
RADIC - Towards a General Method for Integrating
Reactive and Deliberative Layers

James Kramer and Matthias Scheutz
Artificial Intelligence & Robotics Lab

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
jkramer3,mscheutz@cse.nd.edu

Abstract— Hybrid architectures have been developed
to preserve the responsiveness of reactive layers while
also providing the benefits of higher-level deliberative
capabilities. The challenge of hybrid architecture design
is to integrate layers that operate on different time scales,
use different notions of spatial relations, maintain varying
degrees of state, etc. Techniques for integration, however,
are typically very specific to the application or particular
hybrid architecture.

A general method is proposed for constructing hybrid
architectures via the integration of pre-existing reactive
and deliberate layers that requires minimal modifications.
Its potential is demonstrated in navigation experiments on
a robot, achieving performance comparable to a commonly
used hybrid system with specially designed layers.

Index Terms— Hybrid architectures. Navigation. Obsta-
cle avoidance. Path planning. Reactive deliberative integra-
tion.

1. Introduction
Hybrid architectures for autonomous robots combine

reactive and deliberative layers, capitalizing on the
strengths of each while overcoming their individual
shortcomings. Specifically, hybrid architectures attempt
to preserve the responsiveness of reactive layers and the
computational potential of representational deliberative
planning and reasoning capacities. Yet, as pointed out in
[19], hybrid architectures often suffer from various high-
level issues: (1) “ad hoc or unprincipled designs” that
require hand-crafting of control modules, (2) a tendency
“to be very application-specific”, and (3) unspecified
supporting theory.

These issues can be overcome by employing a com-
ponent that mediates between deliberative and reactive
layers. The “Reactive And Deliberative Layer Integra-
tion Component” (RADIC) addresses all three concerns
by providing a generalized “bridge” between layers.
By maintaining the separation of layers while defining
the mapping of data between them, RADIC: (1) allows
principled design of layers in isolation, (2) provides a
general method of connection that reduces (but does not
eliminate) application-related specificity, and (3) obvi-
ates the need for a specific hybrid theory for engineering
applications.

This paper revises and extends [22], organized as
follows: Section 2 summarizes some important problems
inherent in the integration of deliberative and reactive
layers, with a review of some common hybrid architec-
tures and which problems they do not resolve. Section 3
presents the RADIC specifications, its functionality and
algorithms, and a range of potential applications for hy-
brid and solely reactive architectures. Section 4 describes
a particular RADIC implementation that results from the
combination of fully functional, pre-existing reactive and
deliberative layers for a navigation task. Section 5 pro-
vides a performance evaluation of robotic experiments
that demonstrate that the hybrid system with RADIC
performs at least as well as a widely used, special-
purpose hybrid architecture navigation system, while
requiring fewer computational resources. Finally, a brief
discussion and conclusion is given in Sections 6 and 7.

2. Hybrid Architectures
In the domain of autonomous robotic agents, where

fast-working, highly responsive reactive layers are nec-
essary (e.g., [11], [16]), the design of hybrid archi-
tectures has been a challenge, largely because the op-
erational principles of the layers are so different. For
example, reactive layers keep state to a minimum, if
state is kept at all [10], process sensory information con-
tinuously, and produce actions immediately, often using
continuous sensor-motor mappings. In contrast, higher-
level architectural layers typically store information as
discrete representations, using it to perform complex
processing in an extended time-scale. The challenge of
hybrid architectures is to integrate the layers’ disparate
aspects of operation, at least achieving the following
functional mappings:

F1: between “global” and robot-centric spatial re-
lations

F2: from discrete actions to continuous motion
F3: between logical update time and real-time op-

eration
F4: from stateful to stateless operation

Over the last two decades, a variety of hybrid ar-
chitectures have been proposed. The following gives an
overview of a small selection of them to illustrate their
diversity, describing how each satisfies items F1-F4.

SSS: [6] (short for “Servo, Subsumption,
Symbolic”), the symbolic layer uses a coarse-
grained world model that configures the reactive
layer via parameterization of selected behaviors in
the subsumption layer. SSS explicitly addresses the
functional mappings by discretizing space between
the servo and subsumption layers (F1, F2) and time
between the subsumption and symbolic layers (F3, F4).

AuRA: [2] uses a deliberative layer composed of a
planner, spatial reasoner, and sequencer, while the reac-
tive layer consists of libraries of behavior schemas, acti-
vated by the sequencer and adaptable via a homeostatic
component. Once activated, the schema manager con-
trols and monitors active behavioral process(es), whose
output is combined using vector summation to produce
actuation commands. Functional mappings F1, F3 and
F4 are made through the interaction of the schema
controller with the plan sequencer, spatial reasoner, and
planner, while F2 is accomplished by the selection of
appropriate behavior schemas.

3T: [4] architecture extends work on both the RAPs
[7] and ATLANTIS [9] hybrid architectures, and is
composed of three “tiers”: (1) a set of (re-programmable)
reactive skills (RAPs) coordinated by a skill manager, (2)
a sequencer (RAP interpreter) that activates/deactivates
skills and event monitors, and (3) a planner that syn-
thesizes goals into a partially-ordered task list (where
each task may be composed of skills grouped into
task networks). Mapping F3 is satisfied by having tiers
operate at different time scales, rather than “managerial
responsibility” (i.e., level of knowledge content): the
skill level tier operates on the order of milliseconds, the
sequencer on tenths of a second, and the planner on the
order of seconds to tens of seconds. Mappings F1 and F4
are performed using the combination of tiers: the planner
operates at a high level of abstraction, the sequencer
selects a set of skills from the RAP library, while skills
operate in a context dependent manner. Mapping F2 is
made via the integration of skills and sequencer: RAPs
are symbolic, discrete steps for accomplishing a task
composed of skills that implement continuous motion.

Saphira: [12] incorporates a strong internal world
model called the local perceptual space (LPS) that
coordinates sensory data with internal representations.
Planning is performed by the PRS-Lite component,
(de)activating sets of behaviors whose output is fused
using fuzzy logic. Functional mappings F1 and F3 are
accomplished via the LPS and PRS-Lite, while F2 is
accounted for by the behavior selection and fuzzy logic
fusion. Abstract representations are integrated in the LPS
to fulfill mapping F4.

4-D/RCS: [1] features a hierarchy of six levels
(actuator, servo, primitive, subsystem, vehicle, and sec-
tion) that explicitly operate on different time scales,
incrementally increasing from five milliseconds at the
lowest to ten minutes at the highest. Each contains a
supervisor to manage that level’s activity and a set of
subordinate agents that supervise units at the next lower
level. Moreover, each node contains behavior generation,
world modeling, sensory processing, value judgment
processes and a knowledge database. Essentially, each
level has the same self-contained structure, and thus
mappings F1-F4 are explicitly made between adjacent
levels.

Although all of the above hybrid architectures suc-
cessfully combine reactive and deliberative layers, each
subscribes to a specific design philosophy or method, if
not in integrating layers, then by specifying the design
of the layers themselves. These integrations are specific
to the employed reactive and deliberative layers (i.e.,
the layers need to be designed together as a cohesive
whole), forming restrictions that not only limit potential
reuses of the developed layers and software but, more
importantly, the extent to which the designs themselves
generalize.

It would be desirable to achieve a more general
connection or integration method that could be em-
ployed for many different reactive and deliberative layers
without the need for much adaptation of either layer.
Ideally, a single, generalized, “mediating component”
would be able to connect existing reactive and delib-
erative layers that successfully achieves the requisite
functional mappings F1-F4. Several design desiderata
suggest themselves for such a component; in particular,
the method should:

I1: require minimal changes to existing layers
I2: provide true integration of layers via indepen-

dent, autonomous, and parallel execution
I3: use minimal processing time
I4: add functionality that improves the perfor-

mance of systems containing the layers in
isolation

All the hybrid architectures above fail to satisfy at
least one of I1-I4, as shown in Table 1 (in addition to
the various criticisms included in [9], [4], [15]). Neither
Saphira nor 4-D/RCS satisfies I1, albeit for different rea-
sons. While the large amount of integration performed
by the LPS in Saphira has the benefit of coherency,
it also means that functional changes necessitate large
modifications. On the other hand, the strict specification
of interfaces between levels and substantial data flow
within a single level in 4-D/RCS has the effect that slight
modifications to functionality may entail large changes
across components or levels.

None of SSS, AuRA, and 3T satisfy I2 because
all switch completely back and forth between reactive
and deliberative layers; the deliberative layer produces

Table 1
HYBRID ARCHITECTURE SATISFACTION OF ITEMS I1-I4

I1 I2 I3 I4
SSS

√
−

√ √

AuRA
√

−
√

−
3T

√
−

√
−

Saphira −
√

−
√

4-D/RCS −
√

− −

a fully formulated plan that is passed to the reactive
layer, which then remains in control until a step either
completes or fails.

Both Saphira and 4-D/RCS suffer from difficulties
with I3; the use of the LPS in Saphira requires a substan-
tial amount of processing, while the full complement of
components in 4-D/RCS introduces possibly redundant
or unnecessary processing.

Finally, I4 presents difficulties for 3T, AuRA, and
4-D/RCS. In both 3T and AuRA, operation of the
reactive layer is tightly knit and depends completely
on the sequencer, making it difficult to add external
functionality. A similar situation occurs with 4-D/RCS,
where the functionality of a given level is specified
completely by its internal operation.

The proposed RADIC component, described next, has
been designed to satisfy all the functional mappings F1-
F4 and design desiderata I1-I4.

3. The RADIC Approach
The approach taken with RADIC can be described

as a general method for integrating (1) a sequence of
goals originating from a deliberative layer, (2) a stream
of sensor data, and (3) a sequence of actions (e.g.,
motor commands) from the reactive layer (see Figure 1),
as performed by the updateRADIC algorithm shown
in Figure 2. The universality of a particular RADIC
component is dependent on the representations used
in mapping data between layers; at some application-
dependent level, representations are either too abstract to
be useful or too narrow to be applicable. For instance, a
deliberative layer that produces a goal list composed of
an ordered sequence of spatial locations to “visit” (such
as in navigation or arm movement) requires translation
of world-coordinates into egocentric positions. While
a RADIC component integrating such layers may be
applied to other tasks requiring spatial reasoning, it may
be inadequate for, say, a goal list including what to
do at each location. RADIC is a general technique for
integrating layers, but its specificity is dependent on
implementation.

Functional mapping F1 is satisfied by the
convertGoal function, detailed below. The
updateRADIC function is called at least as frequently
as the reactive layer produces outputs (e.g., sends

Sequence ofDeliberative Layer

Reactive Layer

Proprioceptive data

Exteroceptive data

(Intercepted)

RADIC

Reactive Output

RADIC Output

plan steps

Fig. 1. Functional diagram of RADIC showing (possible) inputs and
output.

FUNCTION updateRADIC(R-out,S-change,D-goals,G-strat)
static M ← ∅
static currentState← ∅
static oldState← ∅
M ←M + convertGoal(D-goals, G-strat)
oldState← currentState
currentState← updateState(S-change)
action← defaultAction(R-out)
for all G ∈M do

for all C ∈ CG do
if CG then

M ←M − {G}
end if

end for
G← updateGoal(R-out, S-change)
if BG = ∅ then

action← chooseAction(G, action)
end if

end for
return action

Fig. 2. The generic update algorithm for RADIC.

motor commands), and thus satisfies item F3. The
functional mappings F2 and F4 are an inherent part
of the RADIC component’s operation: a goal is a
discrete representation, while RADIC’s output effects
continuous motion (F2, via either discrete actions or
motor commands), and the state of the deliberative layer
is maintained in internal memory, while not requiring
any state from the reactive layer other than its outputs
(F4).

In more detail, the updateRADIC function takes as
arguments the outputs from the reactive layer R-out
(typically, intercepted motor commands), the changes
as determined by sensors S-change (proprioceptive,
exteroceptive, or missing), a sequence of goals from the
deliberative layer D-goals (which can be empty), and
a strategy for goal attainment G-strat. The sequence
of goals D-goals = 〈G1, G2, ..., Gn〉 is transformed, in
accordance with item F1, from a “global” representation
into an ego-centric representation (e.g., for navigation)
〈G1, G2, ..., Gn〉 by the convertGoal function and
stored in RADIC’s internal memory M . convertGoal
also associates a set of “blocking goals” BG and a set of
goal conditions CG with each goal G that will depend on
G-strat (in general, G-strat is a function that defines
or influences the relation among G, BG, and CG–we
will describe a particular strategy in the next section).
Blocking goals are used to impose a priority ordering
on goals (goals that are blocked are not considered for
action selection). Similarly, goal conditions are used to
determine when goals have been achieved. A goal is

either active or inactive, depending on whether or not
its set of “blocking goals” is empty; a goal G is removed
from M when at least one of its goal conditions C ∈ CG

is met. The state of the robot is computed based on the
old state using updateState, while the default action
(i.e., output) is chosen in defaultAction based on
R-out. All goals are then updated in updateGoal
based on R-out and any changes detected via sensory
inputs S-change; the active goals determine the action
for the robot via the chooseAction function, based
on the goal and the actions chosen so far.

Unlike other hybrids, RADIC satisfies all of items
I1-4. Minimal changes to each layer are required for
integration (I1), as layer output is simply redirected as
RADIC input; RADIC relies on internal data structures
and functions for its operation. The RADIC component
operates independently of either layer, performing its
tasks in parallel with the layers’ operation (I2). Com-
putational cost is small (I3), as only state updates, goal
list updates, and action choice are required. Updates of
the goal list require both a measure of state change (via
updateState) and a subsequent application of the
calculated change for each point (via updateGoal).
Only “active” goals are considered in modifications of
the reactive layer’s output at any given time. Finally,
combining the layers improves overall performance (I4)
by augmenting a reactive layer with planning capacities
and providing a deliberative layer with the ability to
act. Furthermore, custom improvements can easily be in-
corporated into the updateState (such as additional
processing of S-change) and updateGoal (such as
goal reordering or progress monitoring) functions.

Note that the RADIC algorithm is kept as general
as possible so that it can be tailored to the broadest
range of reactive and deliberative layers. To apply it
to a particular robotic architecture (e.g., to integrate
two pre-existing layers), each of the five functions
convertGoal, updateState, defaultAction,
updateGoal, and chooseAction must be im-
plemented. Each of these may incorporate additional
functionality, further promoting good design practices
and potentially improving performance. For instance,
chooseAction may be modified such that behavior
selection can be dynamically altered according to the
current state. In effect, this allows inclusion of mech-
anisms that avoid engaging the full deliberative layer,
thereby preserving reactivity while increasing delibera-
tive functionality.

4. A RADIC Navigation Component
This section shows how RADIC can be easily adapted

to the typical mappings found in other hybrid archi-
tectures; since hybrids were historically developed to
address robot navigation issues, RADIC is described in
that context.

4.1. General Description
For navigation tasks, a goal is a location in the

environment, a plan is an ordered sequence of points
that form a trajectory, reactive output consists of motor
commands, and deliberative output consists of trajec-
tories that the robot has to follow. As planners typ-
ically use “global” coordinates in plan formulation,
convertGoal must transform them to robot-centric
points. To ensure that plan points will be visited in order,
the strategy of automatically associating the following
two sets CGi

:= {within(Gi, ε)} and BGi
:= {Gj |j <

i} with each plan point in G is used, where “within” is
true if a plan point Gi is closer than ε distance to the
current position of the robot. The first set guarantees that
a plan point can only become active if all previous plan
points have been visited (and subsequently removed),
and the second ensures that the robot has to come close
enough to the plan point to be able to count it as
“visited”.

Both currentState and oldState are poses;
updateState calculates state change using sensory
feedback, either exteroceptive (e.g., localization) or
proprioceptive (e.g., a velocity-based estimation as
presented in [13]). Similarly, updateGoal updates
the relative positions of all plan points stored in
M according to the state change. The technique
used for navigation action selection in this particular
RADIC component is schema theory (as in [2]), in
which defaultAction converts reactive motor
commands to a robot-centric motion vector, to which
chooseAction adds a vector for a plan point, if
one is active. The resultant action is a directional
vector combining the direction of the intended reactive
movement with that of the next plan point.

The exact combination of vectors could be
application-dependent, but will, in general, be a
linear sum of the individual vectors, where each vector
is scaled by the inverse of the square of its distance
from the robot’s location, for example, thus contributing
less to the overall direction the farther it is away
[2]. This effectively amounts to creating an “artificial
potential” based on directional vectors derived from
the intercepted motor commands and the RADIC
component’s own directional output. The gradient of
the resultant vector is then translated back into motor
commands.

4.2. Navigation Applications of RADIC
Several applications are suggested by the functionali-

ties of the navigation RADIC described above (shown in
Figure 3). Probably the most direct is that of a translator
between existing planner and reactive layers, where the
planner is intended to improve the reactive performance
(as shown in Figure 3-A). In this case, the planner
creates an abstract trajectory path and passes it to the

Sensory
Data

Sensory
Data

Sensory
Data

Sensory
Data

(B) (C) (D)(A) (E)

Proprioceptive
Data

Exteroceptive
DataMotor

Commands
Motor

Commands
Motor

Commands

Reactive
Layer

Planner

Planner

Reactive
Layer

Sequencer

RADIC

Reactive
Layer

RADIC

Map
Making

RADIC

Reactive
Layer

Motor
Commands

RADIC

Reactive
Layer

Motor
Commands

RADIC

Fig. 3. RADIC Navigation Applications (as sequencer and plan execution mechanism for): (A) high-level planners, (B) as a discrete-continuous
mapper between sequencer with discrete action representations and a reactive layer, (C) as part of a high-level map-making configuration, (D) for
low-level trajectory improvement and tracking of past locations, and (E) low-level landmark detection and tracking.

RADIC component, which serves as a plan execution
component (demonstrated in Section 5.2).

Another application of the RADIC component (Fig-
ure 3-B) is to serve as a translator between an action
sequencer in a deliberative layer and a low-level reactive
layer, where the action sequencer uses discrete represen-
tations of actions (e.g., as in [4]), while the reactive layer
uses continuous representations (e.g., potential fields).

The RADIC component can also be used for multi-
level map making, where RADIC records local prop-
erties (such as obstacles or other points of interest)
under the guidance of the higher levels, returning the
map to a higher level component, which can store it for
subsequent use (Figure 3-C).

RADIC components can also be added to existing
low-level reactive layers (Figure 3-D, demonstrated in
Section 5.1) without a deliberative layer to improve the
performance of the reactive system in various ways.
A straightforward use is to provide simulated compass
sensors. They can also be used to improve goal directed
behavior (by virtue of an attractive or repulsive point
for the goal location put in the list of points RADIC
retains). Finally, and perhaps most importantly, RADIC
components can track past locations, which allows for
the implementation of mechanisms intended to get po-
tential field-based systems out of local minima (such as
the “avoid past” scheme [3]).

Finally, RADIC components with additional extero-
ceptive sensory input (Figure 3-E) can be used to detect
and track landmarks or other items of interest in a robot-
centric coordinate system.

4.3. RADIC Navigation Enhancements
Several enhancements can easily be incorporated into

the navigation RADIC: (1) the means to improve the
internal location memory (or “map”) M accuracy by
virtue of integrating proprioceptive adjustments, (2) fail-
ure detection as it relates to reaching plan points, and (3)
improving the actual trajectory of the robot in relation
to the navigation segments of the plan. Each of these

improvements satisfies the design desiderata identified
by items I1-I4.

1) Improving Location Accuracy: In navigation tasks,
it is imperative that a robot’s perceived location matches
its actual location. To provide relatively accurate motion
tracking, RADIC uses a separate dead-reckoning module
in updateState that receives proprioceptive informa-
tion from a separate dead-reckoning module that uses
the following algorithm, whose development is based on
[5]. Further improvement to the accuracy of RADIC’s
internal “map” might include a localization algorithm
(e.g., [25]).

At a given update rate R, the left and right wheel
shaft encoders are sampled with a count NL and NR,
respectively. By relating the number of encoder counts
of the left and right wheels NL/R,i at each instance i,
the incremental travel distance of the left ∆UL,i and
right wheel ∆UR,i can be computed by ∆UL/R,i =
cmL/mRNL/R,i, where cmL/mR are the conversion fac-
tors for translating encoder counts into the respective left
and right linear wheel displacement. These conversion
factors are dependent on three physical properties of
the wheels, in which the encoders are mounted: the
nominal left and right wheel diameter DL/R, the gear
ratio between the encoder and drive wheel nL/R, and
the encoder counts per revolution Ce on the motor shaft,
which are related by cmL/mR = πDL/R/nL/RCe.

The incremental center point displacement of the
robot’s center point C, denoted ∆Ui, is given by ∆Ui =
(∆UR + ∆UL)/2, and the incremental change in orien-
tation, denoted ∆θi, being inversely proportional to the
wheel base width d, is given by ∆θi = (∆UR−∆UL)/d.

With these equations it can be shown that the global
positions X, Y as well as the global angular position
θ can be computed by: θN =

∑i=N
i=0 ∆θi, XN =∑i=N

i=0 ∆Ui cos θi, and YN =
∑i=N

i=0 ∆Ui sin θi.
A similar argument works for relating the change in

x, y and angular velocities (ẋ), (ẏ), (θ̇): (ẋ) = cos(θ)ω,
(ẏ) = sin(θ)ω, and (θ̇) = v, where ω = (VL + VR)/2
is the average of the left and right wheel velocities v =

(VR+VL)/d is the angular velocity of the rotating robot.
2) Detecting Failure: Another navigation issue that

must be dealt with failure detection (or lack of progress
in reaching a goal). Two relatively simple methods
have been implemented as part of updateGoal: (1)
a timeout mechanism, in which a time condition is
associated with a goal point P such that when P is
active for longer than ε amount of time, the goal is no
longer pursued and the next point is taken as the new
goal (using the within predicate, as described above).

The second method of progress measurement uses an
“avoid-past” behavior, similar to that described in [3].
RADIC’s internal “map” is used to provide the reactive
layer with memory capacities, allowing the component
to “remember” where the robot has been. Since the
RADIC navigator component uses a potential fields
method to determine modified motor commands, the
avoid past behavior takes the form of a set of repulsive
locations that the robot has previously visited, each
of which has a decay rate associated with it so that
avoidance is temporary.

3) Improving the Trajectory: Finally, the RADIC
navigational component can be used to improve the
actual trajectory traveled by the robot. Gradient-based
control in practice often leads to situations where the
robot overshoots a target location (especially at high
speeds) and subsequently deviates from the projected
trajectory (especially when sharp turns are required).
To reduce the deviation from a given plan trajectory,
a special class of conditional points called “floating
points” can be created for a sequence of plan points. The
purpose of these points is to allow (1) the robot to stay
on its planned trajectory between plan points, ensuring
that it will come closer to them faster than otherwise,
and (2) the robot to turn smoothly at sharp angles, where
it otherwise would be locked in a sequence of back-and-
forth moves.

Specifically, for each plan point Pi ∈ (P2, ..., Pn−1),
at least one “incoming” floating point Ii and one “out-
going” floating point Oi are inserted before and after Pi

into the plan sequence. For P1 and Pn only outgoing and
incoming points are created, such that the resultant plan
sequence is given by (P1, O1, I2, P2, O2, ..., In, Pn). In-
coming floating points are defined by IPi = Pi −
f(s) Pi−Pi−1

||Pi−Pi−1|| , where f(x) = c+x, s is the maximum
speed used by the robot on the trajectory segment
(Pi−1, Pi), and ||..|| is the Euclidean norm. Their re-
moval condition is given by CPi = {within(Pi, ε

′)},
where ε′ > ε, thus making it less strict than for plan
points. Outgoing floating points can be of two types:
type 1 is defined analogous to incoming field points
(with the same removal conditions): OPi = Pi+1 +
f(s) Pi+1−Pi

||Pi+1−Pi|| . The second type is created dynamically
whenever the angle α between two consecutive plan
segments (Pi−1, Pi) and (Pi, Pi+1) is 90 < α < 270 (in
degrees). The point is then placed at Pi +(sin(θ)d, Pi +

sin(θ)), where d = f(s) Pi+1−Pi

||Pi+1−Pi|| and θ is the robot’s
current heading as recorded by RADIC.

4.4. An Implementation of RADIC Naviga-
tor

For experimental purposes, a hybrid architecture that
integrates two pre-existing and fully functional, yet very
different, reactive and deliberative systems has been
implemented. The reactive layer of the test system is a
schema-based system, similar to that proposed by Arkin
[2], developed in Java prior to and separate from the
RADIC implementation. Perceptual schemas are used
to perform sensory processing, the results of which are
passed to motor schemas. The motor schemas produce
vectors that represent motor actions, summed to produce
a single vector that is transformed into motor commands.
Two behaviors are available to the system: obstacle
avoidance and wandering [21].

The deliberative layer is a modified version of
ThoughtTreasure [18], a system developed for natural
language processing and designed to operate purely as
stand-alone software. It has spatial and temporal repre-
sentations, scripting capacities, and a high level planner.
Of particular interest for integration via the RADIC
component is the representation of objects and places
in a discrete grid map. The planner is able to produce
a sequence of grid spaces as an approximate trajectory
from one object or place to another. Modification of the
system, as concerns RADIC, consists of formatting the
sequence of grid spaces as output.

These disparate systems are successfully integrated
using RADIC and demonstrate the implementation items
I1-I4 presented in Section 2. Minimal changes to each
system were required for integration (item I1); mod-
ification of ThoughtTreasure consisted of establishing
a socket connection and reformatting the plan output,
while modification to the reactive layer consisted of
interception and redirection of motor commands. Com-
bining the layers improves overall performance (item
I2) by augmenting the reactive layer with planning
capacities, while providing ThoughtTreasure the ability
to physically act on otherwise disembodied commands.
The RADIC component operates independently of either
layer, performing its tasks in parallel (item I3). Finally,
computational cost is small (item I4), as only point list
updates and the calculation of new motor commands are
required. Updates of the point list require both a measure
of robot motion and a subsequent application of the
calculated position change for each point. Only “active”
points of the point list are considered in modification of
the reactive layer’s output at any given time.

The details of the system’s operation are: a sequence
of grid cells, produced by ThoughtTreasure at an arbi-
trary time, forms a navigation plan and is transmitted
over a socket connection to RADIC. Upon reception,
the points are converted by the convertGoal function

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)

Fig. 4. Top row: RADIC validation of S-shaped, square, and triangular trajectories without “floating points”. Bottom row: RADIC validation of
S-shaped, square, and triangular trajectories with “floating points”.

into a robo-centric point list with corresponding block-
ing points and conditions. Incoming sensor information
(sonar and/or laser data) is used in updateState
and updateGoal to calculate both the robot’s and
the relative goal point’s location. The reactive layer’s
motor commands are intercepted and transformed into a
vector by defaultAction, used by chooseAction
in combination with the active point vectors to generate
a resultant vector that is transformed into new motor
commands, informing ThoughtTreasure of the updated
robot position on request.

5. Experimental Validation and Eval-
uation

Validation and performance evaluation experiments
were performed using the implementation of the RADIC
navigation component described above. Navigation was
necessarily chosen as the test task to permit compar-
isons with another hybrid architecture. In particular,
CARMEN [17], whose authors say that it is “organized
as an approximate three-tier architecture” (see the 3T
item in Section 2), was selected for trajectory-following
comparisons over other navigation systems because of
its free availability (thus avoiding any potential problems
with replicating the algorithm) and accurate navigation
(thus providing a worthy comparison). All experiments
were conducted on an ActivMedia P2DXE robot with an
on-board 850 MHz Pentium III PC104 board running
Linux kernel 2.6.1, using the Java-based ADE archi-
tecture development environment [20], [14]. Throughout
each experimental run the robot used only the onboard
PC and thus operated completely autonomously.

5.1. Validation Experiments
A configuration like Figure 3-D that relies only on the

reactive layer implementation described in Section 4.4
validated RADIC’s operation. RADIC served as the de-
liberative layer, initialized with the way-points necessary
for successive legs of the trajectory and operating as
described in Section 4. Two classes of experimental
validation were performed, the first using only the dead-
reckoning enhancement and the second using both dead-
reckoning and “floating points”. Plans consisted of loca-
tion sequences that form geometric trajectories; use of
dead-reckoning was necessary for base-line validation as
the accumulated error became too large, too quickly, to
consider navigation successful.

Table 2
RESULTS OF RADIC GEOMETRIC FIGURE TRAJECTORIES

Type Speed (cm/s) Dist. (m) Time (s)
S-shape 5 3.35 36

20 3.37 9
No Square 5 7.45 82
Floating 20 7.83 20
Points Tri- 5 5.34 60

angle 20 5.71 17
S-shape 5 3.35 36

20 3.34 9
With Square 5 7.57 85
Floating 20 7.86 21
Points Tri- 5 5.52 63

angle 20 5.73 16

Three trajectory types are shown in Figure 4, starting
at location (0,0): S-shaped via (50,0) and (200,150) to
(300, 150); squared via (150,0), (150,150), and (0,150)
back to (0,0); and triangular via (300,75) and (0,75)

 0

 50

 100

 150

 200

 0 50 100 150 200 250

Y
po

sit
io

n
(c

m
)

X position (cm)
 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

%
CP

U
lo

ad

time (seconds)

 0

 50

 100

 150

 200

 0 50 100 150 200 250

Y
po

sit
io

n
(c

m
)

X position (cm)
 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50
%

CP
U

lo
ad

time (seconds)

Fig. 5. Evaluation experiments comparing RADIC and CARMEN for square and triangular trajectories in relation to trajectories (left column)
and %CPU load (right column).

back to (0,0) (all units are in cm). Shown for each
trajectory type are the paths traced using the RADIC
navigator, with and without “floating points” (top and
bottom rows, respectively) at two different velocities (5
cm/s and 20 cm/s).

Speed, distance, and time measurements of the trajec-
tories, both with and without floating points, are shown
in Table 2. In all conditions, the robot is able to reach
all plan points in order. The main difference in the
trajectories lies in the use of “floating points”, which
reduce the deviation from the ideal trajectory (indicated
in the figures by the solid lines). This is especially
clear in the case of sharp turns (as in the case of the
triangles), where the robot has to go back-and-forth
several times without floating points. Given the narrow
valley of attraction imposed by the potential field-based
control, the placement of near-by floating points can
smoothen the trajectory (effectively, widening the basin
of attraction). Both total distance and elapsed time can
be expected to increase when using floating points, due
to the tighter trajectory fit. However, the time of the 20
cm/s triangle using floating points decreases; this can
be attributed to the fact that by improving the trajectory
tightness, the robot does not perform any forward and
back movements.

5.2. Performance Comparison on Geomet-
ric Trajectories

To evaluate the performance of RADIC’s navigation
function, a configuration like that shown in Figure 3-
A is used, where the RADIC component acts as the
interface between the reactive and deliberative layers
(as described in Section 4.4). Comparisons are made to
CARMEN [17], an example of a 3T hybrid architecture
(see Section 2). Experiments compare the performance
of squared and triangular geometric trajectories where
the robot’s top speed was limited to 20 cm/s, capturing
the %CPU load while the robot’s path was physically
recorded on the ground with an ink trail. After successful
trajectory completion, the path was measured by hand.
Results are shown in Figure 5)

Table 3
COMPARISON OF TRAJECTORY NAVIGATION (20 CM/S)

Type Hybrid Dist. (m) Time (s) CPU (%)
Square RADIC 7.74 29 2.9

CARMEN 7.56 48 46.3
Triangle RADIC 5.81 25 3.5

CARMEN 5.11 45 45.9

Navigation using RADIC provides a trajectory compa-
rable to that of CARMEN. Total distance travelled, time

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)
 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

%
CP

U
lo

ad

time (seconds)

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250 300

Y
po

sit
io

n
(c

m
)

X position (cm)
 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80
%

CP
U

lo
ad

time (seconds)

Fig. 6. Left column: Evaluation experiments comparing RADIC and CARMEN trajectories for unknown obstacles. Obstacles that are tangential
to the ideal trajectory are shown in the top figure, while the bottom figure illustrates obstacles that completely obstruct the goal location. Right
column: Comparison of RADIC and CARMEN %CPU load for the trajectories in the left column.

to completion, and average %CPU load1 are shown in
Table 3. In each case, the total distance traveled using
RADIC navigation is slightly longer, due to the fact that
task completion ends closer to the final goal point. At
the same time, the total time taken to complete the total
trajectories are just below half of that taken by CAR-
MEN, while the average CPU load never rises above
3.5% for RADIC, compared to 46.3% for CARMEN.
The reduced time is due to the operation of the reactive
layer, where the robot moves at close to its maximum
speed whenever it is in motion, whereas CARMEN often
pauses during movement. Reduced CPU load is due to
RADIC’s linear update time, relative to the expense of
CARMEN’s navigator and localizer, which continually
reformulate a plan.

Because the layers in a 3T architecture are tightly
integrated, both the navigator and localizer are necessary
for trajectory completion and the computational load
cannot be substantially reduced. RADIC’s mid-level,
potential-field based “guidance” of the reactive layer al-
lows the deliberative layer to produce the plan only once,
which is then dynamically adjusted in a computationally
inexpensive way during plan execution.

1The “spike” seen at the start of an RADIC run is due to the
initialization of the Java virtual machine.

5.3. Performance Comparison with Un-
known Obstacles

Comparing the effect of unknown obstacles on per-
formance also uses a configuration like Figure 3-A.
A single, straight-line trajectory of 3m is considered,
with an obstacle placed either tangential to or directly
obstructing the path (as shown in Figure 6). In both
cases, the nearest obstacle edge is placed 1.5m in front
of the robot’s initial position, one centered on the path,
the other shifted 26 cm to the side. Each show two
trajectories, with maximum speeds of 5 and 20 cm/s.

Table 4
COMPARISON OF OBSTRUCTED-PATH NAVIGATION

Type Hybrid Dist. (m) Time (s) %CPU
Tangent (5cm/s) RADIC 2.82 34 3.1

CARMEN 3.34 51 26.7
Tangent (20cm/s) RADIC 2.77 13 5.8

CARMEN 3.42 30 23.4
Obstruct (5cm/s) RADIC 3.09 44 2.6

CARMEN 4.31 81 23.8
Obstruct (20cm/s) RADIC 3.41 15 5.2

CARMEN 4.47 49 23.7

Results shown in Table 4 represent the trajectory of
the robot executing autonomously to reach the goal. In
all cases, navigation using the RADIC component trav-

 100

 150

 200

 250

 300

 350

 400

 450

 100 200 300 400 500 600
Y

po
sit

io
n

(c
m

)

X position (cm)

Fig. 7. Left: The robot used in the HRI experiment described in Section 5.4. Right: A typical trajectory of the robot from an experimental run
(circles indicate transmission regions with sufficient transmission strength, stars indicate local interference minima, and boxes indicate “rocks”, i.e.,
obstacles).

elled a shorter distance in one-half to two-thirds of the
time and used a fraction of the CPU load compared to
CARMEN. Similar to the results from Section 5.2, per-
formance improvements can be attributed to RADIC’s
mid-level decoupling of layers that yields navigation
ability without requiring replanning or consulting the
deliberative layer.

Results for dynamic (i.e., moving) obstacles exhibit
similar performance in both systems. For RADIC, if
an obstacle is placed such that the removal condition
cannot be met (e.g., because the obstacle is on the
point), the robot will continue attempts to reach the
location. Dynamic obstacles do not pose a problem, as
they will eventually move and allow the robot passage.
Static obstacles, on the other hand, cause the robot to get
“stuck”; the implicit assumption is that the planner does
not pick unreachable points, consistent with the design
specification (as is the case in CARMEN). It is, however,
possible to attach time-outs to plan points, such that a
location is skipped after a given time, allowing the robot
to proceed.

5.4. Other Applications of RADIC
A final validation of RADIC’s flexibility and utility

in robotic applications is provided by its use in research
regarding an affective architecture (see [24] for a de-
tailed overview). In addition, a variant of the RADIC
component is used as a virtual sensor in a joint human-
robot task [23], similar to those laid out in [8], which is
described next.

The scenario takes place on a remote planet, simulated
in a room of approximately 5m x 6m (see Figure 7),
where the human is directing the robot using natural

language. The task is to find an appropriate location
from which to transmit data to an orbiting space craft;
the RADIC variant is used as a “field detector” that
detects the “transmission strength” at the robot’s current
location. Rather than being a sequence of goal locations,
points in the internal map are assigned numerical values
that represent local “strength” minima of transmission
interference, which increases proportionally with the
distance from the point’s location.

As the robot moves across the “terrain”, the trans-
mission strength at its current location is determined
according to its distance from the nearest “field strength
point”. In the figure, these points are depicted as “stars”
(unknown to and directly undetectable by the operator),
sufficient transmission strengths are depicted by a circle
centered around a “field strength point”, squares repre-
sent actual obstacles in the experiment configuration, and
the curved line is the trajectory the robot traces under
direction from the human.

6. Related Work
To provide a “bridge” between reactive and delib-

erative layers, any hybrid architecture must satisfy the
functional mappings F1-4 specified in Section 2. How-
ever, a generalized component that integrates reactive
and deliberative layers–most aptly demonstrated when
integrating pre-existing layers–should also satisfy the
design desiderata specified by items I1-4 in that section.

The SSS [6] architecture does not meet item I2 (that
is, independent, autonomous, and parallel execution of
all layers) due to its total transfer of control between
reactive and architectural layers. A RADIC component

accepts input asynchronously from either layer, allowing
all three free to continue independent, parallel execution.

For the same reason, neither AuRA [2] nor 3T [4] sat-
isfy item I2. Furthermore, item I4 presents a difficulty,
as the symbolic plans produced by their deliberative
layers are passed to sequencers for execution, which then
select the appropriate controller (a behavior schema in
the case of AuRA and a RAP for 3T) from a library.
The intimate relation between layers makes it difficult
to separate and use them in isolation, while the total
dependence of the reactive layers’ operation on the mid-
level sequencer makes it difficult to add functionality
not already contained therein. RADIC, on the other
hand, transforms and replaces the other layers’ output;
additional functionality can be added, either as part of
the transformation or as internal processing.

Saphira [12] fulfills neither items I1 nor I3 due to
the large amount of information integration performed
by the LPS. Changes to overall functionality require
extensive modification (I1) to preserve coherency, while
substantial computational resources are necessary (I3).
In its capacity to operate as a separate component,
RADIC requires little in the way of computation and
no modifications of the layers themselves.

Finally, operation of the 4-D/RCS architecture relies
on a consistent structure of all layers, strictly regimented
by timescale. Item I1 is not satisfied because functional
changes that cross timescale boundaries would require
corresponding (likely internal) modification of the af-
fected layers. The need to supply each layer with a
full complement of internal components likely violates
I3, leading to redundant processing. Similar to AuRA
and 3T, the tight relationship between layers makes
adding functionality I4 problematic. By preserving the
decoupled operation of layers, RADIC avoids each of
these issues.

7. Conclusion
The validation and evaluation experiments show that

RADIC is capable of (1) integrating existing reactive and
deliberative layers–even those developed without consid-
eration of robotic platforms–to form a hybrid architec-
ture and (2) improving the performance of the combined
system by improving trajectories and compensating for
missing obstacle information at the deliberative layer
(i.e., the hybrid architecture is “more than the sum of its
parts”). Furthermore, trajectory following performance is
comparable to that of CARMEN–a system specifically
designed with integrated planning and plan execution
components–while requiring far less CPU resources. The
successful use of RADIC in the DIARC architecture and
its variants in HRI experiments indicate its utility and
flexibility.

Beyond the demonstrated performance improvements
(and unlike other hybrid architectures), RADIC has the

benefit of satisfying design desiderata I1-I4: it requires
minimal modifications to pre-existing reactive and de-
liberative layers, executes independently, autonomously,
and in parallel with the layers, uses minimal compu-
tational resources, and improves the functionality and
performance of systems containing individual layers.
While the reactive layer used in the experimental eval-
uation is schema-based, RADIC can be attached to any
reactive layer, by virtue of its method of intercepting
motor commands. Moreover, it can also be used with
any deliberative layer for which the convertGoal
function is implemented. Finally, the RADIC algorithm
is not limited to navigation tasks, but provides a general
structure for an action sequencer in hybrid architectures
for any task.

References
[1] J. Albus. 4-D/RCS reference model architecture for unmanned

ground vehicles. Proceedings of IEEE International Conference
on Robotics and Automation (ICRA2000), San Francisco, USA,
24-28 April 2000, pp. 3260–3265.

[2] R. Arkin and T. Balch. AuRA: Principles and practice in review.
JETAI, Vol. 9, No. 2-3, 1997, pp. 175–189.

[3] T. Balch and R. Arkin. Avoiding the past: A simple but effective
strategy for reactive navigation. Proceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA1993),
Atlanta, USA, May 1993, pp. 678–685.

[4] R. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and
M. Slack. Experiences with an architecture for intelligent,
reactive agents. JETAI, Vol. 9, No. 2/3, 1997, pp. 237–256.

[5] J. Borenstein, H. Everett, and L. Feng. Mobile robot positioning:
Sensors and techniques. Journal of Robotic Systems, Vol. 14, No.
4, 1996, pp. 231–249.

[6] J. Connell. SSS: A hybrid architecture applied to robot naviga-
tion. Proceedings of IEEE International Conference on Robotics
and Automation (ICRA1992), Nice, France, May 1992, pp.
2719–2724.

[7] R. James Firby. Task networks for controlling continuous
processes. Artificial Intelligence Planning Systems, Chicago,
USA, June 1994, pp. 49–54.

[8] T. Fong and I. Nourbakhsh. Interaction challenges in human-
robot space exploration. ACM Interactions, Vol. 12, No. 2, 2005,
pp. 42–45.

[9] E. Gat. Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile
robots. Proceedings of the 10th National Conference on Artificial
Intelligence, San Jose, USA, 12-16 July 1992, pp. 809–815.

[10] E. Gat. On three layer architectures. Artificial Intelligence and
Mobile Robots, 1998, pp. 195–210.

[11] R. Jensen and M. Veloso. Interleaving deliberative and reactive
planning in dynamic multi-agent domains. Proceedings of
the 1998 AAAI Fall Symposium on Integrated Planning for
Autonomous Agent Architectures, Orlando, USA, 22-24 October
1998.

[12] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti. The Saphira
architecture: A design for autonomy. JETAI, Vol. 9, No. 1, 1997,
pp. 215–235.

[13] J. Kramer and M. Scheutz. GLUE–a component connecting
schema-based reactive to higher-level deliberative layers for
autonomous agents. Proceedings of FLAIRS2003, St. Augustine,
USA, 12-14 May 2003, pp. 22–26.

[14] J. Kramer and M. Scheutz. ADE: A framework for robust com-
plex robotic architectures. Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS2006),
Beijing, China, 9-15 October 2006, pp. 4576–4581.

[15] D. Lyons and A. Hendriks. Planning as incremental adaptation
of a reactive system. Robotics and Autonomous Systems, Vol.
14, No. 4, June 1995, pp. 255–288.

[16] P. Maes. Situated agents can have goals. Designing Autonomous
Agents, 1990, pp. 49–70.

[17] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on stan-
dardization in mobile robot programming: The carnegie mel-
lon navigation (CARMEN) toolkit. Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS2003), Las Vegas, USA, October 2003, pp. 2436–2441.

[18] E. Mueller. Natural Language Processing with ThoughtTreasure.
Signiform, New York, 1998.

[19] H. Nwana. Software agents: An overview. Knowledge Engineer-
ing Review, Vol. 11, No. 2, 1995, pp. 205–244.

[20] M. Scheutz. ADE–steps towards a distributed development and
runtime environment for complex robotic agent architectures.
Applied Artificial Intelligence, Vol. 20, No. 4-5, Vienna, Austria,
2006, pp. 275–304.

[21] M. Scheutz and V. Andronache. Architectural mechanisms for
dynamic changes of behavior selection strategies in behavior-
based systems. IEEE Transactions of System, Man, and Cyber-
netics Part B, Vol. 34, No. 6, 2004, pp. 2377–2395.

[22] M. Scheutz and J. Kramer. RADIC–a generic component for the
integration of existing reactive and deliberative layers. Proceed-
ings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS06), Hakodate, Japan,
8-12 May 2006, pp. 488–490.

[23] M. Scheutz, P. Schermerhorn, J. Kramer, and C. Middendorff.
The utility of affect expression in natural language interactions
in joint human-robot tasks. Proceedings of the First ACM
Conference on Human-Robot Interaction (HRI2006), Salt Lake
City, USA, 2-4 March 2006, pp. 226–233.

[24] M. Scheutz, P. Schermerhorn, C. Middendorff, J. Kramer, D. An-
derson, and A. Dingler. Toward affective cognitive robots
for human-robot interaction. AAAI 2005 Robot Workshop,
Pittsburgh, USA, 9-13 July 2005, pp. 1737–1738.

[25] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to
concurrent mapping and localization for mobile robots. Machine
Learning, Vol. 31, 1998, pp. 29–53.

James Kramer is pursuing his Ph.D. in Computer Science and
Engineering at the University of Notre Dame, South Bend, IN, where
he previously earned his M.Sc in 2005. His primary interests concern
the role of system infrastructure as related to agent architectures,
focussing on the use of reflective mechanisms in integrating system
and cognitive architectures and particularly concerning their use in
failure detection and recovery. These ideas are being implemented in
the APOC Development Environment (ADE), of which he is a primary
developer.

Matthias Scheutz received the M.Sc.E. degrees in formal logic and
computer engineering from the University of Vienna and the Vienna
University of Technology, respectively, in 1993, and the M.A. and
Ph.D. of philosophy in philosophy at the University of Vienna, Austria,
in 1989 and 1995 respectively. He also received the joint Ph.D.
in cognitive science and computer science from Indiana University
Bloomington in 1999. He is an assistant professor in the Department
of Computer Science and Engineering at the University of Notre Dame
and director of the Artificial Intelligence and Robotics Laboratory.
He has over 80 peer-reviewed publications in artificial intelligence,
artificial life, agent-based computing, cognitive modeling, foundations
of cognitive science, and robotics. His current research interests
include agent-based modeling, complex cognitive and affective robots
for human-robot interaction, computational models of human language
processing in mono- and bilinguals, distributed agent architectures, and
interactions between affect and cognition.

