
ADE: Filling a Gap Between Single and Multiple Agent Systems

James Kramer and Matthias Scheutz
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
{jkramer3,mscheutz}@cse.nd.edu

Abstract

Agent systems tend to focus either on indi-
vidual agent architectures or the infrastruc-
ture required for multi-agent interaction and
distributed computing. Defining a feature
set for each type of system highlights a “gap”
between them. A system in that gap exhibits
additional features not found in either type
alone. We argue that these “gap features”
are of crucial importance for complex, in-
telligent, agent-based applications. In addi-
tion to specifying the SAS, MAS, and “gap”
feature sets, five agent systems are com-
pared accordingly. We then give a descrip-
tion of an implemented robotic application
that demonstrates the utility of all the iden-
tified “gap features”.

1 Introduction

“Agent systems”, which we distinguish here as single-
agent and multi-agent systems (SAS and MAS, respec-
tively), for developing complex agent-based applica-
tions generally exhibit disparate features. SAS tend to
focus on the organization of functional components in
an agent architecture. MAS, on the other hand, focus
on providing the computing infrastructure–a “social
environment” in which multiple agents can interact.

The SAS/MAS distinction is substantial enough to
highlight an important niche in the system space that
we call the SAS/MAS gap. A system in this gap would
provide computing infrastructure plus intelligence, i.e.,
support for individual agent architecture development
as well as the infrastructure necessary for agent-to-
agent interaction. We believe that a synthesis of both
kinds of system is necessary for the development of
complex, intelligent, autonomous applications. For
example, a task involving a joint human-robot team
might require a wide range of AI techniques, whose
computational demands require the distribution of a
complex agent architecture over multiple hosts. Fur-
thermore, security (e.g., data privacy and system ac-
cess), run-time system modification, and reliability
(i.e., failure detection and recovery) features may also
be required. A system that synthesizes SAS and MAS

provides these advanced features, which are not pos-
sible in either type of system alone.

2 The SAS/MAS Distinction

An “agent system” facilitates the task of defining and
implementing an agent-based application. Differences
between SAS and MAS are a recognized research issue;
for instance, a similar distinction is made in [Jennings
et al., 1998], while in [Zambonelli and Omicini, 2004] it
is characterized in terms of scales of observation (mi-
cro, macro, and meso). However, a novel perspective
on the area between them can be gained by first es-
tablishing the distinct features exhibited by SAS and
MAS, then examining the results of their combina-
tion. We note that any list of features is open-ended
and necessarily incomplete; we include only those that
pertain to the “gap features” presented in Section 31.

2.1 Single Agent Systems (SAS)

We identify five SAS features in total. The first, device
abstractions (S1), refers to the interfaces of modules
available in an agent system [Vaughan et al., 2003],
which can be physical sensors and/or effectors, such
as cameras, sonar, or laser hardware, or virtual pro-
cessing units such as speech or database APIs. Fea-
ture S2, software integration, refers to tools that fa-
cilitate the integration of external software, either at
the component level (e.g., a localization routine) or a
complete application-as-component (e.g., speech pro-
duction), greatly enhancing development time and ef-
fort. Predefined components (S3) are analogous to
software libraries; their inclusion in an agent system
allows rapid agent development, saving the designer
both time and effort. Hierarchical structures (S4) re-
fer to the common software engineering technique that
promotes organization, functional encapsulation, and
component reuse. Finally, feature S5 concerns main-
taining component state, which can be used for de-
bugging, repetition of application execution, gathering
performance statistics, or detecting improper compo-
nent operation.

1An expanded version of this paper will include more
features.



Type Feature Soar Player/Stage Swarm RETSINA ADE
S1: “Device” abstractions

√ √

S S2: Software integration
√ √

A S3: Predefined components
√ √

S S4: Hierarchical structures
√ √ √ √

S5: Maintaining component state
√ √ √ √

M1: Multiple, Concurrent Services
√ √ √

M M2: Agent naming service
√ √ √

A M3: Agent management
√ √ √ √

S M4: Authentication and access control
√ √

M5: Maintaining system state
√ √ √

Table 1: Agent System Feature Satisfaction

2.2 Multi-agent Systems (MAS)
We identify five MAS features in total. The first, mul-
tiple, concurrent services (M1), refers to the ability
of an agent to provide its services to multiple other
agents simultaneously. Feature M2, an agent nam-
ing service, provides location transparency, mapping
an agent’s name to a network location to enhance dis-
tribution of an application over many computational
hosts. Agent management, feature M3, refers to the
ability to externally control an agent’s operation, in-
cluding starting, stopping, suspending or adjusting
an agent’s parameters. Agent authentication and ac-
cess control (M4) are security concerns that ensure an
agent has proper credentials to use the services offered
by another agent. Finally, feature M5, maintaining
system state, refers to keeping a model of the struc-
ture of all parts of the system, whether it is explicitly
specified or derived by some means.

2.3 Selected Agent Systems
To make the character of a system exhibiting these fea-
tures more concrete, an overview of five selected agent
systems follows, chosen as examples of the broad range
of systems used for developing agent applications. We
describe the SAS and MAS features found and lacking
in each system, summarized in Table 1.

SOAR [Laird et al., 1987] is an example of a uni-
fied cognitive architecture. Its purpose is to provide
aspects of a cognitive agent which are constant over
time; that is, its structure must be applicable in a va-
riety of domains and not dependent on the knowledge
encoded therein. At its heart, Soar is a production-
rule system that relies on a rete-network [Forgy, 1982]
for actual implementation.

Soar incorporates hierarchical structures and main-
tains component state (S4 and S5), through the use of
its knowledge base and its decision procedures. How-
ever, being a cognitive architecture (that is, mostly
concerned with internal reasoning and problem solv-
ing), Soar does not provide “device” abstractions or
predefined components (S1 and S3). While there are
mechanisms for external input and output, there is
little to no support for software integration (S2).

The only MAS feature found in Soar is agent man-
agement. Other MAS features are most likely lacking

due to the focus on individual agents operating on
a single host. For instance, when developing a single
agent, neither an agent naming service nor authentica-
tion and access control mechanisms (M2 and M4) are
necessary. Similarly, the ability of an agent to provide
multiple, concurrent services (M1) assumes multiple
processes exist to use those services. Finally, there is
no notion of maintaining system state (M5) outside
of individual agents.

Player/Stage [Gerkey et al., 2003] project is for de-
veloping robotic applications. Player is a server inter-
face for application implementation, while Stage pro-
vides simulation facilities. Rather than treat a robot
as the primary unit of agency, it focuses on devices
[Vaughan et al., 2003], or functional components of a
robotic architecture.

Player/Stage, being concerned with the physical ne-
cessities of working with robots, provides strong sup-
port for “device” abstractions, software integration,
and predefined components (S1, S2, and S3). Since
the primary unit of agency is a device (i.e., a com-
ponent), it also provides mechanisms for maintaining
component state (S5). Furthermore, the inclusion of
a passthrough device, which allows agent designers to
consolidate devices in a single interface, satisfies fea-
ture S4 (hierarchical structures).

Devices are designed such that they are multi-
threaded (satisfying M1, multiple, concurrent ser-
vices) and a rudimentary agent naming service (M2)
supports distribution of devices across hosts. How-
ever, the designers of Player/Stage explicitly avoid
adding infrastructure to keep the system “free from
the computational and programmatic overhead that
is generally associated with [it]” [Gerkey et al., 2003].
Thus, little in the way of agent management, authen-
tication and access control, and maintaining system
state (M3, M4, and M5) are supported.

Swarm [Minar et al., 1996; Swarm, 2005] is an agent
based modeling (ABM) system used for artificial life
and complex systems simulations. ABM relies on
defining many simplified individuals by specifying a
set of characteristics, placing the agents in some con-
text (or environment), specifying the relations and in-
teractions of the individuals, setting the initial condi-



tions, and then running the simulation.
With its focus on complex systems, Swarm provides

support for both hierarchical structures and extensive
maintainence of component state (S4 and S5). How-
ever, since agents are simplified models of individuals
that interact within the specified environment, no sup-
port is given for “device” abstractions, software inte-
gration, nor predefined components (S1, S2, and S3).

Similarly, the focus on the study of complex sys-
tems indicates support for both agent management
and maintaining system state (M3 and M5). But
because agents are simplified models of interacting in-
dividuals, there is no need for agents to provide mul-
tiple, concurrent services (M1). Swarm does not pro-
vide any infrastructure for distributed computing, so
features M2 and M4 (an agent naming service and
authentication and access control) are not supported.

RETSINA [Sycara et al., 2003] is a framework that
facilitates complex agent interactions by establishing
an open environment in which heterogeneous agents
can participate. A variety of infrastructure compo-
nents are linked to form the agents’ “environment”.

Because RETSINA is only a framework that pro-
vides an environment in which agents interact, it does
not support any SAS features. Rather, it is agnostic
towards individual agents, which are assumed to be
implemented independently of the system.

Conversely, exactly because it is a framework for the
interaction of multiple agents, RETSINA provides all
MAS features. Assuming the individual agent sup-
ports it, multiple, concurrent services (M1) is en-
abled, made accessible across hosts by the inclusion
of an agent naming service (M2). In addition to sim-
ply maintaining system state (M5), RETSINA also
allows agent management (M3) for high-level control
of system operation. Another aspect of system con-
trol is robust authentication and access control (M4)
mechanisms (discussed in [Singh and Sycara, 2004]).

ADE [Andronache and Scheutz, 2006; Scheutz, 2006]
is a programming environment for distributed agent
architectures designed with robotic applications in
mind as an end-to-end development environment that
provides a comprehensive set of design tools integrated
with an infrastructure in which to use them. A guid-
ing principle of ADE is that functional components of
an agent architecture can assume the characteristics of
independent agents, while preserving the notion that
agents themselves may have internally complex archi-
tectures. An “agent” in ADE is called an ADEServer,
which may be a simple component-as-agent or include
a mix of components and other ADEServers to form a
complex ADEServer.

Due to its development for robotic applications, ADE
provides a set of “device” abstractions, predefined com-
ponents, and wrappers for software integration (S1,
S2, and S3). Hierarchical structures, feature S4, are
supported through the ability to treat architectural
components as individual agents that can also have
complex internal architectures. Finally, maintaining

component state (S5) is supported through logging
mechanisms and the use of a heartbeat signal that pe-
riodically updates a component’s status.

Unless specifically restricted, an ADE component
provides multiple, concurrent services (M1) to other
components. Restriction is controlled by an ADE
infrastructure component called the ADERegistry,
which is an enhanced agent naming service (M2) that
organizes, tracks, and controls access to ADEServers.
An ADERegistry implements authentication and ac-
cess control (M4) at the system level by requiring ap-
proval for ADEServer registration, when an individ-
ual ADEServer can specify finer grained access infor-
mation. Since every ADEServer is accessible through
an ADERegistry, both agent management and main-
tainence of system state (M3 and M5) are possible.

3 The SAS/MAS Gap

3.1 Gap Features
An agent system with both SAS and MAS features
provides an expanded set of design options over ei-
ther type of system alone. In addition to supporting
the individual SAS and MAS features, other features
result from their synthesis. We identify five of these
“gap features”, which we believe are crucial for com-
plex agent-based applications.

G1: Distributed Architectures Inclusion of an
agent naming service (M2) facilitates the distribution
of agents across many hosts, making knowledge of an
agent’s location unimportant. Providing the means to
decouple a component’s location through assignment
of a name allows any part of an individual agent ar-
chitecture to be located on any connected host. In
addition, the use of device abstractions, software inte-
gration, and predefined components (S1, S2, and S3)
can be used to transform architectural components
into agents that are assigned names.

G2: Shared, Location Independent Compo-
nents The combination of device abstractions with
the ability to service multiple agents (S1 and M1)
allows architectural components to be shared. A fur-
ther enhancement is made with the inclusion of an
agent naming service (M2) to facilitate distribution.
Additionally, using software integration mechanisms
and maintaining component state (S2 and S5) can be
used to essentially create a “staging area” in the inter-
face to external software, explicitly providing context
switching for multiple use.

G3: Run-time Component Substitution The
ability to control execution of individual agents in a
MAS (agent management, M3) is due to the fact that
agents in a MAS operate independently of one an-
other. SAS components, on the other hand, are often
tightly integrated and rely on synchronous operation;
halting one typically leads to a total breakdown in
system function. Applying agent management mech-
anisms to components can avoid this issue. Further-
more, given the ability to maintain component state



(S5), where the state is summarized by a device ab-
straction (S1), a component that can be managed like
an agent can save its state, be halted, and replace by
another component that uses the same abstraction.

G4: Secure Subsystem Separation A benefit of
using a hierarchical structure (S4) is to accommodate
the breakdown of a system into subsystems that can
be more easily understood. Decomposition of a sys-
tem into subsystems often takes advantage of device
abstractions, predefined components, or software inte-
gration (S1, S2, and S3) for a clear specification of
the architecture. A MAS that incorporates security
mechanisms such as authentication and access con-
trol (M4) provides coarse-grained access control at
the agent level. The combination of these features
restricts access to a given subset of components, yield-
ing secure subsystem separation. Furthermore, a sys-
tem that provides transparently distributed architec-
tures (G1), which includes an agent naming service
(M2), is able to extend this across multiple hosts.

G5: Failure Handling Detecting failures of a com-
ponent’s operation depends on being able to assess
the component state (S5). When using hierarchical
structures (S4), failures may affect components indi-
rectly, as a component may rely on information from
a component to which it is not directly connected.
Combined with a model of the system, that is, the
system state (M5), detection of failures can propa-
gate throughout the entire architecture, giving each
component an “awareness” of far-reaching areas of the
system and potentially adjusting their own operation.
Robust operation would further be enhanced by mech-
anisms that support failure recovery. Incorporating
agent management (M3) facilities can be used to make
attempts to recover from detected failures. Further-
more, the maintenance of component state can provide
the means to restart a component in the state existing
when failure occurred.

3.2 Utility of a “Gap” System

We feel that an agent system that displays all the SAS,
MAS and gap features identified is crucial for the de-
velopment of future intelligent agent applications. In
general, such applications will require an infrastruc-
ture that supports highly controlled access to differ-
ent kinds of information stored within a distributed
system. Moreover, refined internal monitoring and su-
pervision tools are needed to detect failures of com-
ponents, initiate recovery, and ensure the long-term,
autonomous operation of the application.

At a large enough scale, an application will require
distribution (G1), due to the high computational de-
mands of the utilized AI technology. Sharing com-
ponents (G2), particularly when done transparently
(that is, without concern for component location), is
one way to mitigate the demand for resources. During
the application’s execution lifetime, it may be neces-
sary to upgrade arbitrary components, made possible

with run-time component substitution (G3). A com-
mon concern in distributed systems is the ability to
keep potentially sensitive or proprietary data secure;
maintaining a separation of subsystems that make use
of security mechanisms (G4) provides one method for
promoting system security. Finally, a system that pro-
vides failure detection and recovery mechanisms (G5)
allows increased application up-time and graceful sys-
tem degradation.

At the same time, the benefit of these features is
not guaranteed. For instance, the network latency in-
volved in distributing a highly reactive control system
may harm the application’s real-time performance.
Nonetheless, each of features G1-5 enable capabili-
ties that have to be addressed in certain cases; we
feel that such cases are far more prevalent than those
where they will be detrimental.

3.3 Agent System Comparison
While a system’s evaluation is always dependent on
the choice of relevant features, no consensus has been
reached regarding definitive analysis criteria. As Ri-
cordel [Ricordel and Demazeau, 2000] points out, “any
criteria is relevant to a specific outside need, and a
platform can only be compared relatively to another
one”. However, an objective comparison of agent sys-
tems can be made by constructing a two-dimensional
“agent system space” where dimensions consist of SAS
vs. MAS features. Agent systems can then be com-
pared by placing them in that space.

S
A
S

O− SOAR

W− Swarm
P− Player/Stage

− RETSINAR
A− ADE

Key:

MAS

O W

R

P A

Figure 1: Agent System Placement in SAS/MAS
Space

Figure 1 illustrates the agent-system space that re-
sults from putting the SAS and MAS features, found
in Sections 2.1 and 2.2, on the X- and Y-axes, respec-
tively. The “gap” between the systems is indicated
by the area between the dotted lines. The agent sys-
tems from Section 2.3 are placed in the agent space ac-
cording to their “score”, which is the sum of features
along each dimension that they exhibit (as shown in
Table 1). An agent system that occupies a position in
the upper-right corner indicates that it exhibits many
or all of the SAS and MAS features, and consequently
also the “gap” features.

Only Swarm, Player/Stage, and ADE have the SAS
and MAS features necessary to exhibit any of the
“gap” features. Since Swarm is used to study the large
scale interactions of generally simple and highly inde-



− Data Wire
− Network

− Data and Heartbeat

−ADEServer
− Heartbeat Only

− BatteryBa
− Wheel EncoderW

− Bumper DeviceBu

− Motor DeviceMo
− Laser DeviceL

Sp − Speakers

C − Camera Device
Mi − Microphone

− Sonar DeviceSo

Sentence Parser

Sp
Speech Production

Mi
Speech Recognition

and Execution
Action InterpreterL

Leg/Obstacle

C
Image Processing

Mi
Affect Recognition

Laptop
Onboard PC

W Ba Bu SoMo

Robot

Logger

Laptop

Mo

C

Sp

Ba
Bu

W

L
So

C
Mi

Sensors Processing Central Processing Processing Effectors
Perceptual Action

Localization
Mapping and

ADERegistry

ADE Components

Hardware/Network

Abstract Agent Architecture

ADE Components

PX − Proximity
AA − Affect Appraisal
OR − Object Recognition
OJ − Object Detection
SO − Sound Detection
AR − Affect Recognition
LZ − Localization
HG − High−level Goals
GM − Goal Manager
VP − Visual Processing
TM − Task Manager
SP − Speech Processing
ME − Memory
RF − Reflexes
MC − Motion Control
OT − Object Tracking
CC − Camera Control
SR − Speech Production
AS − Action Selection
AX − Affect Expression

− Architectural Link

SP

SRAX

SO SP

GMHG
ME AS

TMPX OJ OR

OT CCVP

AR AA PX RF MC

OJ

LZ

SO

GM

TM

AR

SP

RF MC

OT CC

AX

PX
AA

OR

HG

VP
SR

AS

ME

LZ

Figure 2: Left: The DIARC Architecture. Right: The robot performing a task.

pendent agents whose individual failure is not gen-
erally a concern, its support of feature G5 (failure
handling) is almost incidental to system operation.
Player/Stage satisfies both features G1 and G2 (dis-
tributed architectures and shared, location independent
components), but the designers explicitly shy away
from providing the infrastructure necessary for the
other gap features (see Section 2.3). For certain ap-
plications, this is entirely acceptable; however, a large
class of agent applications require more. Only ADE
supports all of the specified “gap” features.

4 A “Gap” Application

We give a description of an implemented application
that uses all the gap features listed in Section 3. The
DIARC architecture is being used to examine the role
of affect in a social robot that interacts with humans
using natural language in joint human-robot tasks
[Scheutz et al., 2006] and has been demonstrated in
a robotic competition [Scheutz et al., 2004]. The
left side of Figure 2 shows a “3-level” depiction of
the architecture. The bottom, or “Hardware Level”,
specifies hosts and connections. The middle level, re-
ferred to as the “ADE Component Level”, uses rounded
rectangles to show the ADEServers in the applica-
tion. Two types of lines signify communication con-
nections: a dotted line indicates a client/server con-
nection over which a “heartbeat” is sent, where the
solid arrowhead indicates the originating ADEServer
and the empty arrowhead indicates the component re-
ceiving the ADEClient (as discussed in Section 2.3),
wheras a dashed/dotted line is used to represent a
connection over which both a heartbeat signal and
other data is transferred. Hardware devices used by
an ADEServer are depicted by a set of labelled squares

within a rectangle. The top level is referred to as
the “Abstract Agent Architecture Level”, where dark-
ened ovals represent architectural components that are
shown in a data flow progression from sensory input
on the left to effector output on the right, grouped into
five high-level categories. Two relations between the
bottom and middle levels are shown: (1) ADEServers
are placed in a vertical column directly above the host
on which they execute and (2) connections between
hardware devices and the ADEServers that use them
are indicated by solid lines that cross the separating
line. The relation between the middle and top levels
consists of including a darkened oval that represents a
functional architectural component of an agent within
an ADEServer’s rectangle.

This example has been implemented using an Activ-
Media Peoplebot (shown on the right of Figure 2) with
a pan-tilt-zoom camera, a SICK laser range finder,
three sonar rings, and an on-board 850 MHz Pentium
III. In addition, it is equipped with two PC laptops
with 1.3 GHz and 2.0 GHz Pentium M processors,
each with a microphone, and one with two external
speakers. All three run Linux with a 2.6.x kernel and
are connected via an internal wired ethernet; a single
wireless interface on the robot enables system access
from outside the robot for the purpose of starting and
stopping operation. Obstacle detection and avoidance
is performed on the on-board computer, while speech
recognition and production, action selection, and sub-
ject affect recognition are performed on the laptops.

Using three hosts for application execution demon-
strates feature G1, distributed architectures. “Logger
Server” execution is an example of feature G2, shared,
location independent components, in that the “Affect
Recognition”, “Robot”, and “Speech Recognition”
components all make use of logging; the logger was, at



various times, located on different hosts. Feature G4,
secure subsystem separation, was demonstrated by the
“Sentence Parser” server, which only allowed access
to the “Action Interpreter and Execution” server.
Finally, features G3 and G5, run-time component
substitution and failure handling, were demonstrated
throughout application testing and execution.

With the entire architecture executing, various com-
ponents were purposely interrupted to confirm server
inter-dependencies and test the robustness of the
system, for which we give three examples. First,
the “Action Interpreter and Execution” server was
forcibly taken down, at which point a chat-bot pro-
gram embedded in the “Speech Recognition” server
handled conversational duties until a new connec-
tion was made. Upon not receiving a heartbeat
from the “Action Interpreter and Execution” server,
the ADERegistry restarted it; once recovered, the
new “Action Interpreter and Execution” server re-
established connections with the other servers and sys-
tem operation continued. Second, the “Image Pro-
cessing” server was stopped. The “Action Interpreter
and Execution” server relayed this to the “Robot”
server, which does not have a direct connection to the
“Image Processing” server, causing the motors to be
shut off for safety reasons. Additionally, speech was
generated by the “Action Interpreter and Execution”
server to alert the user. Finally, the ADERegistry was
forcefully interrupted and manually restarted. Upon
restart, ADEServers re-registered for full restoration
of system functionality. In fact, at least once the bat-
teries powering the robot base failed, causing the on-
board computer to shut down; when brought back up,
the components executing on the laptops automati-
cally reconnected and the system continued operation,
demonstrating the robustness of the system.

5 Conclusion
Specification of SAS and MAS features allows compar-
ison of agent systems and highlights a niche in the re-
sultant “agent system space”. An agent system in this
“gap” provides features that are only possible when all
the listed SAS and MAS features are also supported;
of the five agent systems in Section 2.3, only ADE “fills
the gap”. While not every agent-based application re-
quires all these features, they are crucial for a certain
class of agent-based applications, i.e., those that rely
on a variety of computationally expensive AI tech-
nologies, operate autonomously in a reliable way, and
provide secure, fine-grained access control, such as the
one presented in Section 4.

References
[Andronache and Scheutz, 2006] V. Andronache and

M. Scheutz. ADE - a tool for the development
of distributed architectures for virtual and robotic
agents. In P. Petta and J. Müller, editors, Best of
AT2AI-4, volume 20, 2006.

[Forgy, 1982] C. Forgy. RETE: A fast algorithm for
the many pattern/many object pattern match prob-
lem. Artificial Intelligence, 19(1):17–37, 1982.

[Gerkey et al., 2003] B. Gerkey, R. Vaughan, and
A. Howard. The Player/Stage project: Tools for
multi-robot and distributed sensor systems. In Pro-
ceedings of the 11th International Conference on
Advanced Robotics, pages 317–323, Coimbra, Por-
tugal, June 2003.

[Jennings et al., 1998] N. Jennings, K. Sycara, and
M. Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent
Systems, 1(1):7–38, 1998.

[Laird et al., 1987] J. Laird, A. Newell, and P. Rosen-
bloom. SOAR: An architecture for general intelli-
gence. Artificial Intelligence, 33:1–64, 1987.

[Minar et al., 1996] N. Minar, R. Burkhart, C. Lang-
ton, and M. Askenazi. The swarm simulation sys-
tem: A toolkit for building multi-agent simulations.
Technical Report Working Paper 96-06-042, Santa
Fe Institute, 1996.

[Ricordel and Demazeau, 2000] P. Ricordel and
Y. Demazeau. From analysis to deployment:
A multi-agent platform survey. In Engineering
Societies in the Agents World, volume 1972 of
LNAI, pages 93–105. Springer-Verlag, Dec 2000.

[Scheutz et al., 2004] M. Scheutz, V. Andronache,
J. Kramer, P. Snowberger, and E. Albert. Rudy:
A robotic waiter with personality. In Proceedings of
AAAI Robot Workshop. AAAI Press, 2004.

[Scheutz et al., 2006] M. Scheutz, P. Schermerhorn,
and J. Kramer. The utility of affect expression in
natural language interactions in joint human-robot
tasks. ACM Conference on Human-Robot Interac-
tion (HRI2006), forthcoming, 2006.

[Scheutz, 2006] M. Scheutz. ADE - steps towards a
distributed development and runtime environment
for complex robotic agent architectures. Applied
Artificial Intelligence, forthcoming, 2006.

[Singh and Sycara, 2004] R. Singh and K. Sycara. Se-
curing multi agent societies. Technical Report
CMU-RI-TR-04-02, Carnegie Mellon Robotics In-
stitute, 2004.

[Swarm, 2005] The swarm multi-agent simulation
system. http://www.swarm.org/wiki/Main Page,
2005.

[Sycara et al., 2003] K. Sycara, M. Paolucci, M. Van
Velsen, and J. Giampapa. The RETSINA MAS in-
frastructure. Autonomous Agents and Multi-Agent
Systems, 7(1):29–48, 2003.

[Vaughan et al., 2003] R. Vaughan, B. Gerkey, and
A. Howard. On device abstractions for portable,
resuable robot code. In Proceedings of IROS 2003,
pages 2121–2427, 2003.

[Zambonelli and Omicini, 2004] F. Zambonelli and
A. Omicini. Challenges and research directions in
agent-oriented software engineering. Autonomous
Agents and Multi-Agent Systems, 9(3):253–283,
2004.


