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Abstract

Robotic Development Environments (RDEs) have come to play an increasingly important role in robotics research
in general, and for the development of architectures for mobile robots in particular. Yet, no systematic evaluation
of available RDEs has been performed; establishing a comprehensive list of evaluation criteria targeted at robotics
applications is desirable that can subsequently be used to compare their strengths and weaknesses. Moreover, there
are no practical evaluations of the usability and impact of a large selection of RDEs that provides researchers with the
information necessary to select an RDE most suited to their needs, nor identifies trends in RDE research that suggest
directions for future RDE development.

This survey addresses the above by selecting and describing nine open source, freely available RDEs for mo-
bile robots, evaluating and comparing them from various points of view. First, based on previous work concerning
agent systems, a conceptual framework of four broad categories is established, encompassing the characteristics and
capabilities that an RDE supports. Then, a practical evaluation of RDE usability in designing, implementing, and
executing robot architectures is presented. Finally, the impact of specific RDEs on the field of robotics is addressed by
providing a list of published applications and research projects that give concrete examples of areas in which systems
have been used. The comprehensive evaluation and comparison of the nine RDEs concludes with suggestions of how
to use the results of this survey and a brief discussion of future trends in RDE design.

1 Introduction

Robots, unlike many software agents, operate under real-world, real-time constraints where sensors and effectors with
specific physical characteristics need to be controlled. To facilitate research in autonomous robotics and help architec-
ture designers in managing the complexity of embodied agents, several robot development environments (RDEs) have
been developed that support various aspects of the agent development process, ranging from the design of an agent
architecture, to its implementation on robot hardware, to executing it on the robot.

While several frameworks for comparing agent systems have been proposed, some of them specifically for RDEs
(see Section 3), there is currently no survey available that (1) provides a set of conceptual RDEfeatures comprehensive
enough to serve as a basis for a conceptual evaluation that does justice to the specific aims with which most RDEs
have been developed, (2) applies the conceptual criteria systematically to a large selection of RDEs, (3) augments
the theoretical evaluation with a practical usability evaluation that includes architecture design, implementation, and
execution within each RDE on a robot, with special emphasis on ease of use and performance, (4) includes the impact
of the RDE in terms of categorized published work using it, an indicator of an RDE’s prevalence in and influence
on the robotics field, and (5) provides a principled way of combining the three evaluations (conceptual, practical,
and impact) to obtain an overall measure of how well an RDE can be adapted to the particular needs of researchers
choosing among available systems or RDE developers considering future directions of system development.

This paper addresses all five points. Starting with a set of constraints used for the selection of RDEs to be examined
(including a rationale for excluding certain RDESs), Section 2 introduces nine general purpose, freely available RDEs.
Section 3 reviews previous work concerning agent system and RDE comparisons, establishing four categories of
criteria corresponding to typical stages of application development for autonomous mobile robots. The RDEs are



then systematically evaluated according to the criteria in Section 4. Section 5 contains a practical evaluation based
on designing, implementing, and running a simple architecture and some more complex architectural components in
each RDE. The subsequent discussion in Section 6 ties together the conceptual and practical evaluations and augments
them with one possible evaluation of the impact of each RDE, also suggesting a principled method for using the results
of this survey by both researchers and RDE developers. Section 7 summarizes the results and extrapolates to identify
some future trends in RDE development.

2 Autonomous Mobile Robot Systems

A complete accounting and systematic comparison of all RDE:s is clearly impossible within the confines of a survey
paper, not only because of the number of RDEs available and the release of new systems, but also due to the scope of
robotics as a discipline. To make the task manageable, a group of qualifying constraints is used to limit the selection
to a specific subset of representative RDEs. First, we consider only open source packages unencumbered by licens-
ing costs and available for free download. CyberBotics Webots (Michel, 2004; Webots, 2005), White Box Robotics
(WhiteBoxRobotics, 2005), and Evolution Robotics’ ERSP (ERSP, 2004) are excluded as commercial packages. Also
excluded are BERRA (Lindstrom et al., 2000) and CLARAty (Volpe et al., 2001; Nesnas et al., 2003, 2006) due to
download unavailability. Systems are also required to generalize beyond specific hardware platforms, but provide more
specificity than a general framework. So, while Lego Mindstorms (LEGO, 2005) is a widely-used robotics platform
with many related packages available, we do not consider it (or projects such as CotsBots (Bergbreiter & Pister, 2003;
CotsBots, 2005) or Modular Controller Architecture (MCA2, 2005)) due to specificity in relation to a single platform
or custom hardware construction. Conversely, LAAS’s GenoM (Fleury et al., 1997; Mallet et al., 2002; GenoM, 2004)
is excluded as a framework for the generic definition of robot components. Finally, there must be at least one cohesive
application developed in the system (i.e., a repository of components is not considered for inclusion). To our knowl-
edge, this requirement is not met by Orocos (Bruyninckx, 2001; OROCOS, 2005), The Rossum Project (Rossum,
2004), Nomadic (Sprouse, 2005), Dave’s Robotic Operating System (Austin, 2004), the Open Automation Project
(Walters, 2003), or YARP (Metta et al., 2006). Similarly, this excludes some projects that, at the time this research was
begun, were either just being developed (e.g., Orca (A. Brooks et al., 2005; Orca, 2005)) or in a pre-release stage (e.g.,
the RObotics and Learning Environment (ROLE) (ROLE, 2005)).!

Given the above constraints, nine RDEs have been selected?, listed in Table 1. The following synopses give an
overview of the systems’ use and operation, including a broad system description, the stated purpose of the system,
the platforms on which it runs, the release version, and a summary of notable features. To characterize the strengths
of the systems more completely, the end of each subsection lists publications from particular robotics research sub-
areas, determined by the presentation groupings established in the 2001-2005 Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), which have been divided into three categories:

e Single robot: SLAM, Planning/Navigation, Learning, Hierarchical Behavior, and Education
e Human-Robot Interaction: Task Allocation, Learning, and Assistive Robotics

e Multi-robot: Sensing, Exploration, Mapping, Localization, Planning, Coordination, Formation, and Task Allo-
cation

Only a single publication represents a sub-area; citations are also used in evaluating an RDE’s impact in Section 6.

2.1 TeamBots

TeamBots (Teambots, 2004; Balch & Ram, 1998) (which supersedes JavaBots) is a Java-based collection of appli-
cation programs and Java packages for multi-agent mobile robotics research. Although it is no longer under active
development (the most recent version available, 2.0e, was released in April 2000), it is included due to its appear-
ance in both (Jia et al., 2004) and (Orebidck & Christensen, 2003) and because it has found wide use in both research
and education. The main author of TeamBots is now affiliated with the laboratory that develops MissionLab (see
Section 2.6); for the above reasons, this description will be brief.

!Exclusion of the listed systems is only indicative of not meeting the specified constraints; further examination is encouraged.
2 Almost all of the selected RDEs are under constant revision and more recent versions might be available.



RDE Originating Institution More Information

TeamBots, v.2.0e Carnegie-Mellon University http://www.teambots.org/

ARIA, v.2.4.1 MobileRobots, Inc. http://robots.mobilerobots.com/

Player/Stage, v.1.6.5, 1.6.2 University of Southern California | http://playerstage.sourceforge.net/

Pyro, v.4.6.0 Bryn Mawr College http://emergent.brynmawr.edu/pyro/?page=Pyrq

Swarthmore College
University of Massachusetts
SRI International

CARMEN, v.1.1.1 Carnegie-Mellon University http://carmen.sourceforge.net/

MissionLab, v.6.0 Georgia Institute of Technology | http://www.cc.gatech.edu/aimosaic/robot-
lab/research/MissionLab/

ADE, v.1.0beta University of Notre Dame http://ade.sourceforge.net/

Miro, v.CVS-March 17, 2006 | University of Ulm http://smart.informatik.uni-ulm.de/MIRO/

MARIE, v.0.4.0 Université de Sherbrooke http://marie.sourceforge.net/

FlowDesigner, v.0.9.0 http://flowdesigner.sourceforge.net/

RobotFlow, v.0.2.6 http://robotflow.sourceforge.net/

Table 1: RDEs Selected for this Survey

A highly touted feature of TeamBots, stemming from a strict separation of hardware interfaces and control code, is
the use of the same control code both in simulation and for an actual robot. While the only robot platforms supported
are Probotic’s Cye and Nomad 150 robots, there are many example simulation environments and control systems avail-
able. The simulator was developed to be extremely flexible, supporting multiple, heterogeneous robot platforms and
control systems simultaneously. In addition, the Clay package allows hierarchical behavior specification, specifically
targeting schema-based control. Inter-robot communication is supported via sockets and serial ports only. A notable
inclusion is the Java CMU-Vision package, which supports frame captures and blob-tracking.

TeamBots publications include those from the hierarchical behavior (Balch, 2000) and education (Balch, 2002)
subareas.

2.2 Advanced Robotics Interface for Applications (ARIA)

ARIA (MobileRobots, Inc., 2005; LaFary & Newton, 2005), the base software that comes packaged with the purchase
of MobileRobots (neé ActivMedia) robots, is a set of C++ classes available for free download. At the lowest level,
ARIA provides system architecture capacities; that is, software that describes the structure of a robot (including its
sensors, effectors, and physical specifications) and implements the low-level interaction between software and hard-
ware components. At a higher level of abstraction, it also includes some sensory interpretation functionality, basic
actions (analogous to behaviors), and an elementary action resolver.

Although freely available, ARIA is a product of MobileRobots, Inc. and thus only supports MobileRobots plat-
forms, using robot parameter files as the means of defining the characteristics of a robot. This includes information
about the robot body (e.g., the robot’s radius), the sensors (e.g., the number and position of sonar), and the effectors
(e.g., the maximum velocity). The parameters are used by ARIA for various calculations (e.g., the “RobotRadius”
parameter is used to determine the robot’s turn limits). In support of distributed computing, ARIA provides the Ar-
Networking package as a wrapper around socket communications. In addition, the Simplified Wrapper and Interface
Generator (SWIG, 2004) development tool is used to provide Java and Python support.

Supporting software is available, but is limited in some cases by licensing or purchase requirements. The Mo-
bileSim 2-dimensional simulator, a modified version of Player/Stage’s Stage simulator (see Section 2.3, is freely
available. A demo version of the ActivMedia Color Tracking Software (ACTS) is available for free download, but has
restricted functionality that disallows integration with ARIA (not true of the licensed version). Additional open source
software includes the ArSpeech components that provide interfaces to Sphinx speech recognition and both Festival
and Cepstral speech production packages, SonARNL for sonar-based localization, Mapper3 Basic for map creation
and editing, and VisLib for single camera object tracking. Also available, but restricted to license and/or purchase are
MobileEyes (which provides a remote robot display and control GUI), ARNL (which provides laser-based mapping



and localization), and Mapper3 (which augments the basic mapper package with laser support and automated map
creation from sensor logs).
There are no publications available from projects that have used ARIA3.

2.3 Player/Stage

The Player/Stage (Gerkey et al., 2001, 2003, 2005) project is designed to be a programming interface, specifically
avoiding being a development environment. Rather than treating a robot as the primary unit of agency, it instead fo-
cusses on devices, or the various sensors and effectors. A “collection” of devices is typically, although not necessarily,
located on a single robot. Supported platforms include MobileRobots, RWI/iRobot’s RFLEX-based, Segway, Acron-
ame, Botrics, Evolution Robotics, and K-Team robots, while components that are packaged along with the download
include vector field histogram goal-seeking/obstacle avoidance, adaptive Monte-Carlo localization, and a wavefront
propagation path planner and interfaces for ACTS (see Section 2.2), CM Vision, Festival, a service discovery mecha-
nism, and others.

In this software, Player refers specifically to the device and server interface. Devices are independent of one an-
other and “register”” with a Player server to become accessible to clients. Each client uses a separate socket connection
to a server for data transfer, thus preserving concurrent operation of devices and the servicing of multiple requests.
Minimal constraints are placed on the use of devices; in a very real sense, usage is only a communication protocol,
leaving the client the freedom (and by extension, the work) of designing and implementing a control architecture.
Stage, which is the second part of the software, is a device simulator. Client control code uses the same programming
interface when used in conjunction with either simulated or physical devices.

A stated design goal of the device model used in Player/Stage is the separation of interface and function. The fact
that servers communicate via a socket interface means that client programs can be written using any language with
socket support. According to (Gerkey et al., 2003), currently available libraries include those written in C, C++, Tcl,
Python, Java, and Common LISP. Due to the prevalent use of socket communication, the Player system inherently fits
the distributed computing paradigm. Client code is able to operate on any host that has network connectivity, enabling
location independence. A side effect of the device model and its networked basis is that combinations of devices can
be formed to create novel types of agents (e.g., one composed of only sonar devices from many different robots). An
additional feature of the device model is that the frequency of sensor and effector updates are independent, providing
clients the ability to make full use of the data generated by devices that operate at a high frequency, while not being
hindered by those that are slower.

Stage is a graphical, 2-dimensional simulator that models devices in a user defined environment. Specifically
designed to support research in multi-robot systems through its use of socket-based communication, it also forms
the foundation for ARIA’s MobileSim simulator. In addition to Stage, a high-fidelity, 3-dimensional simulator called
Gazebo is available. In both cases, client code uses the same interface on real robots as in the simulator. The au-
thors mention that the device model makes it easy to simulate non-existent devices (for instance, a type of sonar that
penetrates walls to some extent) for further research in device design and use.

Player/Stage publications include those from the SLAM (Wolf & Sukhatme, 2005), learning (Provost et al., 2004),
education (Matari¢, 2004), HRI task allocation (Tews et al., 2003), multi-robot sensing (Jung & Sukhatme, 2002),
multi-robot exploration (Howard et al., 2002), multi-robot mapping (Howard et al., 2004), multi-robot localization
(Howard et al., 2003), multi-robot planning (Howard et al., 2004), multi-robot coordination (Jones & Matari¢, 2004),
multi-robot formation (Fredslund & Matari¢, 2002), and multi-robot task allocation (Gerkey & Matari¢, 2002).

2.4 Python Robotics (Pyro)

Pyro (Blank et al., 2003, To appear; Pyro, 2005) is a robot programming environment aimed at, but not limited to,
educational purposes, leading to specific choices in its design. One goal is to provide a top-down approach to the design
of controllers, insulating students from low-level details of implementation while preserving access to the low-level if
it is desired. Some of the abstractions include: range sensors, robot units, sensor groups, motion control, and devices,
which encapsulate lower levels. This includes “wrapping” Player/Stage (see Section 2.3) and ARIA (see Section 2.2)
functionality, so that any component written for those systems are also available to Pyro users. A large selection
of platforms are supported, including K-Team Kheperas and Hemission, MobileRobots Pioneer, Handyboard, Sony
Aibo, and all robots supported by Player/Stage (see Section 2.3).

3While publications exist for ARIA’s ancestral software, the authors were explicitly requested to not refer to it.



Educational modules exist to demonstrate control paradigms (e.g., neural networks, evolutionary algorithms, vision
processing, and reactive, behavior-based, finite state machines, etc.). Python, an interpreted language, was chosen as
the basis of the system due to its ease of use for beginning students, while permitting more knowledgeable designers
to write more advanced code. While it is acknowledged that using an interpreted language leads to slower operation,
the trade-off between usability and performance is consciously made. Construction of graphical visualization of robot
operation are explicitly supported through the use of pre-defined facilities and Python’s OpenGL interface. Another
goal is to design control code that operates on many different robots with no modification. An example of this is the
use of “robot units” that replace traditional measurements such as meters.

Pyro publications include those from the learning (Blank et al., 2002), education (Blank et al., To appear), and
HRI task allocation (Desai & Yanco, 2005) subareas.

2.5 Carnegie Mellon Robot Navigation Toolkit (CARMEN)

CARMEN (Montemerlo et al., 2003b, 2003a) is an open source collection of (mobile) robot control software written
in the C programming language that is meant to provide a “consistent interface and a basic set of primitives for robotic
research”. Oriented towards single robot control, it uses a three layer agent “architecture”, in which the first layer
is the hardware interface, providing low-level control and integration of sensor and motion data, the second layer is
concerned with basic robot tasks such as navigation, localization, object tracking, and motion planning, and the third
layer is the user-defined application, which relies on the primitives of lower layers. Modularity is a primary concern,
supported by the Inter-Process Communication System (IPC) communication protocol/software (discussed in more
detail below). Besides supporting a number of robot platforms (including MobileRobots, Nomadic Technologies
Scout and XR4000, Segway, iRobot ATRV, ATRVjr, and B21R) and navigation primitives (map-making, Monte-
Carlo particle filter localization (Thrun et al., 2000), and Markov decision process path planning (Konolige, 2000)),
CARMEN also provides configuration tools, a simulator, and graphical displays and editors.

IPC (Simmons, 1994, 2004) provides high-level support for connecting processes using TCP/IP sockets and send-
ing data between processes, including opening and closing sockets, registering, sending, and receiving messages,
which may be anonymous publish/subscribe or client/server type communications. The IPC library contains func-
tions to marshall (serialize) and unmarshall (de-serialize) data, handles data transfer between machines with different
Endian conventions, invoke user-defined handlers when a message is received, and invoke user-defined callbacks at
set intervals. In essence, IPC performs a function similar to a naming service for components; besides providing the
means to define message abstractions used for communication over a network, it also encourages extensibility (in that
components are self-contained) and fault-tolerance (in that failure of a component ceases communication, but does not
actively interrupt other components in the system).

CARMEN components generally take the form of a single executable, such as pioneer (for a MobileRobots Pio-
neer robot), laser (for a SICK laser range finder), or localize (for robot localization using a pre-made map). Particular
platform definitions are contained in “base” specifications, which are then abstracted to a generic “robot” configuration
that includes basic parameters such as body length and width, sonar offsets, maximum velocities, etc. Parameters for
each component are stored in a human readable text file repository, but a graphical editor can be used to modify param-
eters at run-time. In addition, each component relies on a set of IPC message definitions to which other components
can subscribe, allowing component distribution through an IPC server.

CARMEN publications include those from the SLAM (Thrun et al., 2000), learning (Osentoski et al., 2004), HRI
assistive robotics (Pineau et al., 2002), and multi-robot coordination (Simmons et al., 2000) subareas.

2.6 MissionLab

MissionLab (MacKenzie et al., 1997; MissionLab, 2003) is a set of software tools for executing military-style plans
using individual or teams of real and simulated robots. Developed as part of the DARPA Mobile Autonomous Robot
Software (MARS) project, the main stated goal is to control the motion of robots in highly dynamic, unpredictable, and
possibly hostile environments. Collaboration and coordination of robot teams is based on the Societal Agent theory,
which views abstract “assemblages” of agents as agents themselves and whose behavior, in turn, is the aggregate of
coordinated “primitive” behaviors of “atomic” agents. Assemblages are hierarchical, while behavior coordination is
achieved through finite state automata (either competitive or temporally sequenced) or vector summation cooperation.

The Configuration Description Language (CDL) is used to recursively define abstract societal agents (called con-
figurations), usually accomplished using the graphical CfgEdit tool. A configuration can be bound to a specific set of



robots and devices; robot choices include MobileRobots Pioneer, iRobot ATRVjr and Urban, Evolution Robotics ER-
1, and Nomad 150/200. CDL is compiled to Configuration Network Language (CNL) code, which is then compiled to
C++ code and finally compiled to machine code, resulting in a robot executable. The executable contains a communi-
cation module (called HClient) to interface with an HServer, an abstract control interface used for all robot hardware
via IPT communication software. (IPT supports distributed computing and is related to the IPC communication soft-
ware, described in Section 2.5; both are derived from the Task Control Architecture (TCA, Simmons, 1994) project.)
Developers also have the option of using the higher level Command Description Language (CMDL) to describe robot
missions, which is a mechanism for providing high-level input to robot behaviors.

As a primary concern of MissionLab is usability, the graphical interface is quite extensive, allowing non-experts
to write control code without any programming. Logging consists of writing a robot’s position, velocity, heading, and
the current state of the robot with respect to time to a disk file, while debugging toggles are used to display program
output to a console. A unique feature relative to other systems is the inclusion of “Motivational Variables” (anger,
fear, hunger, curiosity) that simulate emotionality. Developers can also assign user-defined ‘“Personalities” to robots.
Finally, there is an extensive set of components available with Missionlab, including a case based reasoner, Q-learning,
graphical behavior building tool, D* Lite planner, and human/robot interaction interfaces.

MissionLab publications include those from the learning (Arkin et al., 2003), hierarchical behavior (MacKenzie &
Arkin, 1993), HRI task allocation (MacKenzie & Arkin, 1998), multi-robot planning (Endo et al., 2004), multi-robot
coordination (MacKenzie et al., 1997), multi-robot formation (Balch & Arkin, 1999), and multi-robot task allocation
(Arkin et al., 1999) subareas.

2.7 APOC Development Environment (ADE)

ADE (Andronache & Scheutz, 2004a, 2004b; Scheutz, 2006) is a programming environment that combines (1) support
for developing and implementing agent architectures with (2) the infrastructure necessary for distributing architectural
components. An explicit goal is to combine features of multi-agent systems (by treating architectural components as
“agents” in a MAS-sense) with those of a programming environment and toolkit for complex agent design and imple-
mentation. ADE is a Java implementation of the APOC (Activating, Processing, Observing Components) (Scheutz &
Andronache, 2003; Scheutz, 2004) universal agent architecture framework, which provides arbitrary levels of (pos-
sibly hierarchical) component abstraction and interconnection. Communication among ADE components relies on
Java’s Remote Method Invocation (RMI) facilities. ADE provides infrastructural components for an enhanced naming
service, connection mediation and monitoring, security features (access control and authentication), and the ability to
store the run-time state of the system, which in turn allows for the detection and recovery from component failures.

While ADE is limited to MobileRobots robots and Arrick Robotics’ Trilobot, a set of abstractions for typical
robotic sensors and effectors provide the means for extending support to other platforms. Configuration files can take
the form of either text or XML files and include both an abstract architecture description and/or the run-time specifica-
tion of component distribution. Graphical representations of individual components exist, accessible via a distributed,
multi-user GUI, which provides a view of the complete agent architecture and the means to control individual com-
ponents. Logging facilities allow any component in an ADE system to write to multiple files. ADE provides several
predefined components include components for behavior definition, vision processing, speech recognition and pro-
duction, a general-purpose rule interpreter, a Prolog interface, and “wrappers” to incorporate external software. It
also includes a Java implementation of a Player (see Section 2.3) client that interfaces with the Stage 2-dimensional
robot simulator and other Player/Stage components, in addition to an interface to the simulator packaged with the now
defunct Saphira (Konolige et al., 1997; Konolige, 2002) system.

ADE publications include those from the planning/navigation (Kramer & Scheutz, 2003), hierarchical behavior
(Scheutz & Andronache, 2004), HRI task allocation (Scheutz et al., 2004), assistive robotics (Scheutz et al., 2006),
multi-robot sensing (Andronache & Scheutz, 2004a), and multi-robot coordination (Scheutz, 2006).

2.8 Middleware for Robots (Miro)

Miro (Utz et al., 2002; Miro, 2005) is a distributed, object oriented framework for mobile robot control that is meant
to facilitate heterogeneous software integration and foster portability and maintainability of robot software. Core
components have been developed in C++ for Linux based on Common Object Request Broker Architecture (CORBA)
technology using the adaptive communication environment (ACE, Schmidt, 1994) as its communication framework.



Due to the programming language independence of CORBA, further components can be written in any language and
on any platform that provides CORBA implementations.

Miro currently supports three platforms: iRobot B21, MobileRobots Pioneer, and the custom-built Sparrow. Ab-
straction interfaces include odometry, motion, rangesensor (sonar, infrared, bumper, laser), stall, video, pantilt, GUI
buttons, and speech. Components exchange data based on subscriptions, which allow for event driven notification. De-
fined messages include those for odometry, rangesensor (scanevent, groupevent, bunchevent), sonar, infrared, bumper,
stall, and GUI buttons. Miro includes a “behavior engine” for reactive behavior specification, which allows hierarchi-
cal decomposition of timed, event and task behavior sets into “policies”. There are two types of policy transitions,
local and global, that can be edited via a graphical interface; global policies preempt behaviors, local do not. The con-
figuration of hardware, data subscriptions, and logging specification is stored in XML files. Two types of logging are
defined, “log levels” and “log categories”, that allow developers to vary the granularity of log data, while a graphical
LogPlayer allows the replay of logged data.

Miro publications include those from the SLAM (Kraetzschmar et al., 2004), planning/navigation (Kraetzschmar
et al., 2000), learning (Fay et al., 2004), hierarchical behavior (Utz et al., 2005), HRI assistive robotics (Gassull, 2001),
multi-robot sensing (Utz et al., 2004), and multi-robot coordination (Utz et al., 2004) subareas.

2.9 Mobile and Autonomous Robotics Integration Environment (MARIE)

MARIE (Co6té et al., 2004, 2006; Co6té, 2005) is a programming environment that is specifically designed with the
integration and distribution of robot applications, components, and tools in mind. For brevity, “MARIE” is used
throughout this description and the rest of the survey to signify the MARIE software and the related FlowDesigner
(Valin & Létourneau, 2004) and RobotFlow (Michaud & Létourneau, 2004) packages (described below), unless clar-
ification is necessary. MARIE is implemented in C++ and the integration aspect of MARIE proper uses (but is not
dependent upon) the Adaptive Communication Environment (ACE, Schmidt, 1994) communication framework. Fol-
lowing the mediator design pattern (Gamma et al., 1994), MARIE provides a centralized component that connects a
variety of (possibly different) software. There are four functional components: application adapters, communication
adapters, communication managers, and application managers. Application adapters act as proxies between the central
component and applications. Communication adapters translate data between application adapters, while communica-
tion managers create and manage the links. Finally, application managers coordinate system states and configure and
control system components on any one processing node. In keeping with the aim of integrating software, components
have been developed for Player/Stage (see Section 2.3), CARMEN (see Section 2.5), and ARIA (see Section 2.2).

FlowDesigner is a data-flow processing library coupled with a graphical display that allows developers to create
reusable “software blocks” linked together in a (possibly hierarchical) network. Available libraries include support for
signal processing, audio processing (DSP), vector quantization, neural networks, fuzzy logic, an Octave plug-in, and
RobotFlow. RobotFlow is a mobile robotics toolkit for FlowDesigner that includes support for MobileRobots Pioneer2
robots and other hardware devices, behaviors, finite state machines, vision processing (color training, tracking, etc.)
and the interfaces for use with MARIE.

MARIE publications include those from the planning/navigation (Beaudry et al., 2005), education (Michaud,
2005), HRI assistive robotics (Labonté et al., 2005), multi-robot localization (Rivard, 2005), multi-robot coordina-
tion (Guilbert et al., 2003), and multi-robot formation (Lemay et al., 2004) subareas.

3 A Conceptual Framework for Comparing RDEs

Several comparisons of agent systems and agent development environments have been proposed in the recent litera-
ture. For software agents, they are typically concerned with various aspects of multi-agent systems (MAS), including
comparing agent platforms (Altmann et al., 2001; Nguyen et al., 2002; Laukkanen, 1999; Nowostawski et al., 2000;
Ricordel & Demazeau, 2000), agent development kits (Bitting et al., 2003), mobile agent systems (Silva et al., 2001),
or agent environments (Eiter & Mascardi, 2002). There are also comparisons of general agent systems and agent
architectures per se (Sloman, 1998; Logan, 1998; Sloman & Scheutz, 2002). Comparisons that concern robotic agents
in particular have addressed mobile robotic architectures (Orebdck & Christensen, 2003) and robot programming envi-
ronments (MacDonald et al., 2003; Jia et al., 2004; Biggs & MacDonald, 2003). Common to all is the need to establish
an appropriate set of criteria that serves as a basis for the comparison. Clearly, the choice of criteria is critical, for, as
pointed out in (Ricordel & Demazeau, 2000), “any criteria is relevant to a specific outside need”.



We briefly review some of this prior work to situate our proposed evaluation criteria, giving a general overview of
the conceptual breakdown in each and why each proves insufficient for the purposes of this paper. To avoid ambiguities
and equivocations among the different terms used, we will adhere to the following terminology for the rest of this

paper:

e Platform: the hardware on which an application will be executing; this includes the sensors, actuators, comput-
ers, operating system(s), and other hardware or software intimately tied to hardware.

e Component: a functionally independent part of an agent or system.

e Architecture: the structure and interaction of components; if necessary, a distinction will be made between
system and agent architectures.

e Agent: the sum of the software and hardware required for an individual robot to perform its task. In particular,
we will not consider infrastructure or strictly software agents (e.g., a naming service or communication agent) as
agents per se, as is done in the field of multi-agent systems. These are instead considered functional components
that are part of the broader environment or application.

e Programming Environment: the tools, infrastructure, and components that are not left for implementation by the
developer. The term system will be used interchangeably in this context.

The most general and, for our purposes, pertinent, framework is (Eiter & Mascardi, 2002). Although founded
in MAS research, the classification is intended to be comprehensive, establishing a framework for all types of agent
systems. Additionally, the authors provide a practical method for choosing an appropriate system for a task selected by
an application designer. Criteria are divided into five categories: (1) agent attitudes, (2) software engineering support,
(3) implementation concerns, (4) technical issues, and (5) economical aspects*. While the software engineering,
implementation, and technical issues categories usually have a prominent role in discussions of RDEs, the agent
attitudes aspect is often omitted—not because it is unimportant or ignored, but because features therein often form the
task, or object, of investigation. Yet, according to Eiter, the attitudes category is comprised of features that discriminate
between agent and non-agent software: they are either basic (i.e., “close to the very core of agenthood”) or advanced
(i.e., “desirable but not of central interest”). Hence, an agent development environment (and by extension an RDE)
should, at least in part, be evaluated with respect to the degree to which it supports these attitudes. While Eiter and
Mascardi’s categorization is comprehensive, it lacks some details of considerable importance for evaluating RDEs. In
fact, this is explicitly acknowledged with the disclaimer, “other features and criteria should be taken into account” for
the unique issues that arise in the development of physical agents (e.g., support for devices, real-time operation, etc.).

In their framework proposal, Jia et al., 2004 isolate three high-level categories for analysis of an RDE: (1) openness,
(2) abstraction, and (3) modularity. Openness refers to extensibility: a programming environment should support the
addition and evolution of hardware and software. Abstraction forms the basis on which openness is built, providing a
well-defined application programming interface (API) that allows a developer to work at a level beyond the hardware
(see also Vaughan et al., 2003). Different from abstraction, which is focussed on hardware, modularity concerns
software, promoting good design and reusability. While these three categories address the design and implementation
of autonomous mobile robotic applications (as demonstrated by their in-house development of the Frontier-1 robot),
they are too general to address specific concerns of RDEs (e.g., real-time support, hardware-dependence of a robotic
platform, debugging tools, etc.).

MacDonald et al., 2003 give a detailed and comprehensive description of RDE features in three categories: (1)
robot programming (both at the system and task level, which enable programmers to describe robot behavior), (2)
infrastructure (which supports the execution of behavior descriptions), and (3) human-robot interaction (HRI, which
allows interaction with the robot programming area; see also Biggs & MacDonald, 2003). The proposed features will
be largely included in our comparison, but there are some issues concerning the analysis, organization, and application
to various aspects of RDEs. For one, the boundaries of the categories overlap to such an extent as to be unclear. For
instance, infrastructure conflates the facilities provided by the environment with both the programming and the agent
architecture categories. Similarly, the broad scope of the HRI (human/robot interaction) category largely overlaps the
robot programming category, yet contains individual features that are too specific for a general system comparison

4Eiter’s economical aspects category will not be considered here, except for the documentation criterion, as the selected RDEs are both open
source and research-oriented. Related considerations, such as the cost of application development, RDE maintenance or modification, training, etc.
are, however, addressed by the usability evaluation in Section 5.



(i.e., excluding systems that are not especially intended nor designed for HRI). Moreover, the proposed categorization
is not structured in a way that is easily amenable to a systematic comparison (e.g., conceptually different items are
subsumed under the rubric “robot programming”).

The study closest in intent to this survey is Orebédck & Christensen, 2003, which attempts to establish the char-
acteristics of a “common software architecture” for mobile robot systems. In particular, seven categories (hardware
abstraction, scalability, overhead, control model, software, tools and methods, and documentation) are proposed as
a basis for comparing RDEs, covering an extensive range of features. However, while the proposed framework is
generally suitable, the actual comparison is limited to only three RDEs (TeamBots (Teambots, 2004), Saphira (Kono-
lige et al., 1997), and BERRA (Lindstrom et al., 2000)) and does not adhere strictly to the conceptual framework.
Rather, criteria are grouped into six areas that mostly, but not always, correspond to the categories as defined, in some
instances leaving out or introducing new criteria.

While all of the above studies agree that the main purpose of an RDE is to provide appropriate tools and abstractions
that help the agent designer, they fail to provide a comprehensive, yet succinct conceptual framework that allows for
a systematic comparison of RDEs. Based on the three typical stages in the development process of a robotic agent
architecture? (design, implementation, and execution), we propose four categories of criteria for RDE comparison,
categorized in terms of:

F1: Specification, which includes formalisms, methodologies, and design tools,
F2: Platform support, which is related to the hardware and its low-level interface (e.g., the operating system),

F3: Infrastructure, which refers to components and capabilities that are part of the RDE, but not the “agent architec-
ture proper”, and

F4: Implementation, which includes aspects of application development (including predefined components used in an
agent architecture).

Of the four categories, three reflect features relevant to specific development stages (e.g., specification features
are central to design, implementation features pertain to implementation, as the name suggests, and platform features
play a role in the execution). The fourth category, infrastructure, is added to explicitly distinguish aspects of an RDE
that are separate and distinct from the agent architecture (e.g., distribution mechanisms that are integral to system
operation, yet usually transparent to the agent designer).

We note in advance that the four categories are comprised of features that an RDE objectively has or does not have,
with an emphasis on the software engineering aspects of its functional characteristics and capabilities. These criteria
alone are not sufficient for a full evaluation of an RDE and are supplemented with additional criteria in Sections 5 and 6.
The different types of evaluation can be distinguished by an identifying prefix; criteria in this section are denoted by
F, followed by a category and item number. It is crucial to note that even though the expanded criteria list provides
a comprehensive foundation for RDE evaluation, it is impossible in principle to address every concern a developer
might have. A remedy for the situation is discussed in Section 6.

F1: Specification

The specification of a robotic agent or application occurs in the design stage and concerns issues such as the application
domain(s), software engineering, and determination of an appropriate agent architecture. To preserve the focus on
RDE:g, the criteria presented are somewhat broad, but are sufficient to address the prevailing concerns.

F1.1: Architectural Primitives. An RDE provides various types of predefined functional component and/or knowledge
primitives useful in robotic applications (e.g., behaviors, methods of control, tasks, objects, etc.), or the means
to create, organize, and manipulate them.

F1.2: Software engineering. Software engineering support promotes the creation of high-quality software. Enabling
modularization and code reuse, it can be accomplished through the use of stated design principles, explicit
frameworks or tools, methodologies, or formalisms, and includes application verification, prototyping, and the
abstractions mentioned in (Jia et al., 2004), (Orebick & Christensen, 2003) and (Vaughan et al., 2003).

3Qur stages are similar to (Ricordel & Demazeau, 2000), although we subsume the analysis category as part of the design stage.



F1.3: Architecture neutrality. An RDE may be associated with a particular theoretical foundation that promotes
a specific agent/application architecture, separate from implementational concerns. Alternatively, it may be
architecture neutral, leaving the choice to the designer or even providing the means to compare application
implementations using different agent architectures.

F2: Platform Support

Robotic applications necessarily incorporate real-world sensors and effectors; thus, they require a more diverse set of
hardware than software-only systems. The principles of abstraction, modularity, and openness, as put forth in (Jia et
al., 2004), are of particular importance to this item, promoting application use across varying platforms.

F2.1: Operating system. An RDE may be compatible with one or many operating systems, but must be compati-
ble with the designer’s choice. This can become a major obstacle when certain libraries or components are
implemented only for a particular operating system.

F2.2: Hardware support. “Hardware support” refers to the variety of sensors and effectors that are available in an
RDE, such as cameras, sonar, and laser devices. Since the number of standard (that is, common and non-custom)
devices is limited and widely used on different platforms, we will refer instead to particular robot manufacturers.
In support of increased modularity, ease of device modification, and addition of custom devices, a hierarchy of
device abstraction is often specified, allowing control code to be easily ported and executed on different robots.

F2.3: Simulator. Simulation of the physical world allows developers to test applications, model currently unavailable
hardware, and replay actual application execution. Simulators can be low- or high-fidelity, approximating an
environment to some lesser or greater degree, and can also be two- or three-dimensional. Some simulators have
the ability to include multiple robots in a single simulation or to mix real and simulated robots in an environment.

F2.4: Configuration method. The configuration of a robot is often changed to meet the demands of various applica-
tions. This information may be incorporated into the source code (requiring compilation to effect changes) or in
configuration files that can be easily modified, either with a text editor or a graphical interface.

F3: Infrastructure

Infrastructure refers to RDE functionality that affects multiple components (or the system as a whole) and is not
tailored to individual architectural components, application domains, or particular stages of application/agent devel-
opment. For example, logging facilities can be used with any or all components, are often invaluable as debugging
tools during the implementation stage, and provide records of an execution instance for later performance analysis. In
some cases, however, it may be impossible to determine whether a feature is due to a specific component or part of
the infrastructure by function alone. For instance, the graphical representation of components might be implemented
on an ad hoc basis, removing it from consideration as infrastructure. A system must provide generic mechanisms that
supply these capabilities for them to be considered as infrastructure.

F3.1: Low-level communication. Inter-process communication (such as memory mapping, pipes, or sockets), basic
networking protocols (such as UDP, TCP/IP, etc.), and mid-level protocols (such as IIOP or RMI) are part of
the system infrastructure. These capabilities are often dictated by the platform being used, as their availability
is contingent on the operating system and/or programming language.

F3.2: Logging facilities. Log files of application operation can be used for debugging, repetition of an application
execution, or gathering performance statistics. Logging mechanisms can have various levels of flexibility, in-
cluding fixed (which generally captures all data produced by components) vs. configurable data content, local
vs. remote logging, file name selection, single vs. multiple data streams and/or files, or the ability to start and
stop logging at run-time.

F3.3: Debugging facilities. While logging facilities can suffice for basic debugging, robust debugging tools can be
invaluable during application implementation. Such tools can range from low-level code editors, to mid-level
graphical representations of sensors and effectors, to high-level graphical behavior or task modification, possibly
allowing run-time suspension, modification, and restarting.
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F3.4: Distribution mechanisms. Distribution mechanisms, as part of the infrastructure, are required for multi-host
applications. Typically, distribution capabilities are enabled by middleware (e.g., Poggi et al., 2002), either as a
generic component implementation framework (such as CORBA, 2005, SOAP, 2003, etc.) or in the form of par-
ticular components (such as an agent naming service, directory facilitator, broker agents, or other components
that provide similar functionality).

F3.5: Scalability. As robotic applications grow in scope and capabilities, a developer must be concerned with how an
RDE handles increasing complexity. The term “scalability” can refer to many different aspects of a system, some
of which are addressed more specifically by other criteria. For instance, architectural primitives (criteria F1.1)
and a high-level language (F4.1.2) includes facilities for managing complex actions and behaviors, software
engineering (F1.2) takes into account modularization that promotes system organization, while distribution
mechanisms (F3.4) encompasses mechanisms used to add computational hosts. Additional concerns might
include the overhead involved with message passing, both within a single host and among connected hosts, task
allocation for multi-robot applications, or other concerns. Scalability is used here in a broad sense as a general
system property, inclusive of the above.

F3.6: Component mobility. “Mobility” refers to the potential to relocate components at run-time. In robotic appli-
cations, however, it is somewhat constrained by possible dependence on the location of the requisite hardware.
When an application is distributed across many hosts, component mobility can be used for dynamic resource
allocation or run-time system reconfiguration, assuming there are mechanisms that allow reconnection to data
sources. Ultimately, these capabilities would be automatic, adjusting operation with a changing computing
environment.

F3.7: System monitor/management. A system monitor displays the status of multiple application components, often in
graphical form. An extension of simple monitoring can allow for the management of the components’ operation,
ranging from starting and stopping to adjustment of parameters. Such extensions are often implemented as part
of individual components, which are treated separately as an implementation characteristic in Subsection 3 and
do not qualify as part of the infrastructure.

F3.8: Security. An application executing on a single robot may not need any security mechanism, but distribution
across many hosts raises such concerns. Predefined components for encryption, authentication, and access
control can be available for ready integration into applications. (A related discussion of security concerns in the
multi-agent system RETSINA can be found in Singh & Sycara, 2004.)

F3.9: Fault-tolerance. Repeated failures of both hardware and software are common in robotic applications. The
system infrastructure may incorporate generic mechanisms for failure detection, or be structured such that dis-
ruptions due to failed components do not halt the entire application. Extending this concept, mechanisms for
failure recovery may exist that enable components to automatically recover from failures with no outside inter-
vention (for instance, see Melchior & Smart, 2004).

F4: Implementation

In practice, an important reason for selecting a particular RDE is to facilitate the implementation of an agent architec-
ture. We subdivide implementation features into two areas: (1) implementation characteristics, which are somewhat
abstract and refer to implementation concerns that are not predefined components, and (2) predefined components,
which perform some specific function that can be directly incorporated into an architecture.

F4.1: Implementation Characteristics

F4.1.1: Programming language. Architecture implementation necessitates the use of programming languages, such
as C or Java. An RDE that is itself implemented in the particular language used for the application guaran-
tees compatibility; however, an RDE may also supply interfaces or wrappers that interface easily with other
languages.

F4.1.2: High-level language. Some programming environments integrate higher-level languages, such as The Behav-
ior Language (Brooks, 1990), COLBERT (Konolige, 1997), or GRL (Horswill, 2000) for behavior description or
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ACL (FIPA-ACL, 2002) or KQML (Mayfield et al., 1996) for agent communication. These high level languages
can be used within an agent architecture (e.g., to facilitate data transfer between components) or in multi-robot
applications.

F4.1.3: Documentation. The usability of an RDE is greatly enhanced by the inclusion of well-documented code and
user manuals that may include the system’s API specification, answers to frequently asked questions, trouble-
shooting guides, instructions concerning custom extensions, etc.

F4.1.4: Real-time operation. Real-time constraints are often critical in designing and operating robot architectures.
Real-time capabilities of an RDE are generally dependent on the operating system and/or programming lan-

guage.

F4.1.5: Graphical interface. An RDE may supply pre-implemented graphical interfaces that enhance individual com-
ponent visualization during application execution, including displays related to various sensors, effectors, be-
haviors, robot control, navigational plans, etc. Additionally, RDEs may define a standardized method of adding
such displays.

F4.1.6: Software integration. RDEs may provide tools that facilitate the integration of external software, either at
the component level (e.g., a localization routine) or a complete application-as-component (e.g., speech produc-
tion), greatly enhancing development time and effort. A notable development in this area is “wrappers” for
components of other robotic systems that promote the integration, sharing, and reuse of components.

F4.2: Predefined Components

Predefined components are analogous to software libraries; since the list is open-ended and will most assuredly expand
in the future, we deviate from the format used thus far and give a necessarily incomplete list of common components
with corresponding citations. Furthermore, the list assumes a fairly high-level viewpoint, necessary to maintain an
acceptable level of commonality among systems.

Currently, most RDEs include predefined components for map-making (F4.2.1), localization (F4.2.2, e.g., Thrun,
2003), route planning (F4.2.3, e.g., (Konolige, 2000)), speech recognition (F4.2.4), speech production (F4.2.5), and
vision processing (F4.2.6, with various capabilities such as blob tracking, edge detection, motion tracking, etc.). Some
less common components are rule interpreters (F4.2.7, e.g., JESS, 2003 or Sloman, 2002), planners (F4.2.8, e.g.,
Maes, 1990; Jensen & Veloso, 1998; Stentz, 2002), neural networks (F4.2.9, e.g., Koker et al., 2004), and machine
learning (F4.2.10, e.g., Vijayakumar et al., 2002; R. Russell, 2004). Even less common, and therefore not included
in the evaluation criteria, are support for instruction/teaching (e.g., Skubic & Volz, 1998; Bentivegna & Atkeson,
2002), human robot interaction facilities (e.g., Fong et al., 2003), affect (e.g., Pfeifer, 1988; Moshkina & Arkin, 2003;
Scheutz et al., 2006), and coordination mechanisms (e.g., Hoff & Bekey, 1995; Chaimowicz et al., 2003; Dias &
Stentz, 2003).

4 RDE Feature Criteria Evaluations

For each of the RDEs in Section 2, a value has been assigned for the criteria from Section 3, determined using the
system’s documentation and verified based on usage experience (a synopsis of experimental implementations and the
usability evaluation is provided in Section 5). Three types of assignments are made: (1) binary, signified by for no and
\/ for yes, (2) ternary, signified by O for not supported, B for partially supported, and B for well supported, and (3)
listings, which are text descriptions. Table 2 shows the values assigned to each system for each criteria, while further
explanation is given in the text. The following shorthand column headings are used to designate particular systems:
TB-TeamBots, AR-ARIA, P/S—Player/Stage, Py—Pyro, C-CARMEN, ML-MissionLab, AD-ADE, Mi-Miro, and
MA-MARIE.

F1: Specification

F1.1 Architectural Primitives: To attain a somewhat supported value, a system must provide at least one form of
robot control. Systems that provide additional, likely more complex, methods of robot control receive a well
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supported value. Player/Stage does not provide any predefined control methods, following their policy of pro-
viding only the framework for implementing robot control and so receives a not supported value. ARIA provides
a set of basic actions and an elementary priority-based action resolver. CARMEN provides a Markov decision
process planner as part of its navigation component. Each receives a somewhat supported value. The rest of
the systems are considered well supported. TeamBots provides schema-based motor control, finite state ma-
chine (FSM) sequencing, and hierarchical behaviors via the Clay behavior configuration system. Pyro provides
both subsumption and fuzzy blending of behaviors, while MissionLab provides schema-based control, behav-
ior sequencing and artifacts. ADE provides access to a general-purpose rule interpreter, schema-based and
subsumption-based behavior primitives, a Prolog interface, and a distributed neural-network style component
model based on APOC (Scheutz & Andronache, 2003). Miro includes a custom “behavior engine”, based on
that introduced in (Brooks, 1991). MARIE, via the RobotFlow and FlowDesigner packages, provides hidden
Markov models, fuzzy blending, FSMs, an interface to Octave software, and other primitives.

-
=
>
=

P/S

=
=
=
=
>

Category Criteria

-]
<

Specification F1.1 Architectural Primitives
F1 F1.2 Software engineering
F1.3 Architecture Neutrality

<. maO

=
ck.omm
=

=
g

F2.1 Operating System
Platform F2.2 Hardware Support

F2 F2.3 Simulator

F2.4 Configuration Method

F3.1 Low-level Communication
F3.2 Logging Facilities

F3.3 Debugging Facilities
Infrastructure | F3.4 Distribution Mechanisms
F3 F3.5 Scalability

F3.6 Component Mobility

F3.7 Monitoring/Management
F3.8 Security

F3.9 Fault-tolerance

O0ooDoooowooo=< . og
DOEBEDOODEBEBYYIOEHBC

QIO DDDODEBEB-BEODBC OO0

=
<
o
+
(@)

F4.1.1 Programming Language
F4.1.2 High-level Language
F4.1.3 Documentation

F4.1.4 Real-time Operation
F4.1.5 Graphical Interface
Implementation | F4.1.6 Software Integration

++

EHQQEIEDDDD]D]D]EEWEDEDD'GQEDE
+
+

EEQQD]DEHD]BHD]EE[D"‘EED]D]CQBHEH
O< QDD DNDHEBBQDDDC<, OH
D]QQD]DEHD]D]EEEED]V’EEHHEHGQD]EH

U<
H< ZUOHOOOBHDO<XDHHA

H
H

Oom

F4 F4.2.1 Map-making
F4.2.2 Localization

F4.2.3 Route Planning
F4.2.4 Speech Recognition
F4.2.5 Speech Production
F4.2.6 Vision Processing
F4.2.7 Rule Interpreters
F4.2.8 Planners

F4.2.9 Neural Networks
F4.2.10 Learning Vv

<< (OO
Lo g
LD H
LKL B H

<< <o

<
L < |b@

<
S AL |IOE o E‘EEEEHHHHBHBHEHEEWBHEDD“QEEEH%
o

LA B H

<

<
LK

Table 2: Feature Criteria Evaluation by RDE

F1.2 Software engineering: To attain a somewhat supported mark, an RDE must explicitly state design principles, be
implemented using an object oriented programming language (e.g., C++ or Java), or make use of a high-level
object language (e.g., CORBA). An explicit theoretical foundation yields a well supported mark. TeamBots,
Player/Stage, ARIA, CARMEN, Pyro, MARIE, and Miro are of the former type, while the use of Societal Agent
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theory in MissionLab and the APOC formalism in ADE provides the basis for receiving a well supported value.

F1.3 Architecture neutrality: All the systems under consideration are neutral with regard to agent architectures, al-
though MissionLab has a strong association with the AuRA architecture (Arkin & Balch, 1997) and CARMEN
has been described by its authors as an example of the 3T hybrid architecture (Montemerlo et al., 2003b). How-
ever, neither enforces the use of the associated architecture, and can therefore be considered agent architecture
neutral.

F2: Platform Support

F2.1 Operating System: Compatible operating systems have been determined according to information from system
documentation and do not necessarily discount those not listed. If a system, such as TeamBots or ADE, is
implemented in Java, the assumption is made that it will execute on any computer platform for which a Java
Virtual Machine of the required type is implemented. Similarly, no differentiation is made among the various
“flavors” of UNIX, although each system has at least been tested in a Linux environment. Player/Stage, ARIA,
and Pyro run on both UNIX and Windows. CARMEN, MissionLab, Miro, and MARIE run on UNIX systems.
Letter codes in Table 2 are as follows: J=Java, U=UNIX, W=Windows.

F2.2 Hardware Support: Hardware support, as used here, refers to specific robot manufacturers/platforms. We as-
sume a relatively limited pool of sensors and effectors are used across platforms (such as SICK LMS lasers), al-
though all systems allow specification of custom sensors and/or effectors. To attain a somewhat supported value,
a system must support at least three different platforms; more than five earns a well supported value. ARIA sup-
ports only MobileRobots robots, ADE supports MobileRobots and Arrick Trilobot, TeamBots supports Cye and
Nomad 150 robots, Miro supports MobileRobots, iRobot B21, and their in-house Sparrow platforms, Mission-
Lab supports MobileRobots, iRobot, Evolution Robotics ER-1, and Nomad robots, MARIE supports MobileR-
obots platforms natively, in addition to all platforms available through ARIA, Player/Stage, and CARMEN via
its adapters, Player/Stage supports MobileRobots, iRobot, Segway, Acroname, Botrics, Evolution Robotics, and
K-Team platforms, CARMEN supports MobileRobots, Aibo, Nomadics, iRobot, and Segway platforms, and
Pyro supports MobileRobots, Aibo, Cye, iRobot, Khepera, Nomad, and Segway platforms.

F2.3 Simulator: To attain a somewhat supported value, an RDE must at least provide a low-fidelity, 2-dimensional
simulator (which may or may not support multi-robot simulations). To attain a well supported value, an RDE
must provide a high-fidelity, 3-dimensional simulator that supports multi-robot simulations and may be used
to model robotic mechanisms. CARMEN includes a 2-dimensional simulator that supports low-fidelity single-
robot simulation that can, with some manipulation of the IPC communications, be used for multi-robot simu-
lations. TeamBots, ARIA, MissionLab and ADE provide low-fidelity, multi-robot simulators. MissionLab also
supplies a low-fidelity 3-dimensional simulator (although the manual states that its use will halt the system).
A major component of Player/Stage, as indicated by its name, is the Stage 2-dimensional simulator, which is
low-fidelity and supports multiple robots. Also available is the Gazebo high-fidelity 3-dimensional simulator,
which elevates Player/Stage to fully supported status, along with Pyro and MARIE, which provide interfaces to
Stage, Gazebo, and the ARIA and CARMEN simulators.

F2.4 Configuration Method: A system, such as TeamBots, that embeds configuration in source code has a not sup-
ported status. If a system stores configuration in a text file (possibly XML), it receives a somewhat supported
value. Player/Stage, ARIA, Pyro, and Miro all use text files, of which Miro supports XML. A system that pro-
vides a graphical means of accessing and modifying configuration settings gets a well supported value, which
includes CARMEN, MissionLab, and ADE. MARIE also receives a well supported value due to the graphical
interfaces included with FlowDesigner and RobotFlow; MARIE itself uses XML configuration files.

F3: Infrastructure

F3.1 Low-level Communication: All systems considered provide socket support and common networking protocols.
TeamBots, Player/Stage, ARIA, and Pyro use direct socket connections as their primary method of communi-
cation. CARMEN and MissionLab use IPC and IPT, respectively, which adds a level of abstraction to general
TCP/IP sockets. ADE uses Java’s RMI, while Miro relies on CORBA’s IIOP. MARIE makes use of shared
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memory or sockets, relying on ACE for the latter. Letter codes in Table 2 are as follows: S=Socket, I=IPC/IPT,
R=RMI, C=CORBA IIOP.

F3.2 Logging Facilities: All systems provide some means of monitoring component operation as console output or
graphical display, which forms the baseline for the value assignment (i.e., a not supported value). To gain
a somewhat supported value, at the very least a system must supply a predefined logging facility; to gain a
well supported value, a system must allow for remote data capture, run-time starting and stopping of logging,
and dynamically configurable data capture that can be recorded in one or more files in one or more locations.
TeamBots provides only simple console/graphical output. Logging in ARIA, Player/Stage, CARMEN, ADE,
and Miro is well supported, while logging in Pyro, MissionLab, and MARIE is somewhat supported.

F3.3 Debugging Facilities: To attain a somewhat supported status, a system must allow non-simulated application
interruption and restart in conjunction with the ability to obtain information about component data. To qualify
as well supported, a system must allow run-time suspension, modification, and replacement of arbitrary compo-
nents. TeamBots is the only RDE receiving a not supported value. ARIA receives a somewhat supported value.
Player/Stage, Pyro, CARMEN, MissionLab, ADE, MARIE, and Miro all qualify as well supported, but Mis-
sionLab and MARIE excel due to their integrated and extensive graphical interfaces. MissionLab is unique in
that it also uses the included case-based reasoner to analyze a “mission” after completion to identify the source
of operational errors. Also notable is ADE’s ability to dynamically compile and replace components at run-time
using the ADE class loader.

F3.4 Distribution Mechanisms: To be elevated from a not supported to somewhat supported value, a system must
include a component that functions as middleware. To qualify as well supported, an agent framework that treats
components as independent agents is required. Neither TeamBots nor Pyro provide middleware mechanisms and
receive a not supported. The IPC and IPT software used by CARMEN and MissionLab and the Player server
in Player/Stage act as a centralized naming service, while the ArNetworking package provided in ARIA fills a
similar function. ADE, MARIE, and Miro each specifically incorporate enhanced middleware functionality as
part of their infrastructure, earning a well supported value.

F3.5 Scalability: To use “scalability” as a general reflection of an RDE’s properties, a combination of criteria from
categories F1, F3, and F4 (specification, infrastructure, and implementation) is used. To earn a well supported
value, a system must provide scalability support in all categories (as defined below); a somewhat supported
value indicates support in any two categories, while support for a single category or none at all receives a not
supported value. In the specification category, an RDE must have a well supported value for either architectural
primitives or software engineering (criteria F1.1 or F1.2). For support in the infrastructure category, a system
must earn at least a somewhat supported value for distribution mechanisms (F3.4), while the implementation
category is comprised of satisfaction of at least one of high-level language, rule interpreters, or planners (F4.1.2,
F4.2.7, and F4.2.8, respectively).

F3.6 Component Mobility: To receive a somewhat supported value, an RDE must provide architectural components
to operate independently of one another in addition to continuing system operation when a component is re-
moved, restarted, and reconnects. To attain a well supported value, mechanisms must be in place that can
perform this task automatically. TeamBots, ARIA, and Pyro all use a fixed run-time system architecture that
does not allow mobility and so receive a not supported value. The portability of devices in Player/Stage allows
manual component relocation at run-time, as do the modules in CARMEN and the object structure found in
MARIE and Miro, while MissionLab provides mechanisms to upload robot executables to remote hosts. Each
of these systems receives a somewhat supported status. ADE provides mechanisms for saving state, automatic
component start-up, and automatic component re-location due to detected failures, earning a well supported
value.

F3.7 System Monitoring/Management: To gain somewhat supported status, an RDE must provide an interface that
gives access to all components in the system architecture. To gain well supported status, an RDE must also pro-
vide mechanisms to manage all components. (Note that graphical representations of a robot’s sensors, effectors,
or other individual components do not qualify as infrastructure; see the Graphical Interface in Section 4). None
of TeamBots, Miro, nor CARMEN provide coherent system-wide facilities. ARIA supplies the MobileEyes GUI
for robot display and control, but source code is not freely available and thus earns a not supported status. Pyro,
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Player/Stage, MissionLab, ADE, and MARIE all have graphical interfaces that not only display component
status, but also allow component control.

F3.8 Security: To gain a somewhat supported value, a system must provide a way to securely authenticate compo-
nents. To gain a well supported value, an RDE must also provide access control and encryption. None of
TeamBots, Player/Stageﬁ, Pyro, CARMEN, MissionLab, Miro, or MARIE use security mechanisms. MARIE
and Miro both might inherit security features from their use of ACE for component communication, but do not
exploit its availability. ARIA provides authentication services as part of the ArNetworking package, earning a
somewhat supported value. ADE explicitly addresses all three aspects of security (encryption, authentication,
and access control).

F3.9 Fault-tolerance: To achieve somewhat supported status, a system must isolate components such that failure of
a single component does not cause the entire application to fail. To receive well supported status, an RDE must
also provide mechanisms in support of failure recovery. None of the TeamBots, ARIA, or Pyro RDEs provide
component isolation. Player/Stage, CARMEN, and MissionLab, through their reliance on IPC software, each
isolates components, while MARIE and Miro’s use of ACE objects serve the same purpose. It is worth noting
that MissionLab also incorporates a case-based reasoning wizard for the purpose of repairing a mission post-
execution (Moshkina et al., 2006) and that ACE implements the Fault Tolerant CORBA specification, although
neither MARIE nor Miro have yet incorporated it. ADE provides both fault detection and fault recovery at the
component level through its use of heartbeats between ADEServer s and clients.

F4: Implementation
F4.1 System Implementation Characteristics

F4.1.1 Programming Language: Both TeamBots and ADE are written in Java, while CARMEN and Pyro are imple-
mented in C and Python, respectively. Player/Stage, ARIA, MissionLab, MARIE, and Miro are implemented in
C++.

F4.1.2 High-level Language: To qualify as supporting a high-level language, an RDE must supply a structured
method for controlling a robot (e.g., a behavior or agent communication language). TeamBots supplies the
Clay behavior hierarchy, ARIA provides action specification via the ArAction class, MissionLab provides both
CDL and CMDL, Pyro and MARIE supply both a set of foundational behavior classes and finite state automata,
and Miro provides a “behavior engine” for behavior specification. None of Player/Stage, CARMEN, nor ADE
provide a high-level language.

F4.1.3 Documentation: To attain a somewhat supported value, an RDE must have well documented source code
and a publication outlining its use. If an RDE also supplies a manual that describes how to use the system
(including installation instructions, guidelines for developing applications and extending capabilities into new
areas, solutions to common problems, and example code), it receives a well supported value. While TeamBots,
ADE, Miro, and MARIE all provide some level of documentation, both web-based and in source code, it is
either incomplete or they do not provide finished manuals that detail their use. Player/Stage, ARIA, CARMEN,
and MissionLab all have complete and detailed manuals available, while Pyro provides the equivalent through
its extensive online documentation.

F4.1.4 Real-time Operation: None of the systems directly provide real-time support, although MissionLab has the
mechanisms in place for use with a purchased license of proprietary software from Honeywell.

F4.1.5 Graphical Interface: To obtain a somewhat supported value, an RDE must supply graphical interfaces for
visualizing component operation or designing control code without actual programming. To receive a well sup-
ported value, an RDE must provide both items just mentioned, in addition to a standard method for creating new
displays. Only TeamBots does not provide a graphical display for a robot at run-time (although it does supply a
graphical simulator facility), and so receives a not supported value. While the MobileEyes GUI is available with
ARIA, source code is not freely available and thus has to be classified as not supported. CARMEN provides

SWhile the Player server in Player/Stage can optionally be set to require authentication, it is explicitly acknowledged that the authentication is
not for security, as keys are passed in plain text.
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ad hoc, component specific graphical interfaces, but does not provide standard methods for adding visualization
nor graphical control code tools, and so receives a somewhat supported value. MissionLab and Miro provide in-
terfaces that allow developers to design control code without actual programming, but do not provide a standard
method for defining new displays, also earning them a somewhat supported value. Player/Stage, ADE, Pyro,
and MARIE all provide both implemented displays and a standardized method of creating new displays, earning
well supported values.

F4.1.6 Software Integration: To attain somewhat supported status, an RDE must provide a standard API or mecha-
nism for incorporating “outside” software, generally using socket connections (with the recognition that transla-
tion code will always have to be written). Providing additional codified facilities that interface with other RDEs,
thereby allowing their software to be “dropped into” the environment, elevates the status to well supported.
Neither TeamBots, ARIA, nor MissionLab provide such standard APIs or mechanisms. Player/Stage and CAR-
MEN provide such APIs (for their devices and modules, respectively), Pyro and ADE explicitly include steps
to “wrap” external software, MARIE supplies a variety of APIs and mechanisms for integration, while Miro
relies on writing TAO interfaces in Interface Device Language (IDL), used to produce C++ code. Each receives
at least a somewhat supported value. MARIE and Pyro also provide translation facilities such that components
written for CARMEN, Player/Stage, or ARIA can be used and earn a well supported value.

F4.2 Predefined Components

As mentioned earlier, any list of predefined components is open-ended and therefore necessarily incomplete. We
limit this list to components that are commonly available and only list the RDEs that include them. Furthermore, no
quantitative evaluation is given; the intent is not to establish a full taxonomy, but to provide a high-level indication
of system functionality. It should also be noted that both ARIA and MissionLab provide some of the following
components so long as they are licensed; due to the limitation of this survey to open source software, such components
have been excluded.

F4.2.1 Map-making: ARIA provides the Basic Mapper software, which can be used to manually construct maps.
Player/Stage, Pyro, CARMEN, ADE, and MARIE all include map-making facilities, which are combined with
localization.

F4.2.2 Localization: TeamBots provides a landmark-based localization component, while Miro provides particle fil-
ter localization. ARIA provides sonar-based localization, but full localization facilities must be purchased.
Player/Stage, Pyro, CARMEN, ADE, and MARIE all include localization facilities, which are combined with
map-making.

F4.2.3 Route Planning: TeamBots and ADE provide schema-based navigation, ARIA supplies a navigator integrated
with its localization package, Player/Stage provides a wavefront propagation route planner, CARMEN uses a
Markov decision process planner, MissionLab relies on geometric map analysis and an A* graph search, and
MARIE integrates Player/Stage and CARMEN navigation components.

F4.2.4 Speech Recognition: Player/Stage, ARIA, ADE, Pyro, and Miro all provide speech recognition support
through integration of outside software such as Sphinx (Sphinx, 2004) or Sonic (Pellom & Hacioglu, 2003).

F4.2.5 Speech Production: Player/Stage, ARIA, ADE, Pyro, MARIE, and Miro all provide speech production sup-
port through integration of outside software such as Festival (Festival, 2004).

F4.2.6 Vision Processing: MissionLab and Miro have basic image/video capture capabilities, but Miro also provides
stereo image capture and many video filters. TeamBots includes CM Vision software, which can capture images
and perform blob detection. ARIA has two vision packages available, the ActivMedia Color Tracking Software
(ACTS) and VisLib. ACTS is a blob detection package, while VisLib includes image filters, blob detection, and
object tracking. Player/Stage supports both ACTS and CMVision. Pyro includes image/video capture, blob,
edge, and motion detection, assorted filters, and stereoscopic tools, implemented in C++ for speed reasons.
ADE includes both an ACTS interface and custom blob detection, object tracking, and face/emotion detection.
MARIE, via the RobotFlow software, provides custom image capture, blob detection, movement detection,
text/symbol extraction routines, and supports OpenCV.
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F4.2.7 Rule Interpreters: ADE includes an interface to POP-Rulebase (Sloman, 2002) and Prolog, while MARIE and
MissionLab both include custom rule interpreters.

F4.2.8 Planners: While item F4.2.3 specifically covers navigation planners, these are considered too task-specific to
qualify under the general rubric of “planner”. MissionLab and MARIE both supply generic planners.

F4.2.9 Neural Networks: Pyro, Miro, and MARIE all include neural network software.

F4.2.10 Learning: TeamBots provides both reinforcement and Q-learning components, Pyro has a reinforcement
learning module, while MissionLab includes integrated case based reasoning and Q-learning components. We
do not include neural network software under the learning heading, as it appears as a separate category above.

S RDE Usability Evaluations

The systematic comparison of RDEs with respect to their supported features based on a conceptual framework is one
important part of an RDE evaluation. Another important part is RDE usability, for the extent to which an RDE can
be easily installed and used in research is ultimately a decisive factor for its adoption. Yet, surprisingly, there is only
one previous study (Orebick & Christensen, 2003) that provides a practical RDE evaluation. And while a robotic
architecture was actually implemented and executed on a robot in Orebidck & Christensen, 2003, their study is very
limited in scope (only three RDEs were evaluated according to a small set of criteria based on a single application) and
does not provide a methodology for systematic comparisons and subsequent evaluations that ties together conceptual,
practical, and impact factors. Consequently, the conclusions Orebéck and Christensen (2003) arrived at have limited
applicability.
We believe that a comprehensive evaluation needs to encompass at least the three categories of usability criteria:

Ul: Installation. Basic steps required to obtain a usable system, evaluated in terms of the required time and effort.

U2: Basic usability. Implementation and execution of a simple “lowest common denominator” architecture for RDE
comparison, focussing on “low-level” sensor and effector access and allows for an investigation of architectures
that reside on a single host.

U3: Advanced usability. Usage of individual, predefined, “high-level” components that would commonly form
sub-architectures of a complex, distributed architecture; an effort is made to explore uncommon (and possibly
unique) “high-level” system features.

The following subsections describe the three categories in more detail. As was done with features in Sec-
tions 3 and 4, a set of criteria is defined and subsequently evaluated. Due to the variability of each criteria’s subject,
value meanings are specified per item; in general they can be interpreted as: [ for below average, B for average,
and H for above average. While an attempt has been made to adhere to a ternary value assignment, a value of na
is used to indicate that a specific item was not examined in sufficient depth to assign a value for some reason (e.g.,
incompatible hardware, difficulties with prerequisite software, etc.). na values will not be included in an RDE’s score.
Results are shown in Table 3, where the following shorthand column headings are used to designate particular systems:
TB-TeamBots, AR-ARIA, P/S-Player/Stage, Py—Pyro, C-CARMEN, ML-MissionLab, AD-ADE, Mi-Miro, and
MA-MARIE.

All systems were installed on at least two computers out of a selection of five: two laptops, two desktops, and
the onboard PC of an ActivMedia PeopleBot P2DXe robot (shown on the right in Figure 1). None of the computers
were the same make and model, with varying CPUs (§50MHz Pentium III, 1.3GHz and 2.0GHz Pentium M, 2.3GHz
Pentium 4, and a 1.8GHz AMD Athlon) and memory capacities (from 128MB-1GB), although all used Linux (either
Debian or Fedora distributions) running a 2.6.x kernel. Various supporting hardware included microphones, speakers,
a Firewire camera, and both wired and wireless Ethernet networking. All non-simulated experiments were conducted
on the robot, which also has a pan-tilt unit, sonar, bumpers, and a SICK LMS200 laser range finder.

Ul: Installation

Prior to actually using an RDE, it must be properly installed. Since we believe that installation difficulties might often
be a deterrent for potential users, we give “Installation” its own category and criteria.
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Category | Criteria T | AR |P/S |Py |C ML | AD | Mi | MA
Ul.1 Documentation H H H H H H H H H
Install U1.2 Non-RDE Installation H H H H H H H O O
U1.3 RDE Installation H H H H H O H | =)
Ul .4 Installation Usability H =] H B = O H O |
U2.1 Documentation (] H H H H H = H H
U2.2 Architecture Implementation U H H =) H H H O O
Low-level | U2.3 Architecture Execution H H == H U H H H |
U2.4 Graphical Tools O =] =] 2! = H H =] =)
U2.5 Overhead (memory, CPU) Bt | B B B = gt | #8 gt | &8
U2.6 “Low-level” Usability O =] H B H H H | g
U3.1 Documentation na H H H H = H O B
U3.2 Predefined Components na H H H O H H H H
U3.3 Task Implementation na =] H =2 = H H H =)
High-level | U3.4 Distribution na H H 0 = H H H =)
U3.5 Graphical Tools na (] =] = g H H (] H
U3.6 System Integration na (] H H H H H H H
U3.7 “High-level” Usability na O H =a! = =] =] | =]

Table 3: Usability Criteria Evaluation by RDE (a T indicates that execution of the “low-level” architecture was done
in simulation due to difficulties running it on the robot).

U1.1 Documentation: Installation documentation refers specifically to how well the documentation described the in-
stallation process, including required preparatory steps and supporting software, minimum system specification,
a clearly laid-out sequence of instructions, a list of known or potential issues, inclusion of mailing list or contact
addresses, and references to further information. Satisfying more than five of the above requirements receives a
H value, three or four receives a H value, while less than three receives a [.

U1.2 Non-RDE Installation: In all cases, installation required additional supporting software. In some cases, this is
limited to a single package (e.g., an adequate Java system), while in others, a large set of additional software
is required to enable all available features. A value of H indicates that installing non-RDE software (including,
if necessary, determining what supporting software was required, actual compilation and installation, and any
needed debugging) took less than three hours, a H indicates less than two days, while a [ indicates more than
two days. Due to the level of detail necessary to cover the variety and scope of additional software packages,
we do not address many of the related issues encountered, although some additional information is given as part
of criteria Ul.4.

U1.3 RDE Installation: RDE installation refers to the steps necessary to have a usable system, assuming all support-
ing software has been installed. Values are the same as non-RDE installation (U1.2): a B value indicates that
installation took less than three hours, a H indicates less than two days, and a [] indicates two or more days were
required to attain a usable system.

U1.4 Installation Usability: Usability, as related to the installation procedure, is the overall (and ultimately subjec-
tive) impression of the experience. Values are assigned relative to the other systems, thus three systems each
receive U, H, and H values. The following notes provide selected information (presented in no particular order)
gathered during the implementation process that help explain the evaluations:

e Pyro has a bootable “LiveCD” available, which should avoid installation issues altogether. However, actual
robots rarely have a CD drive, making this irrelevant for non-simulated use. The packages in the Pyro yum
repository conflicted in some cases, but manual installation was done without issue.

o The version of MissionLab available required the use of gcc version 3.2 or below and related libraries,
which, due to its age and incompatibility with current versions, was the cause of time-consuming installa-
tion issues.
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FUNCTION simple_architecture
turning, forward = 0
while true do

R — getRanges()

forallr € Rdo

. - aXcos(r,
turning = turning + (rangte)

Tdistance XTdistance

forward = forward — axsinlrangle
end for
forward = forward + (3
setVelocity( forward, turning)
end while

Tdistance XTdistance

Figure 1: Left: The “simple” architecture algorithm implementing a wander behavior with obstacle avoidance. At
each time step, a set of polar range readings R = (r1,72,...,7y) is obtained, where —7 < rgngie < T (Fangte = 0
is straight ahead) and r4;s¢qnce 1S relative to the center of the robot. The rotational velocity turning is calculated by
summing the x component cos(rangle) of polar readings, divided by square of the distance 74;stqance to account for
obstacles, multiplied by some system-dependent scalar . The translational velocity forward is calculated similarly,
using the y component sin(rqngqie ), subtracted from the total to make it repulsive, then adding a constant 3 for default
forward movement. Right: The robot on which experiments were performed.

o Installation of ACE/TAO software, required for Miro and MARIE, was particularly time-consuming, par-
ticularly due to an initial misconfiguration that required multiple manual de- and re-installation. Miro
requires a particular ACE/TAO configuration installation, which is not documented.

o Installation of supporting packages for ADE includes a hardware interface for Java, Player/Stage for sim-
ulation, a secure shell client and server for distribution, and assorted other packages to attain the full
complement of system functionality.

e Few, if any, installation issues were experienced with TeamBots, ARIA, Player/Stage, and CARMEN. The
issues that were encountered mostly concerned platform configuration (e.g., appropriate privileges and
permissions, default hardware settings that differed from the particular configuration in use, etc.).

U2: Basic Usability

Basic usability in this context means to be able to implement and execute a simple robotic architecture to be able to
test a minimal set of capabilities supplied by each RDE. The implemented architecture consists of a basic wander
behavior that incorporates obstacle avoidance. Only motor control and range finder sensors were accessed, in as direct
a manner as possible, providing a “lowest common denominator” for RDE comparison. The basic algorithm, which
uses a potential field method, is shown on the left side of Figure 1. Note that because the robots available to the authors
are not supported by TeamBots, the architecture was implemented but execution could only be done in simulation.
Similarly, MissionLab and Miro were also run in simulation due to repeated failures. Each time an installation was
not successful, the error was located, fixed, and another attempt was made. Once simulated architecture execution was
possible, a few additional attempts were made to run the architecture on the robot; when these also failed, simulated
results were deemed acceptable. Systems that were only evaluated in simulation are marked with a T in Table 3.

U2.1 Documentation: In relation to the “low-level” architecture, documentation refers to information that enhances
basic usability (e.g., APIs, example code, a frequently asked question list, etc.). A [ value indicates that it was
difficult to find information concerning either basic functionality (e.g., how to send a command to the robot)
or a solution to a relatively simple problem (e.g., how to start architecture execution). A H value indicates that
information was available but required some effort to locate, while a B value indicates that very little effort was
required to find installation and implementation information.
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U2.2 Architecture Implementation: Architecture implementation refers to the process of writing the program that
performs the wander behavior with obstacle avoidance. A [J value indicates that implementing the simple ar-
chitecture was a major undertaking (requiring more than two days), a B value indicates that substantial effort
was involved (requiring more than 5 hours), and a H value indicates that implementation required an expected
amount of effort (less than 5 hours). It is important to note that because the simple architecture was a low-level
implementation that circumvented or avoided the abstractions and/or tools supplied by some RDEs (e.g., Team-
Bots’ Clay system, ARIA’s predefined actions, or MissionLab’s behavior libraries), the value is not necessarily
indicative of what might be considered “normal” usage, which is considered instead as part of “high-level”
usability.

U2.3 Architecture Execution: Architecture execution refers to the effort required to start and stop a fully implemented
architecture (including both the control code and supporting software, if they are separate). A [J value indicates
a sequence of more than four steps, perhaps requiring multiple terminal connections that each require separate
initialization. A B value indicates that two to four steps are required, sometimes mitigated by the GUI. A H
value indicates that startup and shutdown requires a single step’ .

U2.4 Graphical Tools: For the “low-level” architecture, graphical tools refer to the non-command line interface pre-
sented by an RDE. A value of H is given if the system provides both a display of basic operational information
and a graphical manner of starting and stopping architecture execution. A value of H is given if an RDE provides
either, while a value of [ indicates that neither are provided.

U2.5 Operational Overhead: Operational overhead refers to the memory and CPU (M and C, respectively) resources
used during architecture execution®. Initial conditions were kept constant by rebooting the computer for each
system, turning the swap file off, then executing the architecture three times, recording measurements at one
second intervals. Each execution run is divided into two phases: (1) startup (denoted by a subscript .S), demar-
cated by the time just prior to system startup until robot movement is first detected and (2) execution (denoted
by a subscript F), which begins when robot movement is detected, continuing for 90 seconds.

Figure 2 shows the average (with standard deviation bars) and maximum values across all three runs. The
average values form the basis for calculating evaluation scores by dividing the range in thirds that are assigned
values of 0 for the top third, 1 for the middle third, and 2 for the lower third. More specifically, Mg and Mg
receive: <20MB = 2, <40MB = 1, and >40MB = 0. For C's and Cg, <33% = 2, <66% = 1, and >66% =0.
The values shown in Table 3 are the sum of Mg, Mg, Cg, and C'g, where a total of 6 or better receives a HH, a 4
or 5 receives a H, and 3 or less receives a []. It is interesting to note that, in most cases, the operational overhead
displays the classic memory vs. CPU usage tradeoff in both the startup and execution phases.

U2.6 “Low-level” Usability: Usability, as related to the “low-level” architecture, is the overall (and ultimately sub-
jective) impression of the experience. Values are assigned relative to the other systems, thus three systems each
receive [, H, and B values. The following notes provide selected information (presented in no particular order)
gathered during the implementation process that help explain the evaluations:

e Execution for TeamBots, MissionLab, and Miro were performed in simulation (denoted by a T in Table 3)
due to unsupported laser hardware in TeamBots and difficulties in hardware communication for Mission-
Lab and Miro.

e Although RobotFlow supplies components for interfacing with a Pioneer and SICK lasers, execution for
MARIE used a Player server as the hardware interface so that MARIE functionality was included in the
performance measurements.

e Inclusion of an easily accessible simulator was extremely useful in implementing and debugging an archi-
tecture; Player/Stage and CARMEN are particularly strong in relation to simulator integration, while Miro
was relatively difficult to access.

e The structure of TeamBots is such that implementations that deviate from the included software (e.g.,
non-Clay behaviors or unsupported hardware) are very difficult to program.

7We do not consider placing a sequence of commands in a shell script for execution as a single step.
8While disk space usage and bandwidth are important, neither is considered. We exclude disk space due to the variability of packages required,
while bandwidth is not addressed due to the single-host nature of the “low-level” architecture.
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Figure 2: Operational overhead of each RDE executing the “low-level” architecture. Top Row: Memory usage (in
KB), showing average (with standard deviation bars) and maximum values. The left-hand figure shows the startup
phase, while the right shows the execution phase. Bottom Row: CPU usage (as a % of system load), again showing
average and maximum values. As with the memory overhead, startup is on the left and execution is on the right.

CARMEN and MissionLab require some knowledge of IPC messages to implement custom components
or write routines that access the available components.

Player/Stage, Pyro, and ADE provide a good balance of high-level component abstractions while also
preserving accessibility to low-level sensor and effector interfaces.

Player/Stage and Pyro provide a varied base of example code combined with relatively easy configuration
and relevant documentation.

Both MissionLab and CARMEN provide excellent documentation; MissionLab has a clear and complete
user manual, while CARMEN’s documentation is structured and organized in a manner that made it easy
to find desired information.

Although ARIA provides very good documentation, the “low-level” nature of sensor and effector access
used in this architecture deviates from the standard methods addressed therein, leading to a more difficult
implementation.

While both the FlowDesigner and MissionLab GUIs are extensive and polished, some low-level tasks are
easier to perform using a text editor (in other words, the GUI was actually a hindrance in some respects).

22



U3: Advanced Usability

While the “low-level” architecture provides a lowest common denominator for subjective RDE evaluation, the im-
plementation of what we will refer to as “high-level subarchitectures” provides a basis for evaluating an RDE under
expected normal usage (although with a focus on distributed computing which becomes necessary due to architecture
complexity and real-time processing constraints). Because there are few areas in which all RDEs provide the same
capabilities in the same way, the underlying idea is to obtain an estimate of the effort required to distribute a single
complex architecture over at least two hosts. A model example of such an architecture is DIARC (Scheutz et al.,
2006), which provides a foundation for experiments in human-robot interaction.

The “fundamental” components examined are: (1) vision processing (monocular, that uses blob-detection), (2)
speech recognition, (3) speech production, and (4) the provided robot control primitives, although attempts were
made to use of some (possibly unique) components and capabilities (e.g., MissionLab’s selection of behaviors, ADE’s
autonomous distribution, etc.). The implementation consisted of installing, configuring, and testing individual com-
ponents, then connecting at least two of them across a network as an indication of ease of distribution, with the
assumption that connections among the other components will require similar effort. No attempt was made to im-
plement these tasks in TeamBots, due to both the limited number of predefined components and because the robots
available to the authors are not supported.

U3.1 Documentation: In relation to the varied tasks, documentation refers to information concerning the advanced
RDE functionality (e.g., explanation of available components and their use, example code, etc.). In particular,
the focus was on the components required for the varied tasks (vision, speech recognition, speech production,
and robot control) and their distribution. A [J value indicates either missing or incomplete information for at
least two basic functionalities. A H value indicates that information was either missing or incomplete for only
one basic functionality or that the supplied documentation for any basic component was minimal or unclear. A
B value indicates that documentation was complete, easy to locate, and highly readable.

U3.2 Predefined Components: Predefined components refers to the integrated capabilities included with an RDE. A
(] value indicates that an RDE was either (1) missing at least one component required to implement all “fun-
damental” functionality for the envisioned architecture (robot control, vision, speech production, and speech
recognition) or (2) did not provide at least two additional components for each missing “fundamental” com-
ponent. A H value indicates that the basic components were available or at least two other components were
available for each missing basic component. A H value indicates that the RDE comes packaged with more than
four predefined components beyond what is required for a & value, in addition to other tools or functionality.
Of particular note are Player/Stage, Pyro, MissionLab and MARIE: Player/Stage supports the largest number of
devices, Pyro and MissionLab include various additional functionalities (e.g., Pyro includes working examples
from S. Russell & Norvig, 2002, MissionLab includes a case-based reasoner for post-execution analysis), while
MARIE provides many signal processing and vision tools via the RobotFlow and FlowDesigner packages.

U3.3 Task Implementation: Task implementation refers to the effort required to implement the subarchitectures, both
in terms of accessing individual components and their distribution. As with the “low-level” architecture, a [J
value indicates that implementation was a major undertaking (requiring more than two days), a 5 value indicates
that substantial effort was involved (more than five hours), and a H value indicates that implementation required
an expected amount of effort (of less that five hours). It is imperative to note that the “high-level usability” case
made use of the abstractions and/or tools supplied by some RDEs (which sometimes proved detrimental), which
may account for differences from the value given for the “low-level” architecture.

U3.4 Distribution: Distribution refers to the ease of locating components across hosts once the distribution mecha-
nisms have been implemented, accounting for both startup/shutdown procedures and relocation of components.
A H value indicates that the system provided facilities for automatic login and component startup/shutdown, in
addition to providing the means to reconfigure component location. A H value indicates that only one of those
specifications was met, and a [J value indicates that neither is supported. Of note is that RDEs in which com-
ponents must be implemented with network capabilities (e.g., components in CARMEN or Miro and servers in
Player/Stage or ADE) all have a relative advantage.

U3.5 Graphical Tools: In relation to the “high-level subarchitectures”, graphical tools refers to both the presentation
of an integrated display and the means to graphically implement robot control procedures. This differs from
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the “low-level” architecture in that (1) an emphasis is placed on integration, such that architecture display and
system control is consolidated and (2) a user does not have to write low-level programs. A value of H is given
if an RDE provides both, a value of H if only one is provided, and UJ if neither is provided.

U3.6 System Integration: System integration refers to the separate issues of (1) easily connecting and controlling
components in a complex architecture and (2) coherent system usage in terms of providing a consistent interface
to the complete system that allows access to and control of individual components. A H value is assigned if
both objectives are met, a 5 if only one is satisfied, and a [ if neither.

U3.7 “High-level” Usability: As with the “low-level” architecture, usability is the overall (and subjective) impression
of the experience of using each RDE. Values are assigned relative to the other systems, thus three systems each
receive H and H values, while two receive a [] value (because TeamBots was not evaluated in terms of the
high-level tasks). The following notes provide selected information (presented in no particular order) gathered
during the implementation process that help explain the evaluations:

e Both ARIA and MissionLab have additional components that were not considered here as they require
licensing and were not included in the downloadable package.

o While ARIA’s documentation is in general very good, the distribution package, ArNetworking, lacks
complete documentation. For some basic tasks, MARIE’s documentation is sparse, limited to “node”
listings, while ADE and Miro are comparably spotty.

e Pyro’s interface is well integrated, allowing access to various conceptually separate parts of an application
(i.e., the server, robot, devices, and “brain”), while also providing the ability to enter Python commands
at run-time. However, non-graphical usage is not quite as polished (for instance, hanging when exiting the
system).

e The user interface provided by MissionLab is especially suited to task specification implemented by non-
programmers, matching its objective of providing a high-level view of robot control.

e Systems that require the strict use of abstractions in support of their component model (e.g., the ACE/TAO
in Miro and FlowDesigner networks in MARIE) or, to a lesser extent, require some level of abstraction
removed from actual source code (e.g., IPC/IPT communications in CARMEN and MissionLab and RMI
in ADE) can be either beneficial or detrimental to some degree. For instance, Miro’s requirement that all
components are CORBA objects makes component integration and distribution extremely simple, but the
implementation of an arbitrary component is made more difficult.

6 Discussion

The evaluations presented in Sections 4 and 5 provide the foundation for comparing RDEs, both at a conceptual level
and from a practical perspective. Augmented with an impact evaluation (to be described below), we envision the
results of this survey being useful to the robotics community in at least two ways: (1) by providing researchers with a
practical means of selecting an RDE that will most closely match their requirements and (2) by giving RDE developers
an overview of the innovations being made in other systems, possibly suggesting improvements and extensions to their
own system.

6.1 Researchers

To perform a comprehensive comparison of the RDEs presented, three separate measures are given: (1) a summary
of the evaluations from Section 4 concerning an RDE’s features, (2) a summary of the evaluations from Section 5
concerning an RDE’s usability, and (3) an estimate on the influence an RDE has had on the robotics field (i.e., its
impact), which is gauged by the breadth of publications from different research areas (as listed at the end of each
description from Section 2) and the number of other RDEs that provide interoperability interfaces with a system. A
researcher examining a group of RDEs to find one that best fits their needs might conduct evaluations using either
qualitative or quantitative measures.

A qualitative evaluation is highly contingent on the user’s purpose; on the one hand, very specific capabilities may
be required, while on the the other, needs may be highly abstract or only loosely defined. For instance, an application
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designer who has a large body of already written Octave software and desires to use it with a robot might look at
the system descriptions in Section 2 and find that MARIE already has an Octave plug-in. Conversely, educators
establishing an “Introduction to Robotics” class might consider the items from the usability evaluation in Section 5 to
be of overriding importance; an examination of the values given to the documentation criteria (U1.1, U2.1, and U3.1)
might lead them to limit attention to Player/Stage, Pyro, and CARMEN.

More likely, however, is that a mixture of characteristics is desired. For example, a developer might require a
system that provides a simulated environment and a fair level of distribution facilities, with a preference for a system
that supplies extensive GUI capabilities and usability oriented towards non-programmers. An examination of Section 4
would lead to considering criteria F2.3 (Simulator), F3.4 (Distribution Mechanisms), F4.1.2 (High-level Language),
and F4.1.5 (Graphical Interface), while Section 5 would U2.4 (Graphical Tools) and U3.1-U3.7 (High-level Usability),
making MissionLab the most likely choice.

To arrive at a quantitative evaluation, an assignment of values to criteria must be made, which can then be applied
to a selection (or all) of the criteria. To arrive at numerical comparison scores, the three categories of criteria mentioned
above are retained, yielding a feature score F', usability score U, and impact score I, which can be summed to give a
total score T'. Within each category, values of 0 or 2 are assigned to binary-valued criteria and values of 0, 1, or 2 to
ternary-valued criteria (listing features are not scored)’.

In formal terms, the selected RDEs form the set S = {T'B, AR, P/S, Py,C,ML, AD, Mi, M A} and are as-
signed a score that is the sum of the category scores F', U, and I. Given a number of individual criteria within each
category (e.g., F1.1 denotes Architectural Primitives, while U1 ;1 denotes Installation Documentation), category scores
are comprised of the sum of individual criteria values F;, U;, and I, where m, n, and o are the total number of feature,
usability, and impact criteriaand 1 < ¢ < m, 1 < 7 < n,and 1 < k < o. In the simplest case, where all criteria are
given equal weight, the RDE comparison scores are given by the formula:

Tses — iFf + Zn: U? + zO:If
=0 i=0 =0

Should a quantitative evaluation that weights some categories or criteria more or less than others be desired, weights
can be assigned at both a coarse-grained level (for each category, «, 3, and ~) and a fine-grained level (for each
criterion within a category, Wr,, Wy, and Wi, ). The resultant formula for establishing the total comparison scores
is:

m n o
Tics —ay WrFi+8Y Wy,Uf+7> WiLIf
1=0 1=0 1=0

where a+ S+v=3,>. Wr, =m, > Wy, =n,and >, Wy, = o. This method will give an objective comparison in
that scores are not biased for or against any particular RDE, although the choice of features and their assigned weights
are based on the particular application requirements.

The quantitative evaluation that does not weight any criteria or category more than another follows, supplemented
by a discussion of each category score and the totals. The tabulated scores are shown in Tables 4, 5, and 6, respectively,
and summarized in Table 7.

MARIE and ADE have the highest score (44 and 43, respectively) in terms of the Feature score F'. The Implemen-
tation category contributes more than half of the F' score, exerting the largest influence. This is quite acceptable, as it
corresponds to the expectation that the purpose of an RDE is to provide appropriate tools and abstractions that facilitate
application development. MARIE and Pyro have the highest implementation scores (23 and 22), indicative of their
wide selection of components (partially due to its interoperability with other RDEs) and advanced GUI capabilities.
Pyro is assigned the third highest F’ score (37) due to the Infrastructure category, which accounts for over 25% of the
final score. ADE, which has a score of 18 in the implementation category, ends up with the highest F' score (43) due
to the infrastructure category, as it the only RDE that earns a well supported value for each criterion therein.

Of particular note is the fact that the RDEs with the highest scores (Pyro, ADE, and MARIE) all have explicit
interoperability interfaces with other systems. While providing a boost in total feature score, we also note that this
makes them reliant, to some degree, on the availability of the other systems for certain features, in addition to poten-
tially affecting their stability (in that changes to the other RDEs may impact their operation). We also note again that
comparing RDEs in terms of " alone does not provide a full picture of evaluation, leaving out aspects such as system
usability, discussed next.

9Binary and ternary values range from 0 to 2 so as to not introduce a bias towards ternary criteria.
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Feature Category

Specification (6) | Platform (6) | Infrastructure (16) | Implementation (30) | Total (58)
RDE | Score % | Score % | Score % | Score % | Score | %
TB 5 83 1 17 0 0 10 33 16 | 28
AR 4 67 2 33 6 38 14 47 26 | 45
P/S 3 50 5 83 9 56 17 57 34 | 59
Py 5 83 5 83 5 31 22 73 37 | 64
C 4 67 5 83 8 50 10 33 27 | 47
ML 6 100 4 67 10 63 15 50 35 | 60
AD 6 100 3 50 16 100 18 60 43 | 74
Mi 5 83 3 50 9 56 14 47 31 | 53
MA 5 83 6| 100 10 63 23 77 44 | 76

Table 4: The raw Feature score F' and %, broken down by categories from Section 4 for each RDE

As noted in Section 3, an appropriate set of criteria must be considered to serve as the basis for comparing RDE:s.
Not only do applications have markedly different characteristics that may impact the designer’s choice of RDE, but
users tend to have different needs and working styles. The Usability score U attempts to address the practical aspects
of RDE usage by adding criteria relevant for the actual implementation and execution of robotic architectures (in
particular, the two classes of tasks described in the previous section), the results of which are summarized in Table 5.

Usability Category

Installation (8) | “Low-level” (12) | “High-level” (14) | Total (34)
RDE | Score % | Score % | Score % | Score | %
TBT 8 100 4 33 na na 12 | 35
AR 7 88 7 58 4 29 18 | 53
P/S 8 100 9 75 11 79 28 | 82
Py 8 100 11 92 11 79 30 | 88
C 6 75 8 67 6 43 20 | 59
ML 3 38 8 67 13 93 24 | 71
AD 6 75 10 83 10 71 26 | 76
Mi 2 25 4 33 4 29 10 | 29
MA 3 38 4 33 10 71 17 | 50

Table 5: The raw Usability score U and %, broken down by categories from Section 5 for each RDE (a T indicates
some criteria were not included).

Pyro, Player/Stage, ADE, and MissionLab have the highest usability scores (30, 28, 26, and 24, respectively).
From a usability point of view, this indicates that each has fulfilled their stated purpose: Pyro is aimed at novice users
for educational purposes, Player/Stage is a flexible and adaptable programming interface, ADE combines robotic de-
velopment with a MAS infrastructure, while MissionLab provides military personnel with non-programming methods
of controlling robots. On the other hand, the low score given to Miro can be attributed to its reliance on the ACE/TAO
communication framework'? and incomplete documentation. In addition, it is necessary to point out that both ARIA
and MissionLab’s scores would be higher if the restriction to open-source components was lifted.

It is interesting to note that MissionLab and MARIE have the widest discrepancy in score between usability cat-
egories, each scoring relatively highly for “high-level” usability but low on the “low-level” architecture. Personal
experience determined that much of the difference can be attributed to predefined components (both their number and
usage) and their integration into a cohesive user interface. Both provide a comprehensive graphical method for con-
necting components, but suffer from either not providing a graphical interface to all parts of the system (e.g., MARIE
requires shell scripts for startup/shutdown and the definition of communication channels) or by their orientation to-

10The impact of ACE/TAQ is acknowledged in the user manual thusly: “The CORBA environment and the Miro framework seem to raise the bar
for an easy entry into robot programming. While this can hardly be denied they facilitate tremendously the task of writing distributed programs.”
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wards very high-level tasks.
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Table 6: The raw Impact score I and % for each RDE, the sum of “Application Area References” citations from
Section 2 and the other RDEs that provide interoperability interfaces (a T indicates some criteria were not included).

Finally, an oblique way to determine the strengths of an RDE is to establish an Impact score I that reflects the
influence it has had on the robotics field. The number of research areas in which there are publications serve as an
indicator of successful usage, as does the recognition that widely used systems are most likely to have other RDEs
provide interoperability interfaces. Table 6 summarizes the robotics research subareas and citations given in Section 2
for each RDE, in addition to giving a count of the number of RDEs that interoperate with it. We reiterate that a single
publication is used to satisfy research in any subarea, simply to provide an idea of the breadth of research areas in
which it has been used; we also note the likelihood that some relevant publications were not included, as the particular
RDE used is sometimes not mentioned in a publication. Because criteria are all either binary in nature or a simple
count, total scores are a simple sum of items, deviating slightly from the previous convention of assigning 2 points to
a /. Player/Stage clearly has had the largest impact, reflected by the fact that its score (16) is more than double that
of the next highest system. It is also necessary to point out that ARIA’s impact score is deceptively low (indicated by
the T symbol), due to the fact that the authors were asked not to include references to its ancestral software.

Two overall comparison scores T3 and T,; are shown in Table 7, where T% does not include criteria that were
unevaluated for any RDE and T;; does. Overall scores are the sum of the feature F', usability U, and impact I scores.
Player/Stage has the highest total score T,;; (78 out of a possible 112), partially due to having the highest I score,
even though it had the fourth highest F' score and second highest U score. The next three highest scoring RDEs (ADE
with 75, which had the highest F' score; Pyro with 70, which had the highest U score; and MARIE with 68, which
had the second highest F" score) are all relatively new systems; in addition to providing some level of interoperability
interfaces with other RDEs (thus capitalizing on prior innovations), we believe that part of their score can be attributed
to identifying areas of application development that can be improved, partially based on the examples of already
established RDEs (discussed in more depth in the next section). Of note is that when the unevaluated criteria are
removed, the top four RDEs (ADE, Pyro, Player/Stage, and MARIE, respectively) remain the same.

We reiterate that the total scores T} and T5;; may not reflect the particular requirements of a particular person or
group and that while the evaluations here are comprehensive, they necessarily miss some criteria that may be important
for a specific designer or application. Such items can be added at will to further refine and customize the evaluations,
adjusting the evaluation formula given earlier.
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Score
Removed T Criteria All Criteria

F (58) U (20) 1@ Total (82) F (58) U (34) 1(20) Total (112)
RDE | Raw | % | Raw | % | Raw % | Raw | % || Raw | % | Raw | % | Raw | % | Raw %
TBT 16 | 28 12 | 60 0 0 28 | 34 16 | 28 12 | 35 2|10 30 27
AR 26 | 45 14 | 70 2 50 42 | 51 26 | 45 18 | 53 2|10 46 41
P/S 34 | 59 17 | 85 4 | 100 55| 67 34 | 59 28 | 82 16 | 80 78 70
Py 37 | 64 19 | 95 0 0 56 | 68 37 | 64 30 | 88 3115 70 63
C 27 | 47 14 | 70 1 25 42 | 51 27 | 47 20 | 59 5|25 52 46
ML 35 | 60 11 | 55 0 0 46 | 56 35 | 60 24 | 71 7|35 66 59
AD 43 | 74 16 | 80 0 0 59 | 72 43 | 74 26 | 76 6 | 30 75 67
Mi 31 | 53 6 | 30 0 0 37 | 45 31 | 53 10 | 29 6 | 30 47 42
MA 44 | 76 7|35 0 0 51 | 62 44 | 76 17 | 50 7|35 68 61

Table 7: The Total comparison score 17" and % for each RDE, comprised of the sum of feature F', usability U, and
impact I scores. The left-hand columns under the Removed ' Criteria heading do not include criteria unevaluated for
any RDE, while columns under the All Criteria include all criteria, using a value of zero for unevaluated items.

6.2 RDE Maintainers and Developers

The selected RDE:s in this survey are, as defined by the constraints of system selection, open source projects. While
their availability is of obvious benefit to users, individual RDE maintainers can also potentially reap some benefit by
examining other systems. Hopefully, this will facilitate the transfer of techniques and tools (e.g., Vaughan et al., 2003;
Montemerlo et al., 2003b; Hattig et al., 2003; RADISH, 2004) across environments and promote progress in the field
of robotics as a whole. Using the Feature and Usability comparison scores from the previous section as a basis (the
Impact score is not considered, as it is not directly controlled by RDE maintainers), it becomes possible to not only
make specific improvement suggestions, but also to make some high-level points. We note here that no suggestions
are made for TeamBots because it is no longer under active development.

To begin, we examine the Feature scores shown in Table 4 by discussing each category. In the Specification
category, all RDEs score at least 50%, while 8 of the 9 score 67% or higher, indicating that all supply adequate support
for application design. Considering the Platform category, only two systems score less than 50%: TeamBots, which is
no longer being actively developed, and ARIA, which has been developed in support of a proprietary platform and thus
has unique objectives. Increasing the hardware support in MissionLab, ADE, and Miro would yield scores of 67% or
higher for all of the remaining systems, such that all could be considered to have adequate platform support. In terms
of the Implementation category, only CARMEN and MissionLab score below 50%. Recalling the information found
in Table 2, it is evident that the score is substantially due to supporting a limited number of predefined components
(although it is important to note that some components are available with MissionLab if licensed). ARIA’s score is
similarly affected by licensing issues, in that an integrated GUI is available; inclusion would put its score at about
60%. ADE, Miro, and MARIE all have inadequate documentation, which would improve their Feature score, while
also increasing their Usability scores. The last category factoring into the feature score is Infrastructure, discussed
very briefly here due to its inclusion in Section 7. ARIA, Pyro, and CARMEN all score 50% or below; again,
ARIA’s licensing requirements affect its score to some degree, leading to a not supported value for the Monitoring and
Management criterion. The most prevalent unsupported criterion is Security, which only ARIA and ADE support at
all. As noted earlier, Player/Stage, Miro, and MARIE all have the potential to easily incorporate security (Player/Stage
by utilizing its authentication mechanism and Miro/MARIE by leveraging the ACE/TAO framework). The next least
supported criteria are Component Mobility and Fault-tolerance, related to Distribution Mechanisms. Suggestions for
improvements in these areas is beyond the scope of this survey, and we again refer to Section 7 for more.

Three categories make up the Usability score, Installation, the “low-level” architecture, and “high-level” subar-
chitectures. Three RDEs are at or below 50% in installation (MissionLab, Miro, and MARIE), two in the “low-level”
category (Miro and MARIE), and three in the “high-level” category (ARIA, CARMEN, and Miro). Discounting un-
available software, ARIA’s individual scores are well distributed among criteria, indicating that while each could be
improved, a good overall mix is established. MissionLab’s installation score is low due to its reliance on older versions
of gcc; a new release would most likely greatly improve its score. As with the Implementation category mentioned
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above, CARMEN would benefit greatly from additional predefined components. Miro’s framework, relying as it does
on CORBA, has great potential in terms of usability; however, additional tools and documentation are required to
“lower the bar” that, as they say in their user manual, has been placed quite high. In MARIE'’s case, the lowest individ-
ual criteria scores are concentrated in the “low-level” architecture. In particular, the necessity of manually specifying
component connections lowers usability, as does what might be considered a high learning curve.

From the above, one broad point that should be clear is that interoperability tools are of great utility, allowing
one RDE to incorporate any component functionality developed in another RDE. Interoperability has been discussed
in the literature (e.g., Baum et al., 2002; Nesnas et al., 2003; Coté et al., 2005), and while no single technique has
been accepted, MARIE’s foundations suggest a direction for future standards. While Pyro provides a large base of
interoperability tools, MARIE’s stated intention is to provide a well-grounded framework that is not only compatible
with existing systems, but also provides the conceptual basis for adding interoperability in the future. The benefits
of this approach are apparent when considering the available pre-defined component list; components available in
Player/Stage, ARIA, and CARMEN are also available in Pyro and MARIE.

Finally, to gain acceptance, an RDE must pay attention to usability and the quality of its user and developer
interfaces (see Steinfeld, 2004 for a general treatment). An area that is receiving increasing attention is robotics
education. In addition to opening up the field to new people, an RDE that caters to novices should, almost by definition,
promote usability. Pyro is particularly strong in this respect. Another aspect of usability concerns those who are
not interested in going beyond the functionality already provided by an RDE, but rather use the already established
components to implement their own applications without programming. In this sense, the FlowDesigner package
(related to MARIE) provides a graphical method for defining data flow throughout an application. Taking this a step
further, MissionLab provides graphical tools not concerned with robot particulars at all, but only with their actions.
Additionally, the MissionLab developers have conducted many usability studies (e.g., MacKenzie & Arkin, 1998;
Collins et al., 2000; Endo et al., 2004; Moshkina et al., 2006) in conjunction with system development.

7 Conclusion & Outlook

This survey has evaluated nine RDEs with respect to an extensive set of relatively common criteria supporting the
development of robotic applications. Results were then compiled and used to compare the systems according to three
types of score (Feature, Usability, and Impact), providing robotic architecture designers with information useful in
picking an RDE for themselves. Finally, the comparisons provided the foundation for suggesting potential areas of
improvement to RDE maintainers based on features currently found in other systems. In conclusion, we extrapolate
from the results and attempt to identify some likely future trends.

The comparison of different RDEs suggests that common features will increasingly be expected in all systems,
strengthened by the interoperability mechanisms found in some recent systems (e.g., Pyro and MARIE). In addition
to creating a set of (possibly de facto) standards, this will lead to an increasing number of predefined components that
can be expected in any given RDE. Furthermore, we expect the list of predefined components given in Section 3 to
continue to expand, both in relation to high-level functionality (e.g., various types of robot control) and more specific
low-level functionality (e.g., “vision processing” will split into separate categories such as monocular vs. stereo vision
processing). We feel that a similar trend will develop in relation to RDE infrastructure (see Section 3), such that
users expect inclusion of a suite of tools that implement various non-architectural functions. This suspicion is borne
out by a cursory examination of the origination of RDEs. Early systems (e.g., TeamBots, 1998) provide little in the
way of infrastructure: an application in TeamBots is the sum of the Java classes that implement it. Player/Stage
(2001) incorporates a minimal amount of infrastructure; the authors acknowledge and deliberately reject this trend,
making the system “free from the computational and programmatic overhead that is generally associated with the
practical application” of such mechanisms (Gerkey et al., 2003). More recent RDEs, such as MARIE (2004) and ADE
(2004), explicitly incorporate substantial infrastructure into their design and use, with the stated aims, respectively, of
improving interoperability and distribution.

The necessity of providing infrastructural interoperability and distribution is illustrated by a quote from the authors
of the GRACE project (Simmons et al., 2003): “One of the more difficult parts of the Challenge for us was determining
how to integrate a vast amount of software that had been developed by the participating institutions, mostly on different
hardware platforms.” Such mechanisms should immediately bring to mind multi-agent systems (MAS) research, which
has found particular traction in the robotics field in the form of multi-robot applications (such as the citations listed
at the bottom of Table 6; see also K. P. Sycara & Zeng, 1996; Altmann et al., 2001; Dias & Stentz, 2003; Gerkey
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& Matarié, 2004). We suggest that it will be critical for future RDEs to incorporate other aspects of MAS research,
including, but not limited to security (e.g., Singh & Sycara, 2004) and system-wide management facilities (such as
those discussed in Bellifemine et al., 1999; K. Sycara et al., 2003).

A final trend we expect to take shape in RDEs in the future is the prominent promotion of autonomic computing
functionality (e.g., Bantz et al., 2003). On the one hand, we expect improvements in low-level system characteristics
that are transparent to users such as fault tolerance (e.g., Varakantham et al., 2002; Long et al., 2003; Melchior &
Smart, 2004). ADE, for example, already explicitly incorporates features for monitoring, relocating, and restarting of
components integrated into its infrastructure. Moreover, MARIE and Miro can potentially take advantage of recent
advances in middleware, e.g., the Fault Tolerant CORBA specification (see Chapter 23 in CORBA, 2005), which
incorporates mechanisms that promote robust system operation. On the other hand, we expect that development of
high-level Al techniques that enhance a robot’s apparent intelligence will increasingly find inclusion in RDEs, like the
tools found in MissionLab. We expect that robot learning (e.g., R. Russell, 2004; Blank et al., 2005), findings from
human-robot interaction (HRI) research (e.g., Salter et al., 2005; Fong et al., 2006; Moshkina et al., 2006; Scheutz et
al., 2006), and the study of social robotics (e.g., Bruce et al., 2002; Breazeal, 2003) will become commonplace.

In sum, we believe that the increase in capability of robotic applications will soon require extensive infrastructure
support, with expanding development of support for autonomic computing in the future. Such tools and techniques
will be used not only for the development and debugging of robotic architectures, but also for the execution and
maintenance of robotic architectures as part of application deployment. If true, the choice of one RDE over another
will be based on more than just the development support offered, but increasingly on the features it provides for the
long-term operation of robotic applications. Furthermore, and perhaps more significantly, the integration of system
infrastructure with the development of intelligent robotic architectures will lead to robots that display ever greater
levels of autonomy.
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