sentence Parser

Sp

Speech Production

Mi
Speech Recognition

and Execution
Action InterpreterL

Leg/Obstacle

C

Image Processing

Mi

Affect Recognition

Onboard PC

W Ba Bu SoMo

Robot

Logger

Mo

C

Sp

Ba

Bu

W

L
So

C

Mi

Sensors Processing Central Processing Processing Effectors
Perceptual Action

Localization
Mapping and

ADERegistry

ADE Components

Hardware/Network

Abstract Agent Architecture

ADE Components

Laptop−1 Laptop−2

PX − Proximity

AA − Affect Appraisal

OR − Object Recognition

OJ − Object Detection

SO − Sound Detection

AR − Affect Recognition

LZ − Localization

HG − High−level Goals
GM − Goal Manager

VP − Visual Processing

TM − Task Manager
SP − Speech Processing

ME − Memory
RF − Reflexes

MC − Motion Control

OT − Object Tracking

CC − Camera Control

SR − Speech Production

AS − Action Selection

AX − Affect Expression

− Architectural Link

SP

SRAX

SO SP

GMHG

ME AS

TMPX OJ OR

OT CCVP

AR AA PX RF MC

OJ

LZ

SO

GM

TM

AR

SP

RF MC

OT CC

AX

PX
AA

OR

HG

VP
SR

AS

ME

LZ

Fig. 2. The ADE configuration used in the experiments described in Section V. Top: the abstract agent architecture; data flow goes left to right,
starting with sensory input, going through various stages of processing, ending with effector output. Middle: one implementation of functional
components as ADE components, where arrows within the level indicate communication channels; note that the ADERegistry component is the
“heavy-weight” version of the supervisor for the PIM architecture. Bottom: the hardware (two laptops and a robot with an on-board PC that are
connected via an internal network) on which the ADE components execute, located directly above the host on which they reside, where arrows that
cross levels indicate hardware connections.

in the simplest case, corresponds to Lach’s definition
and consists of treating a node as permanently failed).
Unlike these algorithms, the proposed PIM and ADE
setup is free from “providing multiple configurations”;
rather, dynamic configurations can be automatically and
intelligently determined.

Another example of a FPGA fault-recovery technique
is the roving Self-Testing ARea approach (STAR) ap-
proach [14]. The PIM and ADE combination is similar in
that it also “integrates on-line test, diagnosis, and fault-
tolerance in a unified fromework”. However, testing in
our described setup is done on active PIM nodes with no
interruption of system operation. Furthermore, the PIM
and ADE system has no need for pre-defined configu-
rations, but can determine a configuration dynamically,
thus allowing for run-time re-configurations.

V. Experimental Results
To evaluate the utility of ADE’s infrastructural error

detection and recovery mechanisms, which rely on in-
trospection and reasoning about infrastructure configu-
rations, we conducted proof-of-concept experiments in
a “heavy-weight” ADE environment implemented on an
assistive robot that has to interact with humans using
natural language in a joint human-robot task (depicted

in Fig. 2; for details, see [19]). Experiments consider
simulated catastrophic hardware failure of one host in
a classical networked configuration; in particular, the
failure of an entire computational unit (i.e., host com-
puter) and, therefore, the software components executing
on that unit, at run-time, in a time sensitive, dynamic
environment. The time-to-task-completion was recorded
for four separate cases: (1) no failure occurs, providing
a best case scenario, (2) failure occurs with no active
recovery mechanisms, providing a worst case scenario,
(3) failure occurs with recovery mechanisms active and
redundant components already executing, and (4) failure
occurs with recovery mechanisms but without redundant
components. Results are given in Table I.

TABLE I
AVERAGE TIME TO COMPLETION (IN SECONDS) OVER TEN RUNS

FOR COMPUTATIONAL HOST FAILURE.

Category Avg. Time (s) Std. Dev.
No failure 75.47 8.0
Recovery w/ redundancy 87.24 14.0
Recovery w/o redundancy 103.19 26.0
No recovery ∞ n/a

In addition to the quantitative measure of failure
recovery provided by the above experiments, we have

also demonstrated (inadvertently) the extent to which the
underlying ADE system can detect component crashes
and recover from them in a qualitative way. In particular,
ADE was executing on computers in student cluster
environments at the University of Notre Dame; the
only way to stop ADE’s recovery process was to take
whole clusters offline by shutting down the switches
that connected them to the outside world. Given enough
computational units, it will be practically impossible for
failures to bring down the whole ADE system.

It is important to note that the data reported from
the above proof-of-concept experiments of ADE’s failure
recovery mechanisms reflect the use of “heavy-weight”
components in a multi-host environment that relies on
TCP/IP networking. Failure detection in that environ-
ment takes approximately 8 seconds, while component
recovery or restart requires an additional, component-
dependent time. When incorporated into PIM architec-
tures, the corresponding error detection and recovery
of light-weight ADENodes will occur in times that are
several orders of magnitude faster. Since only a few
prototypes of PIM chips are currently available that are
inadequate for performance testing, we expect to obtain
fine-grained performance data of error detection and re-
covery in the near future via the SALT simulator. SALT
is a purpose-written simulator that is intended to provide
a software testbed for threaded applications in PIM
architectures that is currently in the final stages of its
development, designed to provide detailed performance
data for threaded applications (see [10] for more on the
simulation models). Hence, once completed, SALT will
allow us to run and test the adapted ADE system and
collect quantitative data about the functionality of ADE
and the various overheads (e.g., in terms of memory and
PIM threads).

VI. Conclusion
We have described how concepts established and

implemented in the context of a distributed multi-
agent system like ADE can be leveraged and applied
to the hardware level of massively parallel computing
infrastructures like PIM systems in order to implement
recovery oriented computing. In addition to providing
preliminary experiments that confirm the viability of
the ADE approach at the classical network level, the
method of PIM implemention has been laid out and
is awaiting completion of the SALT simulator to begin
initial testing. We expect this combination of ADE and
PIM to exceed the performance achieved by other error
detection and recovery methods, while putting little to
no strain on heavy-weight CPUs due to its complete
embedding in PIM memory. By allowing dynamic re-
configurations, the proposed mechanism will provide the
basis for achieving the introspective system awareness
required for the long-term, robust, and autonomic oper-
ation of massively parallel computing systems.

References
[1] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,

J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft, “Recovery-oriented computing (ROC): Motivation,
definition, techniques, and case studies,” UC Berkeley Computer
Science, Tech. Rep. UCB//CSD-02-1175, 2002.

[2] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-
compliant agent framework,” in Proc. of the 4th International
Conference and Exhibition on the Practical Application of Intel-
ligent Agents and Multi-Agents, 1999, pp. 97–108.

[3] K. Sycara, M. Paolucci, M. V. Velsen, and J. Giampapa, “The
RETSINA MAS infrastructure,” Autonomous Agents and Multi-
Agent Systems, vol. 7, no. 1, pp. 29–48, 2003.

[4] V. Andronache and M. Scheutz, “Integrating theory and practice:
The agent architecture framework APOC and its development
environment ADE,” in Proc. of Autonomous Agents and Multi-
Agent Systems, 2004, pp. 1014–1021.

[5] M. Scheutz, “ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures,”
Applied Artificial Intelligence, vol. 20, no. 4-5, 2006.

[6] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovı́c, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick, “Scalable
processors in the billion-transistor era: IRAM,” IEEE Computer,
vol. 30, no. 9, pp. 75–78, 1997.

[7] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Drapper,
J. LaCoss, J. Granacki, J. Brockman, A. Srivastava, W. Athas,
V. Freeh, J. Shin, and J. Park, “Mapping irregular applications
to DIVA, a PIM-based data-intensive architecture,” in ACM
International Conference on Supercomputing (SC’99), 1999.

[8] G. Kirsch, “Active memory device delivers massive parallelism,”
in Microprocessor Forum, San Jose, CA, 2002.

[9] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the memory
wall: The case for processor/memory integration,” in Proc. of the
23rd International Symposium on Computer Architecture, 1996,
pp. 90–101.

[10] S. Thoziyoor, S. Kuntz, J. Brockman, and P. Kogge,
“Cost/performance analysis of a multithreaded PIM architecture,”
2005, IEEE Transactions on VLSI, under review.

[11] A. Mahmood and E. McCluskey, “Concurrent error detection
using watchdog processors-a survey,” IEEE Transactions on
Computers, vol. 37, no. 2, pp. 160–174, 1988.

[12] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Algorithms for
efficient runtime fault recovery on diverse FPGA architectures,”
in International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT ’99), 1999, pp. 386–394.

[13] S. Mitra and E. McCluskey, “Which concurrent error detection
scheme to choose?” in Proc. of International Test Conference,
2000, pp. 985–994.

[14] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic
fault tolerance in FPGAs via partial reconfiguration,” in Proc.
8th Ann. IEEE Symp. Field-Programmable Custom Computing
Machines (FCCM ’00), 2000, pp. 165–174.

[15] J. Brockman, P. Kogge, S. Thoziyoor, and E. Kang, “PIM lite: On
the road towards relentless multi-threading in massively parallel
systems,” University of Notre Dame, Tech. Rep. TR-03-01, 2003.

[16] S. Thoziyoor, J. Brockman, and D. Rinzler, “PIM lite: A multi-
threaded processor-in-memory prototype,” in GLSVSLI ’05:
Proc. of the 15th ACM Great Lakes Symposium on VLSI, 2005,
pp. 64–69.

[17] J. Brockman, P. Kogge, V. Freeh, S. Kuntz, and T. Sterling,
“Microservers: A new memory semantics for massively parallel
computing,” in Proc. of the 1999 International Conference on
Supercomputing, 1999, pp. 454–463.

[18] T. Sterling and L. Bergman, “A design analysis of a hybrid
technology multithreaded architecture for petaflops scale com-
putation,” in Proc. of the 1999 International Conference on
Supercomputing, 1999, pp. 286–293.

[19] M. Scheutz, P. Schermerhorn, J. Kramer, and C. Middendorff,
“The utility of affect expression in natural language interactions
in joint human-robot tasks,” in ACM Conference on Human-
Robot Interaction (HRI2006), 2006.

