
Reflection and Reasoning Mechanisms for Failure Detection and Recovery
in a Distributed Robotic Architecture for Complex Robots

Matthias Scheutz and James Kramer
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
Email: {mscheutz,jkramer3}@cse.nd.edu

Abstract— Complex robots that interact naturally with hu-
mans require the integration, coordination and maintenance
of many diverse software components and algorithms. An
architecture that incorporates explicit knowledge about the
relationships among these components and the overall system
state can be used for introspection and consequently to reason
about the best configurations of the computing environment
under changing conditions; potential uses include maintaining
the system’s integrity, promoting its health, and providing the
ability to dynamically reconfigure system components (e.g.,
after component failure).

In this paper, we describe a rudimentary reasoning system,
part of our Distributed Integrated Affect Reflection Cognition
(DIARC) architecture for human-robot interaction, that can
autonomously perform failure detection, failure recovery, and
system reconfiguration of distributed architectural components
to ensure sustained operation and interactions. We demonstrate
the functionality and utility of the proposed mechanisms on a
robot, where architectural components are forcefully removed
by hand and automatically recovered by the system while the
robot is continuing its interactions with humans as part of a
joint human-robot task.

I. INTRODUCTION

The design of architectures for complex robots poses
a number of challenges, including structural (C1), control
(C2), and infrastructure (C3) challenges. Structural chal-
lenges include the selection of algorithms and components
(e.g., for natural language processing, discourse manage-
ment, multi-modal communication, etc.) and their organiza-
tion within the architecture to allow for proper information
exchange. Control challenges occur in the context of coor-
dinating the interactions of components, which typically ex-
ecute in parallel and possibly asynchronously. Infrastructure
challenges include mechanisms for distributing components
over multiple CPUs and/or hosts to achieve the required real-
time performance while ensuring that individual software or
hardware failures do not disrupt system operation.

Work on robot architectures typically focuses on (C1) and
(C2), while work in distributed computing typically focuses
on (C2) and (C3). And even though both fields address some
of the control challenges, there is little to no overlap, as the
control problems occur at different levels. We believe that it
is critical for complex robots to address all three challenges
together, for several reasons: (1) to be able to achieve

the integration of a large number of diverse components
within one architecture, (2) to manage and operate these
components over the long term in a coordinated fashion, and
(3) to react coherently to contingencies (such as software or
hardware failures) at different levels of the system.

In this paper, we address all three challenges with our
complex Distributed, Integrated, Affect, Reflection, and Cog-
nition architecture, DIARC. After briefly describing DIARC,
we focus on a novel reflection and reasoning mechanism that
improves the reliability of highly distributed architectures by
detecting and recovering from hardware and software fail-
ures. We demonstrate the utility of the proposed mechanism
on a robot implementation of DIARC in a joint human-robot
task where components of the architecture and/or hardware
are purposely shut down and successfully recovered–during
task performance–without human intervention.

II. AUTONOMIC COMPUTING MECHANISMS FOR
SUSTAINED ROBOT OPERATION

Complex robots, especially ones that interact naturally
with humans, require the integration, coordination and main-
tenance of many diverse software components and algo-
rithms. For seamless operation of the components, the in-
tegration requires designers to explicitly address several
structural (C1), control (C2), and infrastructure (C3) chal-
lenges. Yet, issues related to (C1) make architecture mod-
ification and extension very difficult, potentially requiring
new communication interfaces, data representation formats,
and connection methods. Difficulties related to (C2) such
as the adjustment and/or adaptation of component operation
and timing, input-output formats, and component function-
alities may affect other components with a cascade effect.
Issues concerning (C3) include architecture brittleness and
difficulties in component monitoring and fault detection,
resulting in the nearly impossible integration of mechanisms
for dynamic, automatic recovery of failed components and
system (re)configuration in reaction to unforeseen contingen-
cies. Consequently, ad-hoc integration, while possibly a first
step in the prototyping phase of architecture design, is not a
viable option for sustained autonomous operation of social
robots or robot companions.



Robots that need to operate for extended periods of time
will require mechanisms that ensure robust and reliable
functioning (e.g., run-time system modification, failure de-
tection and recovery, and automatic system (re)configuration
capabilities), which can be all viewed as aspects of auto-
nomic computing [2] intended to enhance a system’s ease of
use and availability. The necessity of including autonomic
computing principles in the design of a robotic architecture
that extend the robot’s time of operation is based on a simple
observation: in the long term, all systems will inevitably fail,
often for reasons that cannot be controlled by the designer.
The challenge, therefore, is not to anticipate all possible
problems, causes, and solutions at design time, but to design
mechanisms that can detect and resolve such problems at
run-time. This conclusion is succinctly expressed in [12]:
“We consider errors by people, software, and hardware to be
facts, not problems that we must solve, and fast recovery is
how we cope with these inevitable errors”.

The idea, then, is to equip the robot with general mech-
anisms for detecting component failures and recovering
from them quickly, while allowing component-specific func-
tionality to use them. We will, in the following, provide
an overview of a complex architecture for human-robot
interactions (e.g., as part of a mixed human-robot team)
that incorporates knowledge about the relationships among
components and the overall system state, then demonstrate
the utility of the autonomic computing mechanisms in the
context of a human-robot team task.

III. A PROPOSAL FOR A ROBUST COMPLEX
ARCHITECTURE FOR HUMAN ROBOT INTERACTION

Architectures for complex, mobile, autonomous robots that
have reliable and natural interaction with humans require,
at the very least appropriate interaction capabilities (R1),
including natural language capacity (speech recognition and
speech production), dialogue structure (knowledge about
dialogues, teleological discourse, etc.), affect recognition and
expression (for speech as well as facial expressions), and
mechanisms for non-verbal communication (via gestures,
head movements, gaze, etc.), as well as mechanisms for
mobility (R2), including obstacle detection and avoidance,
path planning and navigation, map making and localiza-
tion, and others. Such complex architectures also require
mechanisms for ensuring robust interactions (R3), including
recovery from various communication failures (acoustic,
syntactic, semantic misunderstandings, dialog failures, etc.)
as well as software and hardware failure recovery (crashes
of components, internal timing problems, faulty hardware,
etc.).

To meet requirements (R1), (R2), and (R3) we have de-
fined DIARC, an architecture that integrates typical cognitive
tasks (such as natural language understanding and complex
action planning and sequencing) with lower level activities
(such as multi-modal perceptual processing, feature detection
and tracking, and navigation and behavior coordination) [17],
[16], [6] . To support DIARC in meeting requirement (R3),
all DIARC components are implemented as “servers” in the

JAVA-based infrastructure framework ADE, which provides
robust, reliable, fault-tolerant middle-ware services for the
distribution of complex robotic architectures over multiple
computers and their parallel operation, including monitoring,
error detection, and recovery services [14], [7].

A. DIARC -A Distributed Integrated Affect Reflection Cog-
nition Architecture

DIARC provides several features that are not readily found
in other robotic architectures. First, DIARC is a complete
knowledge-based architecture that meets (R1) and can be
employed in human-robot interactions without any structural
modification. Task knowledge and thus appropriate behaviors
for the task can be represented as both declarative and
procedural knowledge, expressed in the form of scripts
that contain information about action sequences, events, and
associated goals and outcomes. Moreover, DIARC is built
on the robust multi-agent infrastructure agent development
environment ADE (described in the next section) that treats
components of the robot architecture as agents in a multi-
agent system (MAS), thus allowing the distribution of ar-
chitectural components over multiple hosts and providing
support for the automatic detection of component faults and
for subsequent error recovery, meeting (R3). The utility of
DIARC for human-robot interaction has been evaluated in a
variety of experiments, both qualitatively and quantitatively,
in constrained and unconstrained scenarios (i.e., lab experi-
ments with humans and natural interactions at various AAAI
robot competitions) [18], [17], [16].

Figure 1 shows a “3-level” view of the DIARC architecture
implemented in ADE, which is also used for all experiments
reported later. The top level shows parts of the functional
decomposition of DIARC in terms of sensory, perceptual,
deliberative, action, and effector components. The middle
level shows the mapping between the high-level functional
components and their implementation in the ADE framework.
Boxes at this level depict autonomous computing compo-
nents that operate in parallel and communicate via several
types of communication links (discussed below). The bottom
level depicts the hardware in the system; components are
located above the host on which they execute.

B. The ADE Infrastructure

ADE [1], [6], [15] is an agent system that combines support
for the development of complex individual architectures with
the infrastructure of a multi-agent system. One of the goals
in developing ADE is to allow easy expansion of computing
power in the system, such that architecture designers do not
have to be concerned with many low-level aspects of agent
deployment and execution, instead allowing them to focus
on the functional roles and relations of components in the
architecture. Space constraints make a full account of ADE
impossible (for a more detailed description, see [15]); here
we only describe the aspects of the framework related to
failure detection and recovery.

The basic component in ADE is an ADEServer, which
is comprised of one or more computational processes that



Functional Components

− BatteryBa
− Wheel EncoderW

− Bumper DeviceBu

− Motor DeviceMo
− Laser DeviceL

Sp − Speakers

C − Camera Device
Mi − Microphone

− Sonar DeviceSo

Hardware Devices

− Data and Heartbeat

− ADEServer
− Heartbeat Only

− Data Wire
− Network

Level−specific Icons

Robot Platform Laptop−1

W Ba Bu SoMo

Robot

Localization
Mapping and

ADERegistry

Mi

Affect Recognition

and Execution
Action Interpreter

Sp

Speech Production

ADERegistry

Text Input

Sentence Parser

Mi
Speech Recognition

L

Leg/Obstacle

Mo

C

Sp

Ba

Bu

W

L
So

C

Mi

Sensors Processing Central Processing Processing Effectors
Perceptual Action

Laptop−2

ADE Components

Hardware/Network

Abstract Agent Architecture

ADE Components

PX − Proximity

AA − Affect Appraisal

OR − Object Recognition

OJ − Object Detection

SO − Sound Detection

AR − Affect Recognition

LZ − Localization

HG − High−level Goals
GM − Goal Manager

VP − Visual Processing

TM − Task Manager

ME − Memory
RF − Reflexes

MC − Motion Control

OT − Object Tracking

CC − Camera Control

AS − Action Selection

AX − Affect Expression

SR − Speech Recognition

SP − Speech Production

− Architectural Link

PX RF MC

LZ

AR AA

GMHG

ME AS

TM

AX SP

SR

SR

SO SR

PX OJ OR

OJ

LZ

SO

GM

TM

AR

RF MC

OT CC

AX

PX
AA

OR

HG

VP

AS

ME

SR

SP

Fig. 1. The DIARC architecture (top) implemented in ADE (middle) running on the robot hardware (bottom), see text for details.

serve requests. Accessing those services is accomplished by
obtaining a reference to the (possibly remote) ADEServer,
referred to as an ADEClient. The ADERegistry, a
special type of ADEServer, mediates connections among
ADEServers and the processes that use their services. In
particular, an ADERegistry organizes, tracks, and controls
access to ADEServers that register with it, acting in a
role similar to a white-pages service found in multi-agent
systems. The ADERegistry provides the backbone of
an ADE system; all components must register to become
part of the architecture. A set of ADE components may
contain multiple ADERegistrys that mutually register with
one another, providing both redundancy and the means of
maintaining distributed knowledge about the system.

All connected components of an implemented architecture
(i.e., ADEServers, ADEClients, and ADERegistrys)
maintain communication links during operation, consisting
of periodic heartbeat signals indicating that a component
is still functioning. An ADEServer sends a heartbeat to
the ADERegistry with which it is registered, while an
ADEClient sends one to its originating ADEServer.
The receiving component periodically confirms heartbeat
reception; if none arrive, the sending component receives
an error, while the receiving component times out. An
ADERegistry uses this information to determine the status
of ADEServers, which in turn determine their accessibility.
Similarly, an ADEServer uses heartbeats to determine the
status of its ADEClients, which in turn determine if the
ADEServer’s services remain available.

In Figure 1, a dotted line indicates a client/server con-

nection over which a heartbeat is sent, where the solid
arrowhead indicates the originating ADEServer and the
empty arrowhead indicates the component receiving the
ADEClient. A dashed/dotted line is used to represent a
connection over which both a heartbeat signal and other data
is transferred. Hardware devices used by an ADEServer
are depicted by a set of labeled squares within a rectangle.
Two relations between the bottom and middle levels are
shown: (1) ADEServers are placed in vertical columns
above the host on which they execute and (2) connections
between hardware devices and the ADEServers that use
them are indicated by solid lines that cross the separating
line. The relation between the middle and top levels consists
of darkened ovals that represent a functional architectural
component of an agent within an ADEServer’s rectangle.

C. Reasoning in the Infrastructure

ADERegistrys provide the backbone of agent archi-
tectures implemented in ADE, for they contain information
about the entire system, including both active and uninstanti-
ated ADEServers, known hosts, relationships among com-
ponents, etc. For instance, on system start-up, part or all of an
architecture layout is stored in a configuration file, which an
ADERegistry uses to start the various components. This
information is then entered into a knowledge base; as the
configuration file is read, items are asserted as facts. During
system operation, facts can be retracted, replaced, or newly
discovered facts about the system state can be added. The
knowledge can be used for both introspection and reasoning
about components, the system’s status, and the computational
environment in which the system resides.



Description Predicate
Hardware device device(D)
ADEHost host(H)
ADEServer server(S)
Device available has(H, [D...])
Device required requires(S, [D...])

canhost(H, S) :-
Can ADEServer S host(H),
be located on server(S),
ADEHost H? has(H, C),

requires(S, D),
contains(C, D).

canmove(S, H) :-
host(H),

Can ADEServer S server(S),
be moved to free(H, D),
ADEHost H? requires(S, C),

contains(D, C).

Fig. 2. Sample subset of facts and rules stored in the knowledge base.

The top of Figure 2 shows a subset of the facts available
to the infrastructure, while the bottom of the figure shows
some rules used for failure recovery that rely on those facts
(all expressed in Prolog). Specifically, we are concerned here
with the facts and policies involved in failure recovery of
one or more architectural components, either due to indi-
vidual component failure or catastrophic hardware failure.
As described above, all components in an ADE system
maintain heartbeat signals; a missing heartbeat indicates
a failed component. In the case of an ADEServer, this
causes an attempt at reconnection, in addition to receiv-
ing notification that can potentially be used to react in a
component-specific way to the failed server (e.g., if the
“Speech Recognition” component fails, rendering the robot
unable to understand commands, the motor can be shut off
for safety reasons). Notification is also sent on reconnection,
allowing an ADEServer to internally re-adjust its operation.
In the case of an ADERegistry, the failure detection event
causes it to enter a failure recovery procedure, during which
attempts are made to restart the component. These failure
recovery procedures are part of an ADERegistry, and are
executed automatically.

If multiple ADERegistrys are present in a system, then
each registry will be responsible for its locally registered
components, but will in addition provide another level of
redundancy, as it will register with all the other registries as
well. This will ensure that the registry can be recovered if
it fails as long as at least one other registry is functional.
Hence, in such a system with multiple registries, complete
failure is only possible if all registries become dysfunctional
at the same time (a very unlikely event).

The reasoning module becomes particularly useful when
multiple ADEServers must be restarted. For recovery, the
reasoning module can be used to assign an ADEHost for
each failed ADEServer, using rules that describe possible
actions the system can perform. System constraints may
lead to situations in which recovery of one server interferes
with or makes it impossible to recover another server. For

example, when recovering a distributed architecture, if a
server with moderate demands S1 is started on host H1,
followed by recovery of a computationally demanding server
S2 on the same host, performance of both servers may
be adversely affected. A reasoning module may determine
that S1 should be relocated to host H2 that perhaps has a
higher load than H1 initially, but which will lead to a better
average load distribution throughout the system if only S2
is placed on H1 (putting S1 on H2 instead). In essence,
this is a form of system optimization; the same mechanisms
can be applied either at start-up or dynamically at run-time,
providing autonomous tuning of an agent’s operation.

More importantly, representations of facts about the sys-
tem state provide new possibilities for introspective reason-
ing to individual components in the architecture, such as
task planners, reasoning components, and the like. It is now
possible for a component to request information about the
states of other components in the distributed ADE system
for various purposes. For example, a navigation planner
could request information about available sensors and thus
adjust its planning behavior dynamically based on system
state (e.g., a robot that had both sonars and laser range
sensors at the beginning of an operation but subsequently
lost the laser due to a hardware failure might still be able
to complete its mission if the navigation subsystem is able
to take inputs from the sonar sensors instead of the lasers,
even though its preferred input is laser data – we will
demonstrate a simple form of this component substitution in
the experiment section). Another example is a task planner
that, based on updated information about problems with
the sound subsystem, determines that certain tasks requiring
spoken natural language interactions cannot be achieved. It
can then decide whether to drop the task, find alternatives, or
simply notify an operator (e.g., via email) about the problem
[8].

The current implementation of the reasoning module uses
a Prolog reasoning engine, which is itself encapsulated in an
ADEServer that can be distributed or relocated. A different
reasoning engine can be substituted, so long as it implements
the assignhost(S) function. For instance, a cognitive
architecture like SOAR [9] might replace Prolog; in doing
so, it would gain the ability to reflect on and reason about its
own architectural structure and the rules that govern system
management.

D. Related Work

In the introduction, three “challenges” were identified:
(C1) structural, (C2) control, and (C3) infrastructure; we
attempt to provide a very brief representative selection
of related research. Player/Stage [4], CARMEN [11], and
RobotFlow/FlowDesigner/MARIE [3] are robotic develop-
ment systems that focus on (C1) and (C2). An examination
of the requirements for preserving system health in a hostile
environment that considers a reflective architecture, focusing
on (C3) and using an immune system analogy, can be found
in [5]. [13] addresses challenges (C2) and (C3) by integrating
“intelligent sensors” in architectural components such that



self-health awareness permeates the system, from influencing
the control system to providing external situational awareness
used to affect the agent’s goals. Probably the most related
work is found in [10], which attempts to address all of
the challenges. However, in addition to relying on a single,
centralized program for component management, it does not
appear to incorporate a reasoning module.

IV. EXPERIMENTAL VALIDATION

To evaluate the utility of ADE’s error detection and re-
covery mechanisms, which rely on introspection and rea-
soning about infrastructure configurations, we conducted
experiments with an assistive robot that has to interact with
humans using natural language in a joint human-robot task.
The experiments here are extensions of previous work that
demonstrated recovery from catastrophic failures, where an
entire host went down [6]. All components running on
that host were restarted on another host and the robot was
able to continue its mission with a short delay. However,
the main weakness of the previous demonstration was that
if the ADERegistry itself was located on a host that
subsequently failed, the whole system was rendered useless.
Moreover, if hardware (e.g., a sound device) failed that made
the execution of components (e.g., speech recognition) im-
possible, there was no way to substitute functionality for the
missing component. In such cases, the robot, while partially
operational, was unable to complete the task (e.g., because
it could not take commands from the human operator).

The experiments here are intended to address both prob-
lems: (1) by using multiple ADERegistrys, the robot can
recover even from failures of critical infrastructure recovery
components, and (2) by using introspection on the type
of a component, the reasoner can substitute a component
with similar functionality (e.g., a text input server) for a
malfunctioning one (e.g., a speech recognizer with broken
microphone input). Moreover, we show a general, statisti-
cally significant speed-up of the recovery process over our
previous experiments due to the integrated reasoner that can
quickly determine the most appropriate action to take based
on the type of failure.

A. Experimental Setup

The task chosen for the evaluation takes place against the
backdrop of a hypothetical space scenario [17]. A mixed
human-robot team on a remote planet needs to determine the
best location in the vicinity of the base station for transmit-
ting information to the orbiting space craft. Unfortunately,
the electromagnetic field of the planet interferes with the
transmitted signal and, moreover, the interference changes
over time. The goal of the team is to find an appropriate
position as quickly as possible from which the data can be
transmitted. The robot is dependent on its human teammate
for direction, supplied through natural language commands,
while the human is dependent on his robotic teammate for
“field strength” readings that cannot be obtained through
other means. The specific goal of the team is to find a viable

Fig. 3. The robot used for the experimental evaluation.

transmission location and send the data, at which point the
task is accomplished.

Experiments consider simulated software and hardware
failures, in particular, the effects of failures of architectural
components and hardware devices during task performance.

For the experimental evaluation, we used an ActivMedia
Peoplebot (shown in Figure 3) with a pan-tilt-zoom camera,
a SICK laser range finder, three sonar rings, and two on-
board PC laptops with 1.3GHz and 2.0GHz Pentium M
processors. Both laptops run Linux with a 2.6.x kernel and
are connected via an internal wired Ethernet. A wireless
interface on one laptop enables system access from outside
for the purpose of starting and stopping operations. Figure 1
shows the initial configuration of DIARC for all experiments
and the assignment of ADE components to the two PCs.

B. Experiments and Results

We consider three failure scenarios: (1) recoverable com-
ponent failure, (2) recoverable registry failure, and (3) ir-
recoverable component failure with component substitution,
in addition to (4) a baseline experiment without failures.

For the first scenario, the “Speech Production” component
is manually terminated via an OS “kill” signal, and is
immediately recovered by the registry that is responsible for
it. In the second scenario, a registry is terminated the same
way, and is recovered by the other registry. Upon recovery,
it connects back up with the components for which it is
responsible. In the third scenario, the “Speech Recognition”
component is brought down and an audio-device failure is
simulated so that a restart of the component is not possible,
and there is no other host with the necessary hardware audio
input device. Upon fault detection, the reasoner determines
that another component in the system, the “Text Input”
component, can assume the functional role of the “Speech
Recognition” (as it provides the same method interface that
other currently running components require, and connects
that component instead).



We conducted 15 experimental runs in each of the four
conditions and used the time it took the human to navigate
the robot from an initial condition through the obstacle envi-
ronment to the transmission point as objective performance
measure. We conducted a four-way ANOVA with condition
as independent and time-to-task completion as dependent
variables on the resulting run-times, and found no main effect
(F (3, 56) = .17, p = .91), indicating that error detection and
recovery was performed quickly enough so as to not impact
overall task performance, as evidenced by the lack of a
statistically significant difference among the four conditions.

V. DISCUSSION AND CONCLUSION

While the above experiments demonstrate that ADE’s
reflection and reasoning mechanisms can achieve detection
and recovery of failed components without any impact on
task performance in the above task, it is clear that the
extent to which this will be true in other tasks will intrin-
sically depend on the nature of the failure – a component
(like a speech synthesizer) not used at the time of failure
might be recovered in time for its next use versus the
whole effector subsystem failing during a navigation task.
We have demonstrated ADE’s capabilities qualitatively using
several failure events (of different architectural components
in DIARC) in different scenarios in our lab (e.g., similar
to the ones mentioned at the end of Section III-C), both
in situations where recovery was possible and impossible.
Whenever recovery was possible in principle, ADE was able
to recover from failures and the robot was able to resume its
mission.

The above experiments are part of our ongoing attempts
at quantifying the utility of the employed error detection
and recovery mechanisms in a variety of scenarios. While
the fact that recovery can be accomplished autonomously
and during task performance is certainly desirable for robots
that have to perform tasks autonomously without direct
supervision or without the option of human intervention in
the operation if problems occur, it is even more important
to demonstrate, as we have done here, that the impact on
task performance can be potentially very small, which is a
highly desirable property in many situations (e.g., in time-
critical tasks). To our knowledge, there are currently no other
robotic architectures that have demonstrated this kind of
online failure detection and recovery on a robot when major
parts of the computational infrastructure fail, demonstrating
the full recovery from failure during a human-robot team
task without human intervention with only negligible effects
on the overall task performance.

Finally, it is worth pointing out that the proposed mech-
anisms enable new possibilities for both architecture and
infrastructure to share knowledge and use each other’s capa-
bilities to improve the robustness and sustainability of robot
operations. For example, we are currently investigating the
utility of giving the infrastructure access to the current goals
of the high-level cognitive system to both dynamically deter-
mine that certain components may be shut down because they
are not needed and to (re)start components in anticipation of

their use. Conversely, on noticing that the system’s health is
deteriorating, the high-level system may decide to seek out
its human operator or plan to go in for maintenance servicing
(a function already possible in DIARC). We believe that
it is this integration of architecture and infrastructure that
will ultimately ensure the sustained, long-term operation of
intelligent autonomous robots, and thus provide an enabling
technology for the long-term interactions, as required for
assistive robots and robot companions.

REFERENCES

[1] V. Andronache and M. Scheutz. Integrating theory and practice: The
agent architecture framework APOC and its development environment
ADE. In Autonomous Agents and Multi-Agent Systems, pages 1014–
1021, 2004.

[2] D. Bantz, C. Bisdikian, D. Challener, J. Karidis, S. Mastrianni, A. Mo-
hindra, D. Shea, and M. Vanover. Autonomic personal computing. IBM
Systems Journal, 42(1):165–176, 2003.

[3] C. Côté, D. Lètourneau, F. Michaud, J. Valin, Y. Brosseau,
C. Raievsky, M. Lemay, and V. Tran. Programming mobile robots
using RobotFlow and MARIE. In Proceedings IEEE/RSJ International
Conference on Robots and Intelligent Systems, 2004.

[4] B. Gerkey, R. Vaughan, and A. Howard. The Player/Stage project:
Tools for multi-robot and distributed sensor systems. In Proc. of the
11th International Conference on Advanced Robotics, pages 317–323,
2003.

[5] C. Kennedy and A. Sloman. Reflective architectures for damage
tolerant autonomous systems. Technical Report CSR-02-1, University
of Birmingham, School of Computer Science, 2002.

[6] J. Kramer and M. Scheutz. ADE: A framework for robust complex
robotic architectures. In IROS, Bejing, China, 2006.

[7] J. Kramer, M. Scheutz, J. Brockman, and P. Kogge. Facing up to the
inevitable: Intelligent error recovery in massively parallel processing
in memory architectures. In International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, 2006.

[8] J. Kramer, M. Scheutz, and P. Schermerhorn. On integrating form and
function: Multi-level dynamic failure recovery for autonomous robots.
submitted.

[9] J. Laird, A. Newell, and P. Rosenbloom. SOAR: An architecture for
general intelligence. Artificial Intelligence, 33:1–64, 1987.

[10] N. Melchior and W. Smart. A framework for robust mobile robot
systems. In Proc. of SPIE: Mobile Robots XVII, volume 5609, 2004.

[11] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standard-
ization in mobile robot programming: The carnegie mellon navigation
(CARMEN) toolkit. In IROS 2003, volume 3, pages 2436–2441, 2003.

[12] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery-
oriented computing (ROC): Motivation, definition, techniques, and
case studies. Technical Report UCB//CSD-02-1175, CS, UC Berkeley,
2002.

[13] K. Reichard. Integrating self-health awareness in autonomous systems.
Robotics and Autonomous Systems, 49(1-2):105–112, November 2004.

[14] M. Scheutz. ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures. Applied
Artificial Intelligence, 20(4-5), 2006.

[15] M. Scheutz. ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures. Applied
Artificial Intelligence, 20(4-5), 2006.

[16] M. Scheutz, P. Schermerhorn, J. Kramer, and D. Anderson. First steps
toward natural human-like hri. Autonomous Robots, page forthcoming,
2007.

[17] M. Scheutz, P. Schermerhorn, J. Kramer, and C. Middendorff. The
utility of affect expression in natural language interactions in joint
human-robot tasks. In Proceedings of the 1st ACM International
Conference on Human-Robot Interaction, pages 226–233, 2006.

[18] M. Scheutz, P. Schermerhorn, C. Middendorff, J. Kramer, D. Ander-
son, and A. Dingler. Toward affective cognitive robots for human-robot
interaction. In AAAI 2005 Robot Workshop, 2005.


