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Abstract— Robots that can interact naturally with humans
require the integration and coordination of many different com-
ponents with heavy computational demands. We argue that an
architecture framework with facilities for dynamic, reliable, fault-
recovering, remotely accessible, distributed computing is needed
for the development and operation of applications that support
and enhance human activities and capabilities. We describe a
robotic architecture development system, called ADE, that is built
on top of a multi-agent system in order to provide all of the
above features. Specifically, we discuss support for autonomic
computing in ADE, briefly comparing it to related features of other
commonly used robotic systems. We also report our experiences
with ADE in the development of an architecture for an intelligent
robot assistant and provide experimental results demonstrating
the system’s utility.

I. INTRODUCTION

Complex robots that interact with humans in typical hu-
man environments require the integration of a large set of
highly sophisticated techniques from diverse subfields (e.g.,
various kinds of sensory and perceptual processing, natural
language processing and understanding, multiple modes of
reasoning and problem solving, etc.). Moreover, these robots
will be expected to operate (largely) autonomously in “open
computing environments” with little or no intervention from
their designers, and thus have to be programmed in a way to
maximize their reliability and safety.

While research in robotic systems has addressed many
important aspects of human-assistive robotics in the recent past
(e.g., [1], [2]; also [3] regarding distributed sensing and control
and [4] regarding fault tolerance), no current robotic system
provides the necessary infrastructure features (e.g., robust
distribution techniques, system security, remote maintenance
and management, failure detection and recovery, autonomous
system reconfiguration, etc.) which we believe are critical in
constructing “intelligent robots”.

In this paper, we describe a novel architectural framework,
ADE, which is well-suited for the development and deployment
of complex human assistive robots. Building on work from
multi-agent systems (MAS) (e.g., [5], [6]), ADE provides
computing infrastructure plus intelligence, i.e., support for
individual agent architecture development together with the
distributed computing infrastructure of a MAS. Specifically,

ADE treats architectural components of robotic architectures
as autonomous “agents” (in the MAS sense), allowing the
implementation of critical features mentioned above. In par-
ticular, we focus on the autonomic computing [4], [7] aspects
of ADE; that is, features that enhance a system’s ease of use,
availability, and security through autonomous action, including
fault-tolerance and system reconfiguration.

II. COMPLEX ROBOTIC ARCHITECTURES

The need for a robotic framework supporting the system-
atic parallelization of heterogeneous components of agent
architectures over multiple hosts in heterogeneous computing
environments is best illustrated by a quote from the authors of
the GRACE project [8]. GRACE is one of the most advanced
recent robots and relies on many different software packages,
four separate processors, and a wireless link to the “outside”
world: “One of the more difficult parts of the Challenge for us
was determining how to integrate a vast amount of software
that had been developed by the participating institutions,
mostly on different hardware platforms.”

Applications that bring together human abilities and intelli-
gent robots require a wide range of AI techniques (e.g., natural
language interaction, vision processing, advanced planning
and reasoning, etc.), whose computational demands necessitate
the distribution of complex agent architectures over multiple
hosts. Furthermore, run-time system modification, reliability
(i.e., failure detection and recovery), and automatic system
(re)configuration capabilities (aspects of autonomic comput-
ing), will also be required for safe, robust operation.

The difficulty of integrating diverse software components
in a systematic manner is not specific to robotics, but rather
a general software engineering problem. There is a need to
distinguish between the functional break-down of a robotic
architecture into constituent modules (e.g., action planner,
plan execution, localization and map-making, feature and
object detection and tracking, etc.), their interactions, and the
operation of these components in the running system. This
division is a recognized issue in agent research; for example,
in agent-oriented software engineering, these different aspects
of a system have been characterized as belonging to separate
“scales of observation” (micro, macro, and meso) [9].
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Fig. 1. Left: Sample depiction of ADE components. The top, middle, and bottom of each box indicate the component’s name, connections, and host,
respectively. A description of lines and arrowheads is given in the text. Right: Screen capture of the ADE GUI from the application described in Section IV.

Current systems used in robotics tend to focus on the
micro-scale, providing features such as hardware abstractions,
sensory processing routines, simulators, and other tools for
the design and implementation of robotic architectures. For
instance, Saphira [10], Player/Stage [11], MARIE [12] (with
the related RobotFlow and FlowDesigner software), and Mis-
sionLab [13] are well-known systems for developing robotic
applications that provide design tools and a large selection of
implemented functional components that work across many
different robot platforms. While all provide mechanisms and
methods that support distributed computing, they provide
neither the infrastructure nor the tools and techniques normally
associated with a MAS (particularly the autonomic computing
features listed above).

III. ADE – AN AGENT DEVELOPMENT ENVIRONMENT

ADE is an agent system that combines support for the
development of complex individual architectures with the
infrastructure of a MAS. It is not an architecture in and of
itself; rather, it is a framework based on the theoretical APOC
[14], [15] universal agent architecture formalism, implemented
in Java, that can be used to express any agent architecture. The
left-hand side of Figure 1 depicts an example configuration of
components for a basic robotic application, referred to in the
following section; the right shows a screen capture of the ADE
GUI from the application described in Section IV.

A. An Overview of ADE

The basic component in ADE is the ADEServer, which is
comprised of one or more computational processes that serve
requests. A set of uniform interfaces provides the appropriate
abstractions now common in robotic systems of which an
ADEServer may implement one, many, or a custom, de-
veloper designed interface. Accessing the services provided
by an ADEServer is accomplished by obtaining a reference
to the (possibly remote) ADEServer. The reference forms
the local representation of an ADEServer, referred to as
an ADEClient. ADEServers can provide services to other

ADEServers as requested via ADEClients; the result is a
complex ADEServer, which is a collection of ADEClients
and other computational processes. Developers can define new
ADEServers to implement their own required functionality
(e.g., a novel localization algorithm) and make the services
available via ADEClients.

The ADERegistry, a special type of ADEServer, medi-
ates connections among ADEServers and the processes that
use their services. In particular, an ADERegistry organizes,
tracks, and controls access to ADEServers that register with
it, acting in a role similar to a white-pages service found
in MAS. During the registration process, an ADEServer
provides information about itself to the ADERegistry, such
as its preferred host(s) and port, a name and type identifier,
hardware requirements, its heartbeat period (details below),
the number of connections it can support, and a permission list.
This information can also be obtained by an ADERegistry
from startup files that can contain the entire structure of a par-
ticular architecture configuration, as described in Section III-B.

A set of ADE components may contain multiple
ADERegistrys. The configuration shown on the left in Fig-
ure 1, for instance, makes use of two global ADERegistrys
(that is, visible to all ADEServers) located on differ-
ent hosts. When a request for a connection is made, an
ADERegistry first scans its list of registered ADEServers
for an ADEServer that matches. If none is found, the request
is forwarded to the other ADERegistry. An ADERegistry
may also be embedded in an ADEServer as a local registry,
so that ADEServers registered with the local registry are
hidden, only visible to the ADEServer containing it (not
shown in the figure). A further discussion regarding the
ADERegistry is given in Section III-B.

All connected components of an implemented architecture
(that is, ADEServers, ADEClients, and ADERegistrys)
maintain a communication link during system operation. At a
bare minimum, this consists of a periodic heartbeat signal in-
dicating that a component is still functioning. An ADEServer
sends a heartbeat to the ADERegistry with which it is



registered (indicated by dotted lines in Figure 1, where the
solid arrowhead points to the server and the empty arrowhead
to the client), while an ADEClient sends a heartbeat to its
originating ADEServer (indicated by dot-dash lines, with the
same arrowhead conventions). The component receiving the
heartbeat periodically checks for a heartbeat signal; if none
arrive, the sending component receives an error, while the
receiving component times out. An ADERegistry uses this
information to determine the status of ADEServers, which in
turn determine their accessibility. An ADEServer also uses
heartbeat signals to determine the status of its ADEClients,
which in turn can determine if an ADEServer’s services
remain available. Heartbeat and services data have distinct
connections between ADEServers and ADEClients, al-
though the dot-dash lines represent both in Figure 1.

A process establishes a connection to an ADEServer by
contacting an ADERegistry on a known host and port,
sending a user name, password, and request for access. After
confirming access permission, the ADERegistry relays the
request to an appropriate ADEServer or, if none is found,
to another ADERegistry (if one exists). An ADEClient is
returned that provides access to the services offered. Once a
connection is established, communications are made directly
via the ADEClient; the ADERegistry does not play a
direct role in their message passing.

B. Autonomic Features of ADE

ADE, like other systems for developing complex robotic
applications (e.g., Saphira [10], Player/Stage [11], the Mobile
and Autonomous Robotics Integration Environment (MARIE)
[12], or MissionLab [13]), provides support for the develop-
ment of individual agent architectures, pre-defined components
to be used in architectures, and the infrastructure for archi-
tecture modification, extension, instantiation, and execution.
Different from other systems, the ADE infrastructure inherently
enhances the “intelligence” of robotic architectures through
its use of autonomic computing mechanisms. In particular,
the ADE infrastructure provides the intertwined features of (1)
system startup, (2) failure detection, (3) failure recovery, and
(4) dynamic system reconfiguration, with no extra effort on
the part of the application designer.

System startup in ADE can be performed by an
ADERegistry, which receives a list of hosts (potentially)
available for application execution and an optional “configura-
tion script” specifying part or all of an application’s configura-
tion. Each ADEServer in the script is started after confirming
the host on which it is to execute is confirmed as available,
allowing the entire architecture–even when distributed across
multiple hosts–to be started with a single command. Further-
more, the startup parameters of an ADEServer joining the
system later are recorded upon registration, allowing a current
configuration to be saved for later duplication. Host availability
is confirmed and operating statistics are gathered at startup and
throughout application execution, optionally enabling ADE to
locate architecture components.

Failure detection relies on the heartbeat signals described
in Section III. If a component ceases sending a heartbeat
signal, it is presumed that either the communication link has
been broken or that the component has stopped functioning.
There are two cases in which failure detection occurs; the
first is when a component (e.g., the “Image Acquisition”
server shown in Figure 1) does not send a heartbeat to
its ADEClient. Processes using an ADEServer’s services
invalidate their ADEClient, potentially altering normal func-
tion or relaying notice of the failure to other connected
components (e.g., the “Image Processing” server relays the
error to the “Control Code”, which can send a command to the
“Robot” server to stop the motors). This provides a reflection
mechanism at the architecture level that can be exploited to
build rudimentary “self-awareness” into the system (e.g., ADE
could put a “fact” such as ImageAcquisition failed
at time 14:03 in the database of a deliberative reasoning
component). The second type of failure detection occurs
when an ADERegistry does not receive a heartbeat from
a registered ADEServer. The ADERegistry assumes that
the server has ceased operation and disallows new connections.

Failure recovery can be initiated once a failure has been
detected. In the first case mentioned above, the component
with the now-invalid ADEClient automatically attempts to
renew its connection. In the second case, the ADERegistry
relies on the startup procedures outlined earlier to attempt
to restart the failed ADEServer. Specifically, upon failure
detection, the ADERegistry searches its known list of hosts
for component relocation. Potential hosts that cannot support
the components due to unsupported hardware requirements
are filtered out and the remaining possibilities are ordered
using the host information supplied in the configuration file
and some measure of preference (e.g., the host with the
fastest processor, lowest CPU load, or some combination of
qualities). The preferred host is then checked for availability.
If available, the component is recovered there; if not, the next
host in the list is tried until all hosts have been exhausted.
Upon successful restarting of an ADEServer, the processes
with broken connections will obtain new, valid ADEClients,
restoring the system to a fully operational state (e.g., the
robot whose “Image Acquisition” server failed would regain
its sight, alerting the “Control Code”, which would resume
sending motor commands).

Since an ADERegistry bears responsibility for restarting
components, its failure recovery requires additional mecha-
nisms. The first is ADERegistry replication, where failure
causes a “backup registry” to substitute for the original. The
second requires mutual registration, as shown in Figure 1. If
one ADERegistry fails, the other attempts to restart it. In
either case, affected ADEServers will reconnect, as specified
above. Even if several subsystems of the architecture fail,
components can be relocated and restarted, providing graceful
system degradation (if complete recovery is not possible).

Dynamic system reconfiguration in ADE can take various
forms, from simple redirection of component connections to
a form of controlled, situation dependent failure and recovery.
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Fig. 2. Left: The DIARC Architecture. Right: The robot performing the exploration task.

In each case, this allows a “fixed” individual architecture to be
transparently changeable. There are at least three reasons for
dynamic system reconfiguration–computational load, response
time, and reliability. In the simplest case, an ADEServer
can dynamically change its allowable number of connections,
forcing requests for that component to be redirected or fail. An
alternative method is to use component sharing, which allows
a single component to be used by multiple agents, desirable
when there are specialized and/or limited resources. Another
alternative is to make use of component substitution, where
one instance of a component is substituted for another. Finally,
using the distributed nature of ADE, it becomes possible
for an ADERegistry to intelligently avoid overloading a
computational unit if load is high, response time is delayed, or
the connection is unsteady, by either redirecting connections
to another instance of the component, starting a duplicate
component, or stopping the server and restarting it.

Saphira uses plain text-based configuration files (with for-
mat similar to Windows .INI files) for robot devices. Due to
the lack of distribution infrastructure, components must be
started individually and manually on each host, then connected
via sockets by making direct calls. Saphira provides callback
mechanisms for failure detection due to a broken connection
or component crash, but no general recovery mechanisms
are available. System reconfiguration must be done manually.
While Player/Stage also uses text-based configuration files that
contain device definitions that must be individually started,
the provided naming service can then be used for estab-
lishing connections between devices. Player/Stage provides
error messages that can be used to identify improper function
and component failure, but provides no recovery mechanisms
nor dynamic system reconfiguration options beyond manual

startup and shutdown procedures. MARIE, which relies on
the Adaptive Communication Environment (ACE) [16] for
distribution, uses XML files to specify module configuration.
Based on the example applications included, Application Man-
agers are started with shell scripts that assume modules are
already available via the ACE naming service. Although ACE
has incorporated the Fault-Tolerant CORBA specifications,
it appears that MARIE does not yet make use of them.
MissionLab has the most extensive support for startup config-
uration, supporting both uploading (via FTP) and startup (via
rsh) of “robot executables” produced by its CfgEdit program.
However, MissionLab does not provide fault detection, fault
recovery, or dynamic system reconfiguration procedures.

IV. EXPERIMENTAL EVALUATION

To evaluate the autonomic features of ADE, we used an
assistive robot that interacts with humans using natural lan-
guage. Specifically, we rely on the DIARC architecture, which
is being used to study the role of affect in joint human-robot
tasks [17] and has been demonstrated in a robotic competition
[18]. A simplified depiction of the architecture is shown in
Figure 2, which is described in more detail below. This is
followed by a brief description of the example task, an outline
of the experiments performed, and the experimental results.

The “Mapping and Localization”, “Leg/Obstacle Detec-
tion”, and “Robot” servers were directly connected to the
robot hardware over serial ports and are responsible for
various low-level functionality. Sensory processing duties oc-
cur at this level, including obstacle detection and avoidance,
leg detection, motor control, and localization and mapping.
Speech processing was performed by the “Speech Recog-
nition” (which interfaces with the Sonic speech recogni-
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Fig. 3. Three representative experimental task runs; boxes are obstacles, stars are field concentration locations, and circles surrounding a star are valid
transmission boundaries. The left-most image shows the best case, where no failure occurs. The middle image shows a failure and subsequent recovery (with
no redundant components executing), while the right-most image shows the outcome without recovery. The case with recovery mechanisms and redundant
components is not shown, due to its similarity with the middle image.

tion package) and “Speech Production” (which uses Festi-
val software) servers, initially located on “Laptop-2”. The
“Action Interpreter and Execution”, “Sentence Parser”, and
“Affect Recognition” servers were located on “Laptop-1”.
High-level planning, action selection, and natural language
understanding are performed by the “Action Interpreter and
Execution” server, an adapted version of ThoughtTreasure
[19], augmented by the “Sentence Parser”, which processes
text sentence input to return a semantic parse. In case of the
“Action Interpreter and Execution” server failure, a chat-bot
was added to the “Speech Recognition” server with a special
command set (e.g., “stop”), so that the robot could continue
to operate, albeit in a restricted manner.

The chosen task is relevant to NASA’s envisioned future
space explorations with joint robot-human teams [2], taking
place in a hypothetical space scenario. A mixed human-robot
team on a remote planet needs to determine the best location
in the vicinity of the base station for transmitting information
to the orbiting space craft. Unfortunately, the electromagnetic
field of the planet interferes with the transmitted signal and,
moreover, the interference changes over time. The goal of the
team is to find an appropriate position as quickly as possible
from which the data can be transmitted. The robot is dependent
on its human teammate for direction, supplied through natural
language commands, while the human is dependent on his
robotic teammate for “field strength” readings that cannot be
obtained through other means. The task is accomplished when
transmission is completed.

Experiments consider simulated catastrophic hardware fail-
ure; in particular, the effects of failure of an entire computa-
tional unit (and, therefore, the software components executing
on that unit). The application implementation uses an Activ-
Media Peoplebot (shown on the right of Figure 2) with a SICK
laser range finder and an on-board 850MHz Pentium III. In
addition, it is equipped with two PC laptops with 1.3GHz
and 2.0GHz Pentium M processors, each with a microphone
and speakers. All three run Linux with a 2.6.x kernel and
are connected via an internal wired ethernet; a single wireless
interface on the robot enables system access from outside
the robot for the purpose of starting and stopping operation.

Obstacle detection and avoidance is performed on the on-board
computer, while speech recognition and production, action
selection, and subject affect recognition are performed on the
laptops. We only consider the case of one of the laptops failing;
due to the lack of redundant hardware located on the robot
“base”, its failure would make task completion impossible
(e.g., no action can be taken with non-operational motors).

The left side of Figure 2 shows a “3-level” depiction of a
possible configuration of the DIARC architecture. The bottom,
or “Hardware Level”, specifies hosts and their connections.
The middle level, referred to as the “ADE Component Level”,
uses the same conventions for lines and arrowheads as in
Section III. Hardware devices used by an ADEServer are
depicted by a set of labeled squares within a rectangle. The
top level is referred to as the “Abstract Agent Architecture
Level”, where darkened ovals represent architectural compo-
nents, shown in a data flow progression from sensory input on
the left to effector output on the right. Two relations between
the bottom and middle levels are shown: (1) ADEServers
are placed in a vertical column directly above the host on
which they execute and (2) connections between hardware
devices and the ADEServers that use them are indicated by
solid lines that cross the separating line. The relation between
the middle and top levels consists of a darkened oval that
represents a functional architectural component of an agent
within an ADEServer’s rectangle.

TABLE I
AVERAGE TIME TO COMPLETION (IN SECONDS) OVER TEN RUNS.

Type Avg. Time (s) Std. Dev.
No failure 75.47 8.0
With recovery (redundant components) 87.24 14.0
With recovery (no redundant components) 103.19 26.0
No recovery ∞ n/a

To simulate the hardware failure, the network interface
on “Laptop-2” is manually shutdown during task execution,
such that the “Speech Production” and “Speech Recognition”
components are disconnected from the architecture. When
the ADERegistry does not receive their heartbeats, new
instances of the components are started, effectively causing



them to be relocated to “Laptop-1”. Experiments record the
time to task completion to provide a measure of the failure
recovery mechanisms, recorded for four separate cases: (1)
no failure occurs, providing a best case scenario, (2) failure
occurs with recovery mechanisms active and redundant com-
ponents already executing on “Laptop-1”, (3) failure occurs
with recovery mechanisms but no redundant components, and
(4) failure occurs without recovery, providing a worst case
scenario. In each case, the task is performed by a subject who
has prior experience and knowledge of the task (so as to keep
the probable time to completion for the task approximately
fixed); the experimental configuration is kept constant in each
case. Time results are shown in Table I, while Figure 3 shows
three representative experimental runs.

In the case where these mechanisms are disabled (i.e.,
similar to the previously mentioned systems), the task cannot
be completed because the robot cannot recognize the human
speaking, which we mark as taking an infinite amount of
time. On average, a successful experimental run with a failure
recovery that takes advantage of redundant components took
about 12 seconds longer than when there was no failure,
while a failure recovery in which redundant components are
not available took about 27 seconds longer. (The standard
deviation for the recovery experiments is relatively large
compared to the “No failure” runs due to the possibility that
the robot is facing away from the goal point upon recovery.)
The time for failure detection is determined by the period of
the heartbeat (that is, the time it takes for an ADERegistry
or ADEServer to miss a component’s heartbeat and initiate
recovery procedures). The remaining time is due to locating a
new computational host and restarting the component.

While the example configuration has only one available
computational host with the requisite hardware to support the
failed components, it demonstrates ADE’s ability to provide
robust fault-tolerant system behavior during task execution. In
addition to the general failure recovery mechanism described,
each ADEServer is notified when a component to which
it is connected fails or comes back on-line; both before and
after the connection is re-established, this notification can be
used to execute a number of steps that allow it to adjust
its behavior internally according to the changed system state
(e.g., the loss of the “Speech Recognition” server causes the
“Speech Production” server to announce that the robot cannot
hear anything.) With this proof-of-concept in hand, we are
currently in the process of expanding the set of system infor-
mation that is used, establishing mechanisms to probe for host
information, improve the reasoning criteria, and dynamically
tune parameters to optimize application performance.

V. CONCLUSION

We have argued that future complex robotic applications,
in particular, autonomous human assistive robots, will require
a distributed computing infrastructure that allows for robust,
reliable, and autonomic operation, as well as the ability to
dynamically start, restart, relocate, revise, modify, and replace
functional components in a running architecture. To meet

these requirements, we have implemented the ADE architec-
ture framework, which views and implements components of
robotic architectures as “agents” (in the sense of MAS agents),
thus allowing for the distribution and autonomous operation
of architectural components.
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